## Performance of Yttria-stabilized Zirconia Fuel Cell using CO-O<sub>2</sub> Gas System and H<sub>2</sub>O Gas as an Oxidant

Yoshihiro HIRATA\*, Shinji DAIO\*\*, Ayaka KAI\*\*\*, Taro SHIMONOSONO\*\*\*\*, Reiji YANO\*\*, Soichiro SAMESHIMA\*\*\*\*\*, Katsuhiko YAMAJI\*\*\*\*\*

## Abstract

The performance of an yttria-stabilized zirconia fuel cell (YSZ) was examined using CO-O<sub>2</sub> gas system and H<sub>2</sub>O oxidant gas.[1] The final target of this research is to establish the combined fuel cell systems which can produce a H<sub>2</sub> fuel and circulate CO<sub>2</sub> gas in the production process of electric power. Fig.1 shows two types of the combined reaction systems for the production of H<sub>2</sub> fuel and the circulation of CO<sub>2</sub> gas in the production process of electric power. A large electric power was measured in the H<sub>2</sub>–O<sub>2</sub> gas system and the CO–O<sub>2</sub> gas system at 1073 K (Fig.2). The formation process of O<sup>2-</sup> ions in the endothermic cathodic reaction (1/2O<sub>2</sub> + 2e<sup>-</sup>  $\rightarrow$  O<sup>2-</sup>) controlled the cell performance. The CO–H<sub>2</sub>O gas system and the H<sub>2</sub>–H<sub>2</sub>O gas system was expected to produce a H<sub>2</sub> fuel in the cathode (CO + H<sub>2</sub>O  $\rightarrow$  H<sub>2</sub> + CO<sub>2</sub>, H<sub>2</sub> + H<sub>2</sub>O  $\rightarrow$  H<sub>2</sub> + H<sub>2</sub>O). Although relatively high OCV values (open circuit voltage) were measured in these gas systems, no electric power was measured. At this moment, it was difficult to apply H<sub>2</sub>O vapor as an oxidant to the

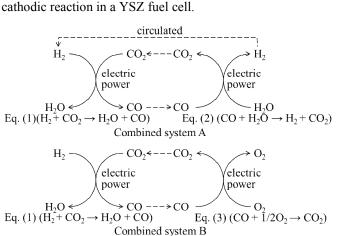



Fig. 1 Combined reaction systems for the production of a  $H_2$  fuel and the circulation of  $CO_2$  gas in the production process of electric power.

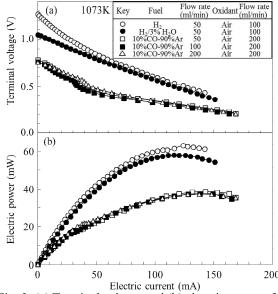



Fig. 2 (a) Terminal voltage and (b) electric power of a YSZ cell using the  $H_2$ – $O_2$  gas system and the CO– $O_2$  gas system at 1073 K.

## References

1) Y. Hirata, S. Daio, A. Kai, T. Shimonosono, R. Yano, S. Sameshima and K. Yamaji, "Performance of yttria-stabilized zirconia fuel cell using H<sub>2</sub>–CO<sub>2</sub> gas system and CO–O<sub>2</sub> gas system", Ceramics International, Vol. 42, pp. 18373-18379, 2016.

\*Professor, \*\*Graduate Student, \*\*\*Undergraduate Student, \*\*\*\*Assistant Professor, \*\*\*\*\*Associate Professor, Department of Chemistry, Biotechnology, and Chemical Engineering

\*\*\*\*\*\*Group Leader, Fuel Cell Materials Group, Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology