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1 Introduction

In his famous Essay Mandelbrot (1982) has presented various fractal
models for the Universe. He and his predecessors have demanded that
these models satisfy the two conditions which on the surface are contra-
dictory each other. The one of these is that the mass M(p) in a sphere
with radius p and center at the Earth grows as p? when p tends to infin-
ity. Here D is a fraction such that 0 < D < 3, which Mandelbrot call the
fractal dimension of the Universe. The other condition is that the mass
distribution in the Universe satisfies some cosmographic principle, which
roughly states that to every observer at any position, the mass distribution
has the same appearance. Mandelbrot has found that in order to satisfy
both conditions, it is necessary to introduce randomness into fractal models.

Although these models have great values both theoretically and practi-
cally, it seems to the present author that they have an unnecessary restric-
tion. Mandelbrot’s study and later studies (for these see Falconer (1993))
have confined themselves to fractal models in Euclidean spaces. In Eu-
clidean spaces, among various types of fractals, the most simple are self-
similar ones. On the contrary, in hyperbolic spaces, it is impossible to
consider similai‘ity. As is well-known, the existence of similar sets is equiv-
alent to the axiom of parallelism (As for the hyperbolic geometry, consult,
for example, Fenchel (1989)). How we define fractals in hyperbolic spaces ?

In this paper we present a class of random tessellations in hyperbolic
planes, and show that they have a fractal property. To put it more ex-
plicitly, we construct random tessellations with unbounded domains which
are determined by ultraparallel straight lines. In a special case these tes-
sellations reduce to non-random ones which are composed of mutually con-
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gruent domains. Imagine that the mass lies uniformly on lines which are
boundaryies of constituent damains of a tessellation, and interiors of these
domains are void of the mass. Let M(p) be the total mass in a disk with
radius p and center at some point. Then our main theorem roughly states
that the expectation of M(p) behaves as eP? as p tends to infinity, where
D is a fraction such that 0 < D < 1. Thus we observe a somewhat peculiar
phenomenon that tessellation which is composed of strictly or statistically

congruent domains exhibit a fractal behaviour.

In Section 2 we first present the definition of random tessellations with
which we concern ourselves throughout the paper. And after preparing
‘several lemmas, we offer a heuristic argument which derives an infinite se-
ries that approximates the expectation of M(p). In Section 3 we study
asymptotic behaviour of this series in a special case. In Section 4, based on
the result established in the previous section, we prove our main theorem.
Before Section 5, we do not pay any attention to any cosmographic princi-
ple. In Section 5 we construct tessellations with a cosmographic principle
whose composing domains are statistically congruent. Especially we offer

non-random tessellations whose domains are strictlty congruent.

2 Definitions and preliminaries

Random fractal tessellations which we consider in this paper will be con-
structed by generating ultraparallel lines according to a branching stocahstic
process. Thus we introduce a branching stocahstic process on {0,1,2,...}.
We represnt a realization of this process by a tree, whose nodes are finite
sequences of positive integers {1,2,3,...}. We denote this random tree by
T. Now, let i be a node of T and let N; be the number of outgoing edges
from the node i. Particularly when i is the root node of T, we denote this
number by Ny. We assume that

(A1) all Nj are mutually independent and idetically distributed.

We denote this common probability distribution by @ = {¢, : » =0,1,2,...}.
We allow the possibility that N; = 0, that is, go > 0.

Now we go into the realm of the hyperbolic geometry a little while. Let
D be the Poincaré disk and dD be the boundary of D. Furthermore, let
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H be the half-plane {z + iy : y > 0} and Iy be the line {z + 1y : y = 0}.
In D, a line represented by a circle which is orthogonal to dD. Denote by
I(a, ) the line whose two points of infinity are eX(6+®) and e#¢~®), Thus a
is the parallel angle at the origin (the center of D). Consider the translation
which moves the line Iy to the line I(a, 8). There are infinitely many such
translations. Out of these we adopt the translation ¢ = ¢( - ; a,6) whose

inverse is expressed as

where

In order to state the manner of generating lines explicitly, we introduce
a family of probability distributions {Q, : n = 1,2,...} where each @, is a
distribution on {(ay,61,...,0ap,0,) : 0 < a; < 5,0 < 6; < 7 for every j}.
Lines generated according to ), lie in the half-plane H. In the following we
only consider the case that these generated lines are mutually ultraparallel.

Thus we assume that for each n

(A2) the support of @, is contained in

{(a1,601,...,00,0,) :0<b1—01 < O14+a; < - <Op—ap < Op+a, <7}

We turn to define tessellations which are determined by ultraparallel
lines. We generate these lines in the following manner :

1. First we generate Ny lines according to the probability distribution
@ and the family of probability distributions {@Q, : n =1,2,...}. We

denote one of the resulting lines by I(a;,,6;,).

2. Suppose that a line {(,iy.. 5 158,45...5._,) has already been gener-

ated. Then we generate IV; lines. Then we translate these

1222k —1

lines by the translation ¢( - ;aiy4,.. 4015 irin. 4, ) - We denote one

of these lines by I(0v,4,.. 45 yir s Oirig...in_1ix )-
3. We repeat the procedure stated in step 2 indefinitely.

As soon as we have generated infinitely many ultralparallel lines

{Uag,65) :1€ T},
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we obtain a tessellation with unbounded domains.
Now we prepare several lemmas concering lines in the hyperbolic plane.

Lemma 1. If the line l(a;, 45, 4 _qix» Oirin...ix_14 ) 1S @ translate of a line
l(ay,, 05, ) by the translation @( - ;0 i5. i _1ixs Girin...in_1ix) » thED

SIN O, 455, SN QG

tan oG g, . ki = - .
12ttt cos oy, + €OS @y, i, SINO;,

ProofLemma 1. Denote Q49,0801 oiliz...ik_l y QG140 d—18k) 0i1i2...ik_1ik s Qg
and 0;, by a,6,a’,0', ag and 6, respectively. In D lines I(ag, 6p) and I(a’,6)
are represented by the equations

|22 = (Coz +coZ) +1=0 and |2)2—(dz+Z)+1=0

respectively, where

1 .
c=——-=e€Y% and c=
cos ag cosa’

1 z'el

Then, because l(a’, 8') is a translate of [(ag, §p) by the translation ¢( - ; a, 6),
we can derive

2ir + ¢o + ¢o(ir)?

1 ¢ = —ie? . —~ ,
(1) 1+4¢g-ir+co - ir + |ir|?
where . )

) I sma.
cosa

Using (1) and (2), after an elementary calculation, we obtain

1 1| cos ag + cos asin 6y
— =\ = .
/ o . o
« V/cos2 a cos? ag + sin? a + 2 cos a cos ayg sin By + cos? arsin? §

From this it follows that

sin ag sina
cosa + cosagsina’

tana’ =

. which is the result we have to prove.

Lemma 2.  Denote the hyperbolic distance between ly and I(a,8) by

d(l, [(a,)). Then
coshd(ly, I(a, 0)) = S22

sina
Proof of Lemma 2.  Let uq,v; be points of infinity of /;, and uy, v, be

those of l;. Denote the cross ratio of four points w1, vy, ug,v2 by 7. In the
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hyperbolic geometry it is known that if two lines /; and /5 are ultraparallel,
then coshd(ly,lp) = ﬁ In order to prove the lemma, it is sufficient to

put u; = 1,v7 = —1,up = %0+ and v, = e¥0-2),

Let D, be the disk with radius p and with center at the origin, where
p denotes the hyperbolic distance. Denote the length of a line segment by

m(:).

Lemma 3.

m (l(a,0) N D,) = 2log (coshpsina + 4/ cosh? psin? a — 1> .

Proof of Lemma 3. Without loss of generality we suppose that § = 0.
In D the line I(a, #) can be represented by the equation |z|?—(¢z+cZ)+1 = 0,
where ¢ = 1/ cosa. Moreover, the circle C, = 8D, can be represented by
an Euclidean circle with center at the origin and radius » = tanh £. Then,
+iw

letting two points where l(a, ) and C, intersect be re***, we have

+7r2

2r

(3) cosw = cosa = cothpcosa.

Now, from the hyperbolic geometry, we borrow the knowledge that for two
points 2z; and 25 in D, the hyperbolic distance between these points is given

by

14|22

1-—522

14| A" %2

1—2?22

Then, putting z; = re™ and z = re™* , and substituting (3), we can
complete the proof.

In this paper we concern ourself with the total length of the portions of
lines {l(aj,6;) : i € T} inside the disk D,, that is,

M(p) =" m(i(a3,6;) N D,).
ieT
We are interested in asymptotic behaviour of E (M (p)) as p tends to infinity,
where E(-) denotes the expectation, and particularly in comparison with the
area of D,. Now it is known that the area of D, is given by 27 (cosh p — 1),
which grows approximétely as %ef’ as p tends to infinity. Thus it seems
reasonable to investigate asymptotic behaviour of logE (M(p)) instead of
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E (M(p)). Define the functions f(t) and fy(t) as

2log (t+ V12 —1) fort>1,
f(t) =
0 fort <1

and

logt fort>1,
t) = -
folt) { 0 fort<1

Then, by the usual argument in the calculus, we can show that there is a
constant K such that

2 fo(t) < f(t) £ K fo(?).

Thus, if we put

Mo(p) = > fo(coshpsinay),
ieT
we have
2 Mo(p) < M(p) < K Mo(p).

Accordingly, it is sufficient to study asymptotic behaviour of log E (Mp(p)) -

Now we give a following heuristic argument which will be rigorously

proved later under appropriate assumptions :

1. From Lemma 1 it follows that
sin oy,
sin Qik '

tanay 4,4, < tanog i, 4 ¢

2. Accordingly, since sina;, /sinf;, < 1, we can expect a;,;,. ., — 0 as
k — o0.
3. Thus, when k£ — oo,

sin ay,
cosay, +sinb;, ’

SIN Oy 40..0, ™ tana’i},ig...ik ~ Sin XG40, dp—1

where the notation ” ~ ” means ”both sides are asymptotically equal”.

Based on these observations, in the remainder of this section, we offer a
rough estimate for E (Mp(p)).

Before we set about this task, we prepare some notations. Let Ty be
the set of nodes of T with length k . Let Fy be the trivial o -fields, and
given Fi_1, define

Fr=o0 (-Fk—l U {Ni’l(ai’gi) i€ Tk——l}) .
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Then we may expect

E( Z fo (coshpsinaimmik) I ]:k—-l)

21%2...%k
sin o

~ E coshpsina; ;. 4. . - Y Fro—

(. Z fO( P 1 21%2...0—1 Cosaik-}-Sineik) l k—1

21%2...%%

N < 4(N)
sin A}
= Z E Zfo (coshpsinam»2 P J )
BT N - ~ ,
4192 061 j=1 cosAg. )+sme§. )

where N is a random variable with probability distribution @, and when
N = n, (Agn),egn),...,A%"),@%")) is a random vector with probability
distribution @Q,,.

Now we introduce a random vector (Agn), ..., A) by setting

sin Ag.n)

cos Ag.") + sin @§")

(n) _

for j =1,...,n, and denote its probability distribution by P,. Moreover,
we define an operator A by

N
Af)®) =E [ Y fo(t AYV)
Jj=1

Then we obtain the following

E[ ) fo(coshpsinag) |Fix_s
ieT,

(4) ~ Z (A fo)(cosh psinay).

iGTk—l

Applying (4) k times, we can get

(5) E Z fo (coshpsinai) ~ (A* f3)(cosh p).
icTy '

Accordingly, by a heuristic argument, we have derived
o0
E (Mo(p)) ~ Y _(A* fo)(cosh p).
k=0

In the next section we will investigate asymptotic behaviour of this infinite

series.
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3 Asymptotic behaviour of an approximated
expectation of the mass distribution

Let {p; : j =1,2,...,m} be positive numbers, {}; : j =1,2,...,m} be

positive numbers such that A; <1 (j =1,2,...,m), and define an operator
A by
(6) (Af)(t) = Z pi f(Ajt),
where
logt fort>1
7 t) = -
() /) { 0 fort<1
In this section we study asymptotic behaviour of an infinite series
[e.o]
8) F(t) =) (A*N)(®)
=0

as t tends to infinity. In turn, as will be seen later in this section, in order
to study asymptotic behaviour of the infinite series (8), we have to know
asymptotic behaviour of the following integral

© 0= = o [T [T W 17
f(tHA;”f) [1édz; ,
J J

where z = Z;’;l x;, ¢ is a constant and the index j of every product in (9)
runs over {1,2,...,m} .

In the integal (9) we change variables as

T; = Zuj (J=12,....m—-1)
Tm = 2z (1-3Yuy) ’
where the sum Y’ is taken over {1,2,...,m—1} . Then, since the Jacobian
8(1121,.'32, e ,CL‘m) _ om—1
=z ,
8(z,u1,...,um_1)

we have

1) = (2m)~"F /omdz/;-/ (IJI'“)— (g )

() e

m—1 /
+c ,
272 I | du; ,
J
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where u, = 1— Y u; and
/
D = {(ug,ug, ..., Un_1): Zuj <1}

Now, using the vector notation u = (u1,ug,...,um—-1) , we introduce the

following functions
m

h(u) = —Zujloguj,
i=1
- 1
a(u) = Zajuj, ajzlog)\—,
i=1 J

and m

1
bu) =3 bju;, b =log — .
(u) j=1JJ 5 gpj

Then I(t) can be expressed as

It) = (271')_an1 /Ooodz/-—-/ Huj ) d'u
D j

[e.e]
/ e*(h(1)—b(1)) f (te—-za(u)) zmT—l+c dz |
0

N

1y — TT/ ,
where d'u = [T; du; .
Moreover we introduce the functions

and
k(u) = @m)~ T | [Juw; | a(u)==F <.

Then, after the change of variable as z = ﬁ log %’- , we have

(10) Ity = // k(u) d'u
D mrlte dy

1 1
- /0 f(ty) (1og 5) e

At this point we prepare several lemmas.
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Lemma 1. Let p and 6 be positive real constants, and let

olt) = tin5) = [ ' fez) (log §)6 ey

Then, as t — o0,

g(t) = t*(logt)**? - 1— (plogt + 1)e™18%) 4+ ¢(t; 4, 6),

p?(logt)? (

where
le(t; 1, 6)) < t% (log t)?+e.

Proof of Lemma 1.  Changing variable as tz = y , we have

¢ )
o) = ¢ [ fa) (ogt~logy)®

= th tlo (logt — logy)® @y
= | logy (logt ~logy)” 7.

Again changing variable as logy = zlogt¢ , we have
1
() = t4(logt)**® [ x(1-2)° emmelent ds,
0
Then, noting that

1 1
1
/ 2(1— 2)% e7##logt g, < / z e HFloBt 4, < Et—%’
1

1

2 2

we get
1

g(t) = t#(log t)?*S / ze HZ108Y gy 1 €(t; p, 6).
0

Since
! 1
-V —_ bt 4
/0 ze dw——l/2(1—(u+1)e ),

where v is any positive constant, the proof of lemma is completed.

Lemma 2. In the domain D, the function x(u) has the unique maxi-
MUM Ly, at a point ug . This maximum e, is the unique root of the

equation

and the point ug can be determined by

R . \Mmaz
Uj = PjA;".
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Proof of Lemma 2.  Regard the function p as a function of variables
@ = (uy,ug,...,Uy) with the constraint Z;":l uj = 1, and consider the

function

) = p@) -y [ D u—1],
j=1

where v is a positive constant. Letting aa—“ =0forall j=1,2,...,m , we
Uj

have

(11) (1 + logu; + bj)a(ii) + a;(h(@) — b(Q1)) + va(@r)? =0

Multiplying (11) by u; and summing over j =1,2,...,m , we get

___1
~a(d)

Putting this into (11), we can deduce that in the interior of the domain D

there exists only one extream point @i which satisfies a system of equations
— a1
(12) uj = piA;

Since this extream point lies on the hyperplane Z;’_’__l u; = 1, the extream
value p has to satisfy the equation

(13) ij)\? =1.

It remains to show that this extream value is really the maximum. For this
purpose, it is sufficient to prove that at this extream point which satisfies

(12), the matrix
( ) i,j<m

Derivating the function p(u) two times and substituting (12), we have

0? 1 1 1
(14) a - (— + 5¢j —) .

8u,-3uj: a(u) \um u;

is positive definite.

where 6;; denotes the Kronecker delta. Then we can easily show that the

(-5ems)
Ou;0u; 1<i,j<m—1

is positive definite. Thus the proof is completed.

matrix

11
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Returning to the integral (10), we can rewrite it as

/ / 2_1 ) d'a

where g(¢; -, ) is the function introduced in Lemma 1.

Decompose the domain D into a domain

= {ueD:p(u) > £z}

and its complement D\D; . Then we easily have the following estimates.

Lemma 3. For any sufficiently large t,

I(t) < 24 (logt)mT_l/.../k(u)t#(u)d/u
/‘l'ma:c
D,
+0 (tm?“(log t)—'"—é-*é)
and
Ity > (logt) ™7 / / k(u)t*Wd'y
2u'mam

o) (t ; (logt) 3 )

Proof of Lemma 8. Put 6 = mT_l + ¢ . Since

1-(z+1)e™® . [1 1
g Smm{m—z,—i} for x > 0,
from Lemma 1 it follows that
1
I(t) < (logt)?tt / / ) t#(W . - log ¢ + 1)e (W log?
(t) < (logt) aTes R (L~ (s(wlogt+ e )

+(logt)2+5/---/ k(u)t T
D

(10gt)2+6/' . / k(u) tl‘(u) . m d'u
Dy

+(logt)2+5/---/ k(u) t#W) . % d'u

D\D;

+tm2ﬂ(logt)2+6/---/ k(u) d'u
D

4
" (logt)6/~--/ k(u) t#W) gy
max Dl

IA

IA
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3 kmagz
+at 2 (logt)2+6/---/ k(u) d'u.
D

On the other hand, since

1-(z+1)e®
)

1
> 522 for any sufficiently large z > 0,
T

we have

I(t) 2 (logt)*** / / k(u) t“(“%W (1—(u(u) logt+1)e—~<u>1°st)
D

—(logt)2+5/-~-/ k(u) 57 da
D

1 !
el ) L e

D,
——t&%ﬂ(logt)H&/---/ k(u) d'u
D

vV

\Y

! (logt)® / / k(u) t*“W) d'y
D,

202 o

— " (log t)2+0 / / k(u) d'u.
D

Thus the proof is completed.

Lemma 4. Ast— o0,

[+ [ ) 2 dru e auag) i< mer (1ogt) =
D

1

Proof of Lemma 4.  Denote by J(t) the integral with which we have
to concern ourself. Let ug = (uf,u3,...,ul,_,) be the point at which the
function p attains its maximum. Obviously ug € D;. Since the function
p is twice continuously differentiable, in a neighbourhood of ug it can be
expanded as

m—1

1
”‘(u) = bmazx — 5 Z tij(ui - u?)(uj - ug) 4.
,J=1

P i
v 6uZ8uJ U, )

where
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By (14) we have
1 1 1
1 = (0%,
Now we apply Laplace’s method ( Erdélyi(1956) p.36 ) to J(¢). Then we
have

logt
J(t) ~ k(ug) thme= / / exp | — = D tijlus—ud)(u; —u) | d'u
Rm-1 Ly=1
Since the matrix T' = (t;;)1<4,j<m—1 is positive definite, there exists the
square root of T', which we denotes by S = (si)1<s,j<m-1. Changing
m—1

: o (s — u®
variables as v; = D71 s;5(uj — u}), we get

m~—1

(16) J(t) ~ k(ug) thmes |S|~1 <T§§Z> e

Now, using (15), we can easily show that
1

Using (16) and (17), we can complete the proof.

