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Abstract

Thisbriefpaperderivesviaquarticsplinefunctionanewcosistencyrecurrencerela,

tionconnectingthequarticsplinefunctionvaluesatequidistantknotsandthecorresponding

valuesofthesecondderivatives.Itisshownhowthisconsistencyrelationmaybeusedin

analgorithmforcomputingquarticsplineapproximationstothesolutionanditshigherde-

rivativesforalineartwo-pointboundaryvalueproblem.Somenumericalevidenceisalsoin-

eludedtodemonstratethepracticalusefulnessofthealgorithm.∫

1.INTRODUCTION

Wefirstintroduceasequenceofgridpointsn-¥xn¥n:五bydividing[a,b]into

l/V+1)eQu^lpartssothat

(1.1)xn-a+nh,n-O(l)iV+l,

with/i-(6-a)/(iV+l).Manyrecurrencerelationsholdbetweenthevaluesofaspline

anditsderivativesattheequidistantknotsxn.AgeneralresultduetoSwartz(1968)is

●●giveninthefollowingtheorem.

Theorem1.1.Foranysplinefunctionsix),ofdegreem≧2andinCm*[a,6];andfor

eachy,0≦J/≦N+2-m¥andforeachjjl,1≦p≦m-1;thereisalinearrelationbe-

tweenthemquantitiessJ+レandthemquantities,sfly,0≦J≦m-1.●

Thisrelationisgivenby●

m-¥m-¥
1.2∑Qj｡,+y-ft∑β(m)o(ju)
oj+〟.
J-0J-0

Thegeneralexpressionsforthecoefficientsα(m,/u)andβwarealsogiveninSwartzpaper.

Inparticularletc(x)andq(x)designatethecubicandquarticsplinefunctionre-

spectively,thenfromTheorm1.1itfollowsthat
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(i) C--Cトi-y(ci-i+4i+cLl),

(ii) Cトi 2c^+Ci+¥一昔(c"i-i+4c"t+c"t+1),

(i)-Qi-3Q-+3gi+2+qn-3--r(q'i+Uq'i+i+Uq'i+2+q't+s),

(")9<-"Qi+l--(7*+2+9i+3-富{q"t+llq"i+l+nq"i+i+q'

i+3),

(iii)-qt+3qt+1瑞+2+Qi+3一芸(g-i+llg'i+i+Uq"t+2+g"i+3¥

i-wX)N-2, and c.≡ C(xi), Qt≡q(xt) etc.

The use of cubic spline function c(∫) 【Albasiny et al. (1969)I; Fyfe (1970)I in approx-

imating continuously the solution of the following real two point boundary value prob-
●

lems

1.5　　　　　　　　　y"(x)- f(x)y(x)+g(x), fix)≧O on [a, 6]

y(a)-A-y{b)-B-O

leads to a three point recursion formula 1.3 (ii). The method of development, there, of

1.3 (ii) is altogether different from the one given by Swartz in Theorem 1.1. The relation

1.3 (ii) is used for the determination of the sequence lCnl n-l(l)iV, c｡-A, cn+i-B.

Here cn is assumed to approximate yn-y(xn) and cn-fnCn+gn fn-f(xn¥ gn-gixnl

The integer JV is a suitable positive integer ≧1, and we naturally assume that y¥x) is

the unique solution of the differential system (1.5). The determination of the unkunowns

cn, 7i-l(l)iV is effected by solving a system of linear equations whose associated matrix

is a tndagonal matrix.

The relations (1.3) and (1.4) are reestablished by Meek (1973). Blue (1969) has

obtained quintic spline solutions of the boundary value problem (1.5) But, more fre-

quently 【see Henrici (1962),Chap. 7l the problem (1.5) is solved by a well-known stan-

dard fourth order finite difference, namely, Numerov's method in which the sequence knl
satisfies the recurrence relation

(1.6)　　　zn-i" c,Zn ¥ Zn-i一名(I;-1+lOzn+Z;+l).

n-l(l)iV, where now zn is assumed to approximate yn

The main purpose of this note is to present a continuous approximation of the solu-

tion of (1.5) via quartic spline function q(x) and to give an analysis in the sequel to

establish a three point recurrence relation connecting the values of quartic spline and its

second derivatives at the uniform knots xn, namely,

(1.7)　　　　Qt-x-2qt+ q…-蛋(q"i-i+10q"t+ q"i+x),
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i-l(l)Ny in contrast to the four-point formula 1.4(ii) given by Swartz (1968). Note that

(1.7) will mean that quartic spline values with uniform knots satisty Numerov s formula

(1.6).

