The Four-Color Problem*

by Tadamichi WAKAMATSU

1. A Ring K{x}

Let K=GF(p™) be a field made of p™ elements. K{x} is a set of polinomials of r
variables x,, x,,..., X, whose coefficients are elements of K. The element of K{x} is
denoted briefly by f(x). The operations in K{x} are like as in usual polinomial ring,
but x?™ is identified with x, and so f(x) is a polinomial of lower degree than p™.

K{x} is a ring with zero-devisers. For example x(x?™—1)=0. The substitution of
elements of K for variables is permitted, because xP"=x as if x is an element of K.
The substitution of an element of K{x} for a avariable is also permitted by the next (1.1).

(L) (fe)y"=fx) for f(x)eK{x}.
Proof. (f(x))r" =(Sa(js )T Te{)™= Ta(js-j "1

= Sa(iy-i)xl=feo. g.e.d.

(1.2) Let d be a r-dimensional vector whose i-th component d; is an element of K,
and Y, (x)= H H (x;—b;;) where H means the product of p™—1 linear polinomials

i=1b;j*
—b;; took as cénstant term b;; all element of K except d;. Then

Y (x)- Yp(x)=0 for d#d’, and (¥(x))2#O.

Proof. If (Y,(x))2=0, then (Y, (d))*= H1 o H (d;—b;;)*>=0: a product of non-zero
elements of the field K would be zero. When d 79 d’ Y,(x)- Y;(x) has a factor I_[ (x;—Db)

=x¥"—x;=0 for some x;, where [] (x;— b) means the product of x—b taken as b all
bekK
element of K. g.e.d.

(1.3) Let {d} be the set of all r-dimensional vector of K. Any element of K{x}
can be expressed as a linear combination of elements of the set {Y,(x); d e {d}} with
coefficients in K.

Proof. Assume that Z ¢ Y (x)=0 (c;e K). Multiplying both sides of this equa-
tion by some Y,(x) and using {(1} 2), we get ¢, {Y;(x)}?2=0, and so ¢;,=0. Therefore, Y (x)
(d € {d}) are linearly independent on K. On the other hand, all element of K{x} is shown
as a linear combination of p™ elements ﬁ xf (0=e;=<pm—1) with coefficients in K,

i=1
and K{x} is a p™-dimensional vector space having elements of K as scalar. {Y,(x);

* Received November 4, 1975.



2 The Four-Color Problem

d e {d}} is its base. q.e.d.
(1.4) Any f(x) in K{x} can be written in the next form.
fe)=(=1 3 fd)¥ix).

Proof. We first show that Y,(d')=0 for d#d’ and Y,(d)=(—1)". If d#d’, some
factor x;—b;; will become a difference of the same element when d’ is substituted for x.

In case of d=d’, the product [ (d;—b;;) is got by the substitution of d; for x; in the
bij=d; .

ion _9_ b ) =D (P Y g1 _ — -
equation dx, binlK (x;=b;j) = Ix (xP"—x;)=pmxF 1, and equal to —1. There
fore, we get c,=(—1)"f(d) by the substitution x=d in the both sides of f(x)= >

deld}
cq Y (x).

(1.5) The value of f(x), substituted d (d € {d}) for x, is all zero if and only if f(x) is
the zero element of K{x}.
The proof is obvious from (1.4).

2. Conditions of Solvability of the Four-Color Problem

It is easily seen that to prove the four-color conjecture we may do it with only so
called cubic graph, in which just three edges meet at every vertex.

We say that a graph is colorable when its faces can be distinguished with four colors,
or when a condition equivalent to it is satisfied.

We denote the fields made of two or three elements by k, and k; respectively, i.e.
k,=GF(2) and k3;=GF(3).

(2.1) A cubic graph G is face-four-colorable if and only if it is edge-three-colorable.

Proof. Suppose that G is face-four-colorable. We name the four colors by 2-
dimensional vectors on k,: (00), (01), (10) and (11). If we give to every edge the sum of
vectors given to the two faces which have the edge in common, it is the edge-three-
coloration, because the sum of different two vectors is not (00), and three edges which meet
at a vertex have different values, for the three faces which have the vertex in common
have different values.

Suppose, conversely, that edges of G are colored by (01), (10) and (11). We can color
every face one by one, by adding the value of an edge which separates the face from
already colored face to that face-color, when occurs no contradiction because (01)
+(10) + (11)=(00). _ g.e.d.

(2.2) A graph G is colorable if and only if non-zero value in k5 can be given to every
vertex such that the sum of these vertex-values around every face is zero in kj.

Proof. Suppose that the graph is colorable. We determine an order in the three
colors of edge. If the order of colors of the three edges meeting at a vertex is clockwise,
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then we give to the vertex the value — 1, and in the inverse case the value +1. If a point
moves from an edge to the next across a vertex in the way which passes through a pe-
riphery of a face clockwise, then the color of the edge, on which the point lies, changes on-
or backward in that color-order according as the vertex-value is +1 or —1. When the
point had passed the way just one round, the color must have returned back to the
origin, and so the sum of the vertex-values around the face is zero.

Conversely, if every vertex is valued such, then we may give a color indicated by the
vertex-value to every edge, step by step, when no contradiction occurs because the
sum of vertex-values around a face is zero.

(2.3) In the former proposition (2.2), the phrase ‘‘around every face” may be
changed to ‘“‘around n—3 faces except three that have a vertex v, in common’, where n
is the number of faces in G.

Proof. Assume that values +1 or —1 are given to all vertex with one exception v,
such that the sum of them around every n—3 faces which has not the vertex v, is zero,
and name other end points of edges which meet at vy, v;, v, and v;. The edge-colora-
tion is got from this vertex-value, which doesn’t contradict at every vertex except vg.

W. T. Tutte proved the next theorem in [1].

Let G be any 4-connected planar graph having at least two edges. Then G has a
Hamiltonian circuit. Moreover if no two edges of G have both ends in common, and
if E and E’ are distinct edges of the same terminal circuit of G, then there is a Hamil-
tonian circuit of G having both E and E' as edges.

The dual graph of our cubic graph G can be assumed 4-connected, for otherwise
the coloration of G is reduced to that of a graph which has fewer faces than G, and, as
we want to prove our theorem by induction with respect to the number of faces, we may
reject the case when the dual graph of G is three separable. Then the dual graph of G
have, from above theorem, a Hamiltonian circuit. Corresponding to this Hamiltonian
circuit there is a simple closed curve which cut just two edges of every face of G at mid
point of them. We call this circuit ““T-circuit” of G. T-circuit separates G into two
parts. Every of them is tree. We name these two trees T, and 7.

From the last part of above Tutte’s theorem, it is assured to put that the T-circuit
cut the edge vyv;.

The sum of values of three edges which meet at a vertex is zero, i.e. one value of them
is equal to the sum of other two. Therefore, the value of all edge is determined by that of
edges, through which the T-circuit crosses and which is not vov,. We call them “‘initial
edges”. This coloration of edges is of cause the same as that determined by the given
vertex-value if the values of initial edges are chosen so. The value of vyv, is equal to the
sum of vyv, and vyv; because the value of vyv, calculated along the trees T; and T, must
be both equal to the sum of all value of initial edge, and so this coloration doesn’t con-
tradict at v, too. q.e.d.

We want to prove the colorability of graph by the mathematical induction with
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respect to the number of faces. If a circuit of the dual graph of G which is not a periphery
of a face has three edges, then the colorability of G can be reduced to that of a graph with
fewer faces. (Upon which is touched already in (2.3).) Similarly is also a graph with tri-
angular or tetrahedral faces reducible. Therefore we treat a graph which is not so.

Such a graph must have a pentagonal face. Although its proof is easy, we will state
it briefly. Let n, e and v be the number of faces, edges and vertices of a cubic graph
respectively. Then 3v=2e. From this and the Euler’s relation: n+v=e+2, we get
v=2n—4and e=3n—6, but, if every face had six or more edges, the number of the edges
would be 3n or more because every edge belongs to only two faces, contrarily to e=3n—6.

Here we define the ‘‘color-characteristic formula’ (which is abbreviated to ccf) of a
cubic graph. CG(n) denote a cubic graph with n faces. A4, is a matrix on k5 of (n—3)
x (2n—35) type, whose columns correspond to vertices except v, and rows of 4, cor-
respond to faces which have not the vertex v,. The (ij)-element of 4, is 1 when the vertex
which corresponds to the j-th column is on the face which corresponds to the i-th row,
and is O in the other case.

CG(n) has a T-circuit as shown in the Fig. 1. Let the two trees which is made by this
T-circuit Ty and T,, and T, contains the edge v,v,, the existence of which is assured by
the last half part of ‘“Tutte’s theorem”.

The square matrix A of order n—3 which is consist of the columns which cor-
respond to the vertices in T is regular on k;, because, if a linear combination of rows of
A is a zero-vector, then the coefficient of the row whose element in the column of v,
is 1 must be zero, and so the coefficient next to it in 7; must be also zero, and so on.
(see Fig. 1) ;

Let x, be a vector of order 2n—5 whose components are variables, then the condi-
tion of colorability of CG(n) is the existence of a solution of the simultaneous linear equa-
tion A;x, =0 whose component is all non-zero. [(2.3)]

Let B be a matrix made of columns of A, which is not in 4, and x, =<;), where

x is a vector of order n— 3, then the solution of 4,x, =(4, B)(;C>=0 is x=A"1By, where

y is an arbitrary vector on k5 of order n—2, whose components are called variables.
The square of the product of the variables and the components of A~! By, linear com-
binations of variables, is called the color-characteristic formula (ccf) and represented by

Feam(y)-
(2.4) The condition of colorability of CG(n) is that F¢¢,(y) is not the zero-element
of k;{y}.

(2.5) If we treat just as above, omitting two faces which have a vertex v, in common,
instead of omitting three faces which has v, in common, then we get the same formula as

F CG(n)(J’)-

Proof. We join a row which corresponds to the new face and a column which cor-
responds to the vertex vy. In the column of v,, only one element which is in the new row
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is 1 and others are zero. Therefore the component of the same y can be taken as vari-
ables, by which the value of vertices in T;, other than v,, is represented in the same form.
We write the formula thus obtained y3F ¢ (V). Y3F cem(¥) — Fcem(y) is zero for values
of y which make F¢,(y) non-zero, by (2.3), and of cause for the values which make it
zero, and so equal to zero by (1.5). g.e.d.

(2.6) Notation is all as above. Let a variable which corresponds to v, be y,. If
we don’t multiply the factor y? when we make the ccf of CG(n) and put y, =0, then we
get a ccf of a cubic graph CG(n—1), which is got from CG(n) by taking off the edge
Vol;.

Proof. We can take a T-circuit such that y, is an independent variable. Name the
square of product of linear form corresponding to all vertex except v, and v; F(y). The
variable y, isused init. If we remove two faces from CG(n— 1) such that remaining faces
are same as that of CG(n) stated above, and make a product of square of linear form,
which are determined such that the sum of them around every face there remained is zero,
using the same variables as CG(n), then the linear forms used in it are got by substituting
0 for y, in that of CG(n). Therefore this ccf of CG(n—1) is got by putting y; =0in F(y).

N.B. [Itis only when the independent variables (i.e. the T-circuit) are suitably took
that the formula got above is a ccf of CG(n—1) as is seen in (2.5), but two ccf with re-
spect to different variables are changed each other by regular linear transformation, and
the vanishing of one is followed by other’s vanishing.

3. Condition of a Not Colorable Graph with Fewest Faces

Suppose that CG(n) is the cubic graph which has fewest faces in what is not colorable.
We want to show that the existence of such a graph CG(n) implies a contradiction.
Let vertices of a pentagonal face F, of CG(n) be v; (0= j<4), which lie in the order of
suffix. Three faces Fy, F, and F, have the same vertex v, in common. F,, F,, F3, F,
and F; are the five neighbouring faces of F, the order of their position is the same as
their suffix. v, is a common vertex of F,, F, and F,. (see Fig.2) We can take a
T-circuit which passes through F,, F,, F,, F5, F, and F5 in this order, whose existence
is secured by the last half part of Tutte’s theorem, applying it to the dual graph of what is
got from CG(n) by removal of edges which separate the six faces F; (0< j<5) each
other.

Let F(y) be the product of all linear form of variables for every vertex. F?2(y) is the
ccf of CG(n). Only four factors of F(y) have the term of y, whose coefficient is not
zero. (We represent them by y,, y,+a, —y,+b and y,+c, and suppose that they
correspond to vy, v,, v3 and v, respectively.)

Proof. Elements of A4 is as in Fig. 3. The reason of it can be seen in Fig. 2. Be-
cause A"1A=E, the k-th row of A~! corresponding to v, other than v,, v;, and v,, must
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be as in Fig. 3. Therefore, in the linear form of y, which express x; and is k-th row of
— A~ 1By, the coefficient of y, is zero. q.e.d.

From our assumption that our CG(n) is not colorable

Fy)=(y1+a)(=y1+b)(y1+0)y f=0,  ceeeneenenns ey

where f is the product of linear formulas for vertices other than v,, v,, v; and v,. The
coefficient of y, and y% in (1) must be zero in k;3{y}:

—abcf+ af—bf+cf=0,
—f+bcf—caf+abf=0. e )

The graph CG(n—1) made from CG(n) removing the edge vyv, has a ccf got from
(y1+a)*(y;+b)*(yy +¢)* f2 putting y; =0, namely Fcg-1y(y)=a?b?c?f2.

It is seen from (2) that f=0 for the value of variables which make two of a, b and ¢
zero, while none of a, b and ¢ can be zero when other two and f are not zero by (2.3).
That is that the value of variables which make a=0 or b=0 or ¢=0 make also f=0, and

by (1.3), a> f=b2f=c?f=f. Hence FCG(n—l)(y)=f2'
T,

T-circuit

————

T-circuit

—-—" T, T,
T,
/
Fig. 1 Fig. 2.
At A B y
v— | 1 |—=1] 1 Fs—— | 1 | 1 | 0 | sk F;— | 0 s
vz— | 0 | 1 |—1 Fi— | 0 | 1 | 1 | sotototokok F— | 0 A2
vp— | 0 | 0 |1 Fo— | 0| 0 | 1 | stk F,— | 1 Ya
0,00 0

0——=1 0 | 0 | O | sk

Ll L !

Fig. 3.
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Fig. 3 shows that f is determined from lower n—6 rows of A, which means that
Fegm-1y(y) is determined from the relation of vertices and faces of CG(n) except F;
(0<j<5). The same conclusion is reduced for cubic graph CG(n— 1) which is got from
CG(n) removing any edge of F,, i.e. they must have the same ccf f?2.

For example, in the CG(n—1) in which the face F, and F, is fused in one, the face-
color of F, (or F,) is different from that of F;, F,, F5 and F,, which are determined
uniquely for any value of variables that make f#0. Considering other CG(n—1), it is
concluded that thus determined colors of F; (1= j<35) are different each other. It is
obviously a contradiction.

Therefore there is no graph which is not colorable.
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