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Abstract
This brief paper derives via quartic spline function a new cosistency recurrence rela-
tion connecting the quartic spline function values at equidistant knots and the corresponding
values of the second derivatives. It is shown how this consistency relation may be used in
an algorithm for computing quartic spline approximations to the solution and its higher de-
rivatives for a linear two-point boundary. value problem. Some numerical evidence is also in-
cluded to demonstrate the practical usefulness of the algorithm.
1. INTRODUCTION
We first introduce a sequence of grid points 7 ={xanto by dividing [a, b] into
(N +1) equal parts so that C
(1.1) Xn=a+nh, n=0(1)N+1,
with A=(b—a)/(N +1). Many recurrence relations hold between the values of a spline
and its derivatives at the equidistant knots X, A general result due to Swartz (1968) is
given in the following theorem.
Theorem 1.1. For any spline function s(x), of degree m=2 and in C™ ' [a, b]; and for
each v, 0<vy<N+4+2—m; and for each y, 1<u<m—1; there is a linear relation be-
tween the m quantities Sy, and the m quantities, s%,, 0<j<m—1.
This relation is given b
K g Yy
" m & om) o
5{’3 (1.2) gaj ’u8j+u=hu§ﬂ Sj‘:.u.

The general expressions for the coefficients ™ and 8™ are also given in Swartz paper.
In particular let c(x) and g(x) designate the cubic and quartic spline function re-
spectively, then from Theorm 1. 1 it follows that
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() Conm Cor={Cor 4t Cin

(1.3) 2 ,
(ii) Ci—1—2Ct+Ct+1=_6_(ci—1+4ci+Ct+1).
{=1(1)N; and
(i) —Qt—3Qt+1+3Qz+z+Qz+3=ﬂ(q‘i+11q’z+1+llq;+z+Q'z+3),
4
2
(1.4) (ii) Qz—Qt+1_Qt+z+Qt+3=i(q;+11q;+1+11q;+z+q:+3),
12

¢

3
@) — q:i+3qi+1—3Qs42+ Qi+3='h_(q‘t“+11q't”+1+11 q‘t“+2+ q,z:'»fa),
24

i=0(1)N—2, and c¢;=c(x)), ¢;:=q(x)) etc.

The use of cubic spline function c(x) [Albasiny et al. (1969)]; Fyfe (1970)] in approx-
imating continuously the solution of the following real two point boundary value prob-
lems

(1.5) y"(x)=f(x)y(x)+ 8(x), f(x)=0 on [a, b]
y(a)—A=y(b)—B=0

Ieads to a three point recursion formula 1.3 (ii). The method of development, there, of
1.3 (ii) is altogether different from the one given by Swartz in Theorem 1.1. The relation
1.3 (ii) is used for the determination of the sequence {cs, n=1(1)N, co=A, Cns1=B.
Here Cn is assumed to approximate Yn=Y(Xs) and Cn=fuCn+ 8n So=S (%), 8n=_8(xn)
The integer N is a suitable positive integer =1, and we naturally assume that y(x) is
the unique solution of the differential system (1.5). The determination of the unkunowns
Cn N=1(1)N is effected by solving a system of linear equations whose associated matrix
is a tridagonal matrix.

The relations (1.3) and (1.4) are reestablished by Meek (1973). Blue (1969) has
obtained quintic spline solutions of the boundary value problem (1.5) But, more fre-
quently [see Henrici (1962),Chap. 7], the problem (1.5) is solved by a well-known stan-
dard fourth order finite difference, namely, Numerov’s method in which the sequence {zx}
satisfies the recurrence relation

2
(16) Zn-1—225+ zn—1=']}.l_2(2;t—1+102;z+ z;z+1),

n=1(1)N, where now 2, is assumed to approximate Y.

The main purpose of this note is to present a continuous approximation of the solu-
tion of (1.5) via quartic spline function g(x) and to give an analysis in the sequel to
establish a three point recurrence relation connecting the values of quartic spline and its
second derivatives at the uniform knots X, namely,

2
(1.7) Qi-1—2q,:+ qz+1=%(q'£_1+10q'£+ Qi+1),
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i=1(1)N, in contrast to the four-point formula 1.4(ii) given by Swartz (1968). Note that
(1.7) will mean that quartic spline values with uniform knots satisty Numerov’s formula
(1.6).