Also, this fact that quartic spline values with uniform kunots also satisfy (1.7), in

addition to satisfying 1.4 (ii), will have useful consequences as we shall see later on. We

also remark that formula 1.4 (ii) of Swartz is not unique, since, all linear combinations of

(1.7) for two consecutive values of i will lead to a four-point relation between the quar-

tic spline values and its second derivatives with uniform knots.

This approach of approximating y¥x) by g(x) obviously has the extra advantage of

continuous approximation of y (x), ra>l. In the next section we develop the necessary

formulae for quartic spline approximation of (1.5) and demonstrate that the Numerov s

finite difference solution of (1.5) based on (1.6) is nothing but the discrete quartic spline

solution of the corresponding boundary value problem.
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2. QUARTIC SPLINE SOLUTION OF (1. 5).

We recall that q(x) is said to be a quartic spline over the set of grid points n if

∈ [a, 6] and q{x) restricted to [孔, xt+i¥ is a quartic polynomial for &-0(l)iV+l.

The space of all such polynomials is denoted by six, 4). If in addition, we have the

collocation conditions (using (1.5))

(2.1)　　　　　　　　　　　g"i-ftgt+gi, i-0(i)JV+i,

qo-Ay qn+i-B,

then q¥x) is said to be an s{n, 4)-approximation of y{x) at the grid points in n. This

approximate function q{x) is not uniquely determined by the data (2.1), since dim six,

4) is iV+5. Roughly speaking there is still one degree of freedom left, calling for a suit-

able additional end condition linearly independent of those given by (2.1). In fact, as we
l

shall see later on, this extra end condition is provided with by prescribing qt at 1-0 or

N+l.

We now proceed to develop the necessary consistency relation. Let y(x) -q{x)

-PAx), x∈ [xu xt+l], i-O(l)N+l

where we write

2.2　　　　　　Pt{x)-alx-xiY+ bt(x-xty+ ct{x-xif+dlx-xi)+ et,

and g(x)EC3[a, &]. We adopt the convention that

(2.3)　　　　　　pt(xj)- qj, P't(xj)-Fj, P%xj)-Mj, Xj∈|_Xj, Xi+ij,

and thus we determine the five coefficients in (2.2) in terms of qu Qt+u Fu Mt and Mi+¥.

An easy calculation shows that
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at- -{qi+l- QtW+ FJhl+(Mt+1+2Mt)l(6h2)

bt-2(臥,- QtW-2Fi}h2-(Mi+l+5Mt)l(6h)

ct-0.5Mu dt-Ft, et-qt, i-O(l)N.

The continuity of the first derivative at x-xt [ that is Pi_i(xォ)-Pォ(xi) ] yields

(2.5)　　　　　　　　　4ti>ai-i+3h2bt-1+2hcト¥+di-x-du

which on using (2.4) reduces to

(2.6)　　　　　　　　Fl+ Fi-i-2(ql- qi-1)lh+ h(Mi-Mi-1)/6.

Similarly, the continuity of the third derivative at ∬-∬i yields

2.7)　　　　　　　　　　　　　4hat-i+bトi-bu

which by (2.4) reduces to

(2.8)　　　　　　Ft+Ft-i-{qt十- Qi_l)lh-h(Mi+1+SMi+3Mi^)/12.

The elimination of (Ft+Ft-i) from the relations (2.6) and (2.8) gives

(2.9)　　　　　　　2(ォ7i- qt-tWh+hiMt-Mt-i)/6-{Qt+i- Qt-i) h

- h(M…+8Mi+3M,-,)/12.

0n simplifying ･this preceding relation we get

(2.10)　　　Qトー2qi+ qi+l-蛋(Mt-r+lOMt+Mt+i),

&-l(l)iV, which is the same as the Numerov's formula. Here Mi-fiQi+gu i-0(l)N+1.

The unknowns qt are first determined by solving a tridiagonal system of linear equa-

tions based on (2.10). The formula (2.6) or (2.8) can then be used to evaluate Ft pro-

vided we know the starting value Fo (or FN+i). Approximate values of these are given by

Usmani (1976) in the form

Fo-[- go+ gl- /i2(5M,+Ml)/12- /i3(/ogォ+ go)/12]

l[h(l + h2fJ12)l

FH+l-[- gN+ qN+l + h2(MN+5MN+1)/12

- h3(fN+lqN+l +gN+1)l12] [h(l + h2fN+l)l121

However, (2.6) is unsuitable for the computation of the sequence職because it is
unstable and its solution has the form

8

(2.13　　　　　　　　　F,-(-1)'F｡+∑(-1)トn¢ i-l(l)JV+l,
m=¥

∫

where ¢t-2{qt-qトi)lh+h{Mt-Mt-x)/6. In practice we compute F¥ from (2.6) and then

the sequence Fu i-2(l)N+1 from the consistency relation

2. 14)　　　　　　　Ft+1-Fォ_,+ h<Mt-x+4Mt+Mt+I)13,

1-1(1AT.
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This preceding consisency relation can be developed by obtaining the five coefficients in

(2.2) in terms of qu Fu Fi+U Mu Mi+i and then employing the continuity of the third de-

rivative Pt-i{xt)-P't(xt) at x-xt. Note that the solution of (3.14) has the form

(2. 15)　　　　Ft-
i

F｡+F2+ - +Fト.)+(&+め+-+0<_i), i even

(Fl+F3+ - +F,_,)+(A+04+-+在1), i odd,
i-2[l)N+l, where <h… /i(M,_1+4Mf+Mi+1)/3.

