High concentration of glucose activates migration and proliferation of human skin keratinocytes through inducing active release of HMGB1.

Yamada Kiyoko, Matsushita Kenji

Journal of Investigative Dermatology
Volume 133
Number S1
Page range 247-259
Year 2013
URL http://hdl.handle.net/10232/20238
doi: info:doi/10.1038/jid.2013.107
Title: High concentration of glucose activates migration and proliferation of human skin keratinocytes through inducing active release of HMGB1.

Authors: Kiyoko Yamada and Kenji Matsushita

Affiliation: Department of Longevity Oral Science, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

Abstract: High-mobility group box 1 (HMGB1) is a nuclear factor and a secreted protein. During inflammation, HMGB1 is secreted into the extracellular space where it can interact with the receptor for advanced glycation end products (RAGE) and trigger proinflammatory signals. This protein has also been shown to function as a cytokine and to promote keratinocyte scratch wound healing. In the present study, we investigated the effect of a high glucose concentration on secretion of HMGB1 in cultured human skin keratinocytes. A high concentration (10 mM) of glucose induced HMGB1 release in human skin keratinocytes and promoted phosphorylation of ERK1/2 but not that of p38 or JNK. The MEK1/2 inhibitor PD98059 also suppressed HMGB1 release induced by 10 mM glucose. The high concentration of glucose activated migration and proliferation of human skin keratinocytes, and antibodies to HMGB1 inhibited these glucose-induced phenomena in vitro. These results suggest that a high glucose concentration induces HMGB1 release from skin keratinocytes and may enhance wound healing in the skin.