Also, this fact that quartic spline values with uniform kunots also satisfy (1.7), in
addition to satisfying 1.4 (ii), will have useful consequences as we shall see later on. We
also remark that formula 1.4 (ii) of Swartz is not unique, since, all linear combinations of
(1.7) for two consecutive values of i will lead to a four-point relation between the quar-
tic spline values and its second derivatives with uniform knots.

This approach of approximating y(x) by g(x) obviously has the extra advantage of
continuous approximation of ¥™(x), m=1. In the next section we develop the necessary
formulae for quartic spline approximation of (1.5) and demonstrate that the Numerov’s
finite difference solution of (1.5) based on (1.6) is nothing but the discrete quartic spline
solution of the corresponding boundary value problem.

2. QUARTIC SPLINE SOLUTION OF (1. 5).

We recall that g(x) is said to be a quartic spline over the set of grid points x if
q(x)€ [a, b] and q(x) restricted to [x;, Xi+1) is a quartic polynomial for i=0(1)N +1.
The space of all such polynomials is denoted by s(mz, 4). If in addition, we have the
collocation conditions (using (1.5))

(2.1) - ¢i=/fiq:+ 8, 1=001)N +1,
qO___A, Qn+l:B,

then ¢(x) is said to be an s(x, 4)—approximation of y(x) at the grid points in z. This
approximate function ¢(x) is not uniquely determined by the data (2.1), since dim s(,
4) is N +5. Roughly speaking there is still one degree of freedom left, calling for a suit-
able additional end condition linearly independent of those given by (2.1). In fact, as we
shall see later on, this extra end condition is provided with by prescribing ¢; at =0 or
N +1.

We now proceed to develop the necessary consistency relation. Let y(x)=q(x)
=PJx), x€ [x;, 2:41), i=0(1)N +1
where we write

(2.2) Pl(x)=afx—x)'+ blx—x)+ clx—x)+ d{x—x)+ e,
and q(x)ECa, b]. We adopt the convention that
(2-3) Pt(xj):(]f, P‘i(x.i):Fjs P;(x,-)=M,—, xje[xt, xi+1],

and thus we determine the five coefficients in (2.2) in terms of @i, @i+1, Fi, M; and M.
An easy calculation shows that
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ai:_—(Qi+l_qt)/h4+Fi/h3+(Mi+1+2Mi)/(6h2)
(2.4) bi=2(qi+1— q)h*—2F,/h’—(M;.,+5M,)/(6h)
C,;=O.5M,:, di=Fi, e;=4dq; l=0(1)N

The continuity of the first derivative at x=ux; [ that is P;_,(xt;)= P(x;) | yields

(2.5) 4h’a;1+3h*bi1+2hci+dioi=d,,
which on using (2.4) reduces to

(2.6) Fit Fiy=2(¢;— qi-)/h+ h(M;— M;,)/6.
Similarly, the continuity of the third derivative at x=ux; yields

(2.7) 4ha; 1+ b;-,=0b,,

which by (2.4) reduces to

(2.8) Fit Fiev=(qi1— @i-1)| h— R(My, +8 M+ 3M,_ 1)/ 12.
The elimination of (F;+ F;_,) from the relations (2.6) and (2.8) gives
(2.9) 20q;— qi-1)h+ h(M;— M;_,)|6=(qs:1— qs-1)|h

— h(M+8M;+3M;_,)/12.

On simplifying this preceding relation we get
2
(210) Qi-1—2¢;+ Qi+1={l_2(Mi-1+10Mi+Mi+l),

i=1(1)N, which is the same as the Numerov's formula. Here M;= f;q;+8&: i=0(1)N +1.
The unknowns ¢; are first determined by solving a tridiagonal system of linear equa-
tions based on (2.10). The formula (2.6) or (2.8) can then be used to evaluate F; pro-

vided we know the starting value Fy (or Fy:1). Approximate values of these are given by
Usmani (1976) in the form

(2.11) Fo=[—qo+ ¢:— R*GMo+ My)[12— h*(f 0G0+ 8)/12]
or [[h(1+ R fi/12)],
(2.12) FN+1=[—q~+ q~+l+h2(MN+5MN+l)/12

— R(f hs1Gner+ 8ued)12)[RQA + A2 fri)/12]

However, (2.6) is unsuitable for the computation of the sequence {Fj because it is
unstable and its solution has the form

(2.13) Fi=(—1>iFo+§l(—1)i""¢m, i=1(1)N +1,

where ¢;=2(q;— q:_1)/h + h(M;— M,_,)/6. In practice we compute F; from (2.6) and then
the sequence F;, i=2(1)N +1 from the consistency relation