Thus, the knowledge of <?*, Fti Mu i-0{l)N+1, enables us to write down all the coeffi-

cients of the quartic spline in each subinterval as given by (2.4). A quartic spline appro-

ximation of the third derivative of y{x) at the knots is then obtained by

(2.16)　　　　　　　yl-ql-Gbu i-O(l)N

and

‖l

yN-24haN+6bN

(2. 17)　　　　　　- -12(qN+1 - qN)lh3+ 12FNlh2+3(MN+,+MN)lh.

Finally, the approximation of y(x) or its successive derivatives at points other than grid

points in n will be carried out by evaluating or differentiating the appropriate quartic

polynomial.

However, if we compute the derivatives of order ≧3 by the overdifferentiation of

the differential equation in (1.5), 【instead of using (2.16) and (2.17)I then an 0(〟)
●

accuracy is observed in the values of the third derivatives at the knots.

3.ERRORANALYSIS

Lety(x)∈C6[a,b]andlettheerrorinthequarticsplineapproximationtovtbe

^i-Vi-Qi'Itiswell-known[Henrici,1962】thatife-(eAthen

(3.1)et¥<志(xt-au-xtwY*

whereY*-max|y{i¥x)¥.Inparticular

(3.2)e.l≦志h(b-hWYe-O(h5)

and

(3.3)||e||-max|ei|品{b-a)2Ys-KV-O(hA¥

wheregisaconstantindependentofんForanerrorboundsharperthantheonegiven

by(3.3),thereaderisreferredtoFischerandUsmani(1969,p.135).

Sinceqt…Mi-figi+giywehave

(3.4)max¥y"i-q'
i匡FKh4-0(h*),i-O(l)N+l,

whereF-max|/(x)|,
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ThelocaltruncationerrorTiassociatedwiththedifferenceequation(2.6)is

(3.5)rp志/iV5)(6),xト1<島<x,i+l>

Using(2.6)for1-1,(3.2),(3.4)and(3.5),weeasilyprovethat

(3.6)¥y¥-q¥¥-O{hi¥

Thelocaltruncationerrorrtassociatedwith(2.14)is

(3.7)Ti-一芸y*xm¥*,-,<り<x{i+l-

Ifwesetoi-|yt-qt¥,thenitfollowsfrom(2.14)and(3.7)that

･3.8)Oi

(J｡霊ot-i+0{hs)i=l{l)N,

(assumingF｡isgiven).Wenowprovefrom(3.8),usingmathematicalinduction,that

(3.9)max|y't-q't¥-0(h4),i-2(l)N+l.

Oncombining(3.6)and(3.9),wehave

(3.10)′-max¥y'i-q'i¥-O(hi¥i-2(l)N+l.

Inananalogousmannerweprovethat

(3.ll)maxIt/I-gl|-0(/i2),o≦i≦N+l,

seeAppendix.Wesummarizetheaboveresultsinthefollowingtheorem.

Theorem3.1Lety(x)EC¥a,b]betheexactsolutionoftheboundaryvalueproblem

(1.5),andg¥x)bethequarticsplinesolutionapproximatingy{x).Then

maxlyf-qTI-o{hm¥i-O(l)N+l,

andwhereA(a*)-4-喜ut-lfot-2),u-¥,2,3.

4. A NUMERICAL ILLUSTRATION

We obtain continuous quartic spline approximation of the boundary value problem

(4. 1)　　　　　　　　y"{x)-2x'2y(x)-x-¥ y{2)-ォ(3)-0,

with y{x)-(¥9x-5x2-36x x)/38. All computations are carried out using double preci-

sion arithmetic in order to keep the rounding errors negligible as compared to the dis-

cretization errors.