(2-14) Ft+1=Ft—1+h(Mt—1+4Mi+Mz+1)/3.
i=1(1)N.
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This preceding consisency relation can be developed by obtaining the five coefficients in
(2.2) in terms of q;, F;, Fiy1, M;, M;,, and then employing the continuity of the third de-
rivative P;_,(ax;)= P;(x;) at x=x;. Note that the solution of (3.14) has the form
(2.15) po | FotFot o+ Fia) it date ot o), deven

) : (F1+F3+ +Fi—2)+(¢2+¢4+"'+¢i—l)v iOdd.
l=2(1)N+1, where ¢zE h;(Mi_1+4M,;+M,;+1)/3.
Thus, the knowledge of q; Fi M, i=0(1)N +1, enables us to write down all the coeffi-
cients of the quartic spline in each subinterval as given by (2.4). A quartic spline appro-
ximation of the third derivative of y(x) at the knots is then obtained by
(2.16) Yi=qi=6b, i=0(1)N
and

yN: 24hay+6by

- (2.17) = —12(gn+1— gnA* +12F W h*+3(Mn.1+ My h.

Finally, the approximation of y(x) or its successive derivatives at points other than grid
points in 7 will be carried out by evaluating or differentiating the appropriate quartic
polynomial.

However, if we compute the derivatives of order =3 by the overdifferentiation of
the differential equation in (1.5), [instead of using (2.16) and (2.17)], then an O(h")
accuracy is observed in the values of the third derivatives at the knots.

3. ERROR ANALYSIS

Let y(x)€ C%a, b] and let the error in the quartic spline approximation to ¥; be
e;=Y;— Q.. It is well-known [Henrici, 1962] that if e=(e;), then

(3.1) | ed <gggtwi—alb—z)h'Y,
where Yi=mxax| yx)|. In particular
3.2) | eu] <gg5hlb— WA Yo= O(R)
and
h4
(3.3) ||el |=miax|ezlﬁﬁ(b—a)zYs=Kh‘=0(h4),

where K is a constant independent of A. For an error bound sharper than the one given
by (3.3), the reader is referred to Fischer and Usmani (1969, p. 135).
Since q;=M;= f:q:+ 8, we have
(3.4) miax| Yi—q:| <FKh*=0(h*), i=0(1)N +1,
where F =max|f(x)|,
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The local truncation error T; associated with the difference equation (2.6) is

(3.5) T:= —ﬁh‘y‘s’(&), X1 < EL Ly

Using (2.6) for 1=1, (3.2), (3.4) and (3.5), we easily prove that
(3.6) | 41— qi| = O(hY).

The local truncation error z; associated with (2.14) is

5

(3 . 7) = —‘% (6)(77i). i1 << Xysr.

If we set o,=|y;— ¢/, then it follows from (2.14) and (3.7) that

0i1<0;.1+ O(h*)i=1(1)N,

8.8) 0o=0 (assuming Fj is given).

We now prove from (3.8), using mathematical induction, that

(3.9) miax|y’i—qli|=0( Y), i=2(1)N +1.

On combining (3.6) and (3.9), we have

(3.10) [ l€’l | =max| yi— g:| = O(h"), i=2()N +1.
In an analogous manner we prove that

(3.11) max| ¥i —qi[ = 0(h?), 0<i<N+1,

see Appendix. We summarize the above results in the following theorem.

Theorem 3.1 Let y(x) € C¥a, b] be the exact solution of the boundary value problem
(1.5), and &(x) be the quartic spline solution approximating %(x). Then

max | y#'— q¢¥’| =0 (h*), i=0(1)N +1,

and where A(u)=4-—%(,u—1)(#—2), u=1, 2, 3.

4. A NUMERICAL ILLUSTRATION

We obtain continuous quartic spline approximation of the boundary value problem
(4.1) y'(x)=2x""y(x)—x", y(2)=y(3)=0,

with y(x)=(19x—5x*—36x")/38. All computations are carried out using double preci-
sion arithmetic in order to keep the rounding errors negligible as compared to the dis-
cretization errors.

We solve the boundary value problem using cubic and quartic spline functins. Note
that the formula (2.10) is such that the truncation error associated with it can be ex-
panded in power of A’ and it satisfies the conditions of Therorem 7.4 [Henrici (1962)),
Richardson h’—extrapolation method can be used to push the accuracy of quartic spline
solution to O(h®). This means that



A connection between quartic spline solution and Numerov solution of a boundary value probblem 7

4.2) a:=[qirn— 7'q:n)(1— T7h)+ O(A®),

where @;» denotes the quartic spline approximations to y(x;) with the step-size A, it
being assumed that (b— @) is an integral multiple of A. From (4.2), it follows that the ex-
trapolated value

(4.3) g =(@yrm—1'qn)1— Th*)

approximates ¥; with O(h®)—accuracy. We chose 7=1/2 in practice. These results will
finally be compared with the author’s sixth order finite difference method [Usmani
(1973)]. All these experiments are briefly summarized in Tables I and II.

TABLE 1
MAXIMUM OBSERVED ERRORS IN MODULUS (A=2"" m=1(1)6)

h Y Y Y: Yi
27! 0.389—4* 0.424—3 0.125—4 0.241—1
2 0.265—5 0.335—4 0.986—6 0.927—2
27 0.174—6 0.272—5 0.628—7 0.290—2
2™ 0.110—7 0.193—6 0.400—8 0.814—3
2 0.685—9 0.129—7 0.250—9 0.216—3
2°¢ 0.429—10 0.832—9 0.157—10 0.556 —4

* We write 0.389—4 for 0.389X107*.

TABLE I
maximum observed errors in modulus based on
N ) . h®) finite diff 0(h®) solution
0(h?) cubicspline 0(h*) quartic spline o L)Isr:l;nei (llg?ge)nce based on (3. 3)

1 0.693—3 0.389—4 0.209—5 0.176—6

3 0.165—3 0.260—5 0.377—7 0.323—8

7 0.417—4 0.174—6 0.647—9 0.556—10
15 0.104—4 0.110—7 0.102—10 0.879—12
31 0.261—5 0.685—9 0.159—12

5. CONCLUSION

In conclusion we would like to mention two more observations in contrast to
Theorem 1.1. Let s(x) designate the sexic spline function. Then a long but simple analy-
sis similar to the one given in Section 2 leads to the following five-point reurrence rela-
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tions (instead of six-point relations)

2
(5 -1) Si—2+88;-1—188;+88;11+ St+2=%[82—2+568;,—1+246s;;+568;+1+ S’;i+2],

and

(5.2)

4

Si—2—48;-1+68;,—48;11+ Si+2=§ié_0[8(;lz+568(31 4246845684+ s\.,).

The use of (5.1) has been demonstrated in obtaining a sextic spline solution of (1.5)
[Usmani (1978)].
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APPENDIX
Proof of (3.11)
Since
T;=6bz
(A. 1) =%(Qi+l_Qi)—%Fi_—}{(Mt+l+5Mt), by (2. 5),
hence
T:+ Tt—1=%(0z+1— Qi—l)'—%(Ft"' Fi—l)_%(Mi+l +6M,+5M;_,)
=%(Qt+1_ZQz+ Qi—l)_7ll—(Mt+l+8Mi+3Mi—l)v by (2. 6)
(A. 2) =2(M~M,-). by (2. 10)

From (A. 2), we also have

(A- 3) Tin+ Ti=%(Mi+l_Mt)-
We now substract (A. 2) from (A. 3) to get the consistency relation
(A- 4) Tin— Tt—lz_,%—(Mi+l—2Mt+ M,_,), i=1(1)N.

It is easy to verify that the local truncation error p; associated with (A.4) is
1 .
(A.5) pizghsy(s)(g)' i=1(1)N.

We now compute T;, i=1, 2 from (A. 1). The local trunation error w; associated with
(A. 1) is

(A. 6) _ w,=%5h2y‘5’(5¢), < Wi < X,
Note that, it follows from (3. 1) that

(A.7) |e:l =0(h), i=1, 2.

We set

(A. 8) e;=y1— T, i=001)N+1
Now it is easily proved that

(A.9) e;=0(h%, i=1, 2

using (A. 1), (A. 6), (A.7) and (A. 9).
We next compute {T4, i=2(1)N, from the consistency relation (A.4). The error
equation is written down in an usual manner in the form (from (A. 4) and (A. 5))
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(A. 10) lein| <|eii| +O(R®), by (3. 4) and (A. 5)
' le;|=0(h), i=1, 2, by (A. 9).

From the preceding inequality we easily deduce, from mathematical induction, that
(A.11) |ei|=0(h*), i=0(1)N.

In an analogous manner, we establish from (2.17) that

(A.12) | €vei]| = O(R?).

On combining (A. 11) and (A. 12), we have desired result (3. 11).