We solve the boundary value problem using cubic and quartic spline functins. Note
●

that the formula (2.10) is such that the truncation error associated with it can be ex-

panded in power of h and it satisfies the conditions of Therorem 7.4 [Henrici (1962)],

Richardson h -extrapolation method can be used to push the accuracy of quartic spline

solution to O(h ). This means that
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(4.2)　　　　　　　　　qt-[qurH- r4^,*]/(l - r/i4)+ O(/i6),

where quh denotes the quartic spline approximations to y(xi) with the step-size h, it

being assumed that (6-a) is an integral multiple of h. From (4.2), it follows that the ex-

trapolated value

(4.3)　　　　　　　　　　qt-(at,rh- r*QLh¥Hl- rh*)

approximates yt with O(/i6トaccuracy. We cho占e r-l/2 in practice. These results will

finally be compared with the author's sixth order finite difference method 【Usmani

(1973)】 All these experiments are briefly summarized in Tables I and II.

TABLE I

MAXIMUM OBSERVED-ERRORS IN MODULUS (h-2-n, m-l(l)6)

ん Vi Vi Vi

2-I 0.389 - 4* 0.424 - 3 0.125- 4 0.241- 1

2-2 0.265 - 5 0.335- 4 0.986 - 6 0.927 - 2

2"3 0.174 - 6 0.272- 5 0.628 - 7 0.290 - 2

2-4 0.110 - 7 0.193ー 0.400 - 8 0.814 - 3

2"5 0.685- 9 0.129- 7 0.250 - 9 0.216- 3

2-6 0.429 - 10 0.832- 9 0.157 - 10 0.556- 4

�"We write 0.389-4 for 0.389×10~4.

TABLE II

〟

maximum observederrorsin modulusbasedon

0(/i2)cubicspline 0(/i4)quarticspline
0(h )finitedifference

Usmani､(1973)

solution

based on (3.3)

1 0.693- 3 0.389- 4 0.209- 5 0.176- 6

3 0.165- 3 0.260- 5 0.377- 7 0.323- 8

7 0.417- 4 0.174- 6 0.647- 9 0.556- 10

15 0.104- 4 0.110- 7 0.102- 10 0.879- 12

31 0.261｢ 5 0.685- 9 0.159- 12

5. CONCLUSION

In conclusion we would like to mention two more observations in contrast to

Theorem 1.1. Let six)- designate the sexic spline function. Then a long but simple analy-

sis similar to the one given in Section 2 leads to the following five-point reurrence rela-
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tions(insteadofsix･pointrelations)

(5.1)s,-,+8s,-i-h
18si+8st+i+5i+2-^5l-2+565l-i+2465l+565t+i+5'i+2l

and

(5.2)ト2-isi-i+6Si-4si+i+si+2-品[s(i4!2+56s(/!1+246s(i4)+56s(/ii+s(^2].

Theuseof(5.1)hasbeendemonstratedinobtainingasexticsplinesolutionof(1.5)

lUsmani(1978)1.
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APPENDIX

Proof of (3.ll)

Since

T,-66,

(A.1)　署(恥i-Qt)一新一昔{Mt+l+5Mt), by(2.5),
hence

･`+ T,-,-普(<?*+i - qt-i)一昔(Ft+ F-,)--jkjH,+i +6M,+5Mi-,)

署(Qi+l-2qi+ qi-i)-j-(Mt+i+8Mt+3Mt-1), by (2. 6)
(A. 2)　　　　-4(Mt-Mt-1), by (2. 10).

From (A. 2), we also have

(A. 3)　　　　　　　　-+ Tt-j(Mt十i-Mi).

We now substract (A. 2) from (A. 3) to get the consistency relation

(A. 4)　　　　　　　T-- Tト,--r(Mi+1- -2Mt+Mt-i), i-l{l)N.

It is easy to verify that the local truncation error A associated with (A.4) is

(A. 5)　　　　　pt-去h3y{i¥U i-l(l)N.

We now compute Tu &-1, 2 from (A. 1). The local trunation error wt associated with

(A.1)is

(A. 6)　　　　　wt-去h2y(s){wi¥ xi< wi<xi+i.
Note that, it follows from (3. 1) that

(A. 7

We set

A.8

Now it is easily proved that

A.9

et¥-O{hh), i-l, 2.

e"i-yt-T`, i-OU JV+1

e -0(h2), i-l,2

using (A. 1), (A. 6), (A.7) and (A. 9).

We next computeけi-2(l)N, from the consistency relation (A.4). The error
equation is written down in an usual manner in the form (from (A. 4) and (A. 5))
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(A. 10)
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eォi　≦ etiI+o(h3),by(3.4)and(A. 5)

e";¥-O{h2), i-¥, 2, by (A. 9).

From the preceding inequality we easily deduce, from mathematical induction, that

(A. ll)　　　　　　　　　　　e't ¥ -O{h2), i-O(l)N.

In an analogous manner, we establish from (2.17) that

(A. 12)　　　　　　　　　　　　　　e"N+1 -0(/i2).

On combining (A. ll) and (A. 12), we have desired result (3. ll).