(17) IT| =15 =

Combining Lemma 2, Lemma 3 and Lemma 4, we obtain the following

result.

Lemma 5.
log I(t) _

t—oo  logt ’

where 4 is the unique root of the equation

m
(18) > opiMi=1.
J=1

The above lemma yields the following result.

Lemma 6. Let n be a positive integer, ¢ be a constant and set

_m=1 ® *° zz+% T, T
i) = o) [T [Tae o Tl ([0 | Tl
n n Lxl 2 ; ;
73 J J J
where z =370 ;.

Then
log In(t§ C) _

t—oo logt

I
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where 4 is the same number as that in Lemma 5.

Proof of Lemma 6.  Setting

+1
i . . _m—l x] x
Wao=o [ [ e T (1) s,
J J

{z:<n; z;>n for all j#4}

fort =1,...,m, we have

m
0 < I(t¢) — In(tie) < Y IP(t;0) .
=1

Without loss of generality we argue about I m (t;c). Then it is easily seen
that

1

m— m pxm'
I,gm)(t;c) < (271')__2'/0 — — dz,,

fo's) (Z+’n z+n+ +c m—1 z N m—1 o m—1
[ [T T (s T ) T
n n IS =5 j=1 j=1

Since there is a constant K such that (z + n)z+"+12‘+° < K zz"‘"'*'%'*c, we

have

oo oo Z+2 m—1 m1 s
I (t;¢) < K'/ / e ”WTTF H pf (¢ T | I dss,
n n J§ j=1 i=1

where K’ is a constant. Applying Lemma 5 to the right hand side of the
above inequality, we deduce that I (m)(t c) is of the same order as t* , where
p/ is the root of the equation ) "v, 1 pJ )\“ = 1. Now it is obvious that y’ is
smaller than the root u of the equation (18). Hence we get

I (t;¢) = o (t4) .

This implies that
I(t;c) — In(t;c) = o(t#) .

Thus by Lemma 5 we complete the proof.

Now we turn to the infinite series F(¢). Introduce the following series
which plays a role as a bridge combining F'(¢) and I(t) :

- m=1 ktgte z z
XX o X e o [ DY)

k=0 {Z zj=k,z;>n for every j} HJ j
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where n is a positive integer and c is a constant.

Lemma 7. .
log Fr(t;c)

t—oco  logt

where y is the same number as that in Lemma 5.

Proof of Lemma 7. When z; <y; < z;+1, putting z = Z;n:l Yj, we

have

(z _ )z—m+l+c

1777 | 11X
; ;

H yUa‘*‘z
kktate . .
< —— | Y
3T J J
2% +% +c y, 1 tH)\y’_l

Hj(?!j - l)yj_%

Summing over x; > n for every x; , we get

[ [t EEEE Mo DD ) T
J

(n,00)™ HJ J
< Fn(t§c)
_m=1 zitite zj—1 zj—1
. /"'/(2”) " iz - 1o H”J’ JIR RIS
(n,00)™ J J J
_mo1 (2 +m)rtmtate
— / /(27r) ) x3+2 prif tH)\’”J Hd.’L‘j
(n—1,00)™ HJ J J

It is easily seen that there are positive constants K; and K, such that
(2 — m)z_m“'%""’ > K 2™ p#ts

and
(2 +m)z+m+%+c < K, 2™t pith

Accordingly we get

Ky - I(t;—m+c¢) < Fp(t) < Ko - In_1(t;m+¢) .

Hence , with the help of Lemma 6, we can complete the proof.
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Now the time is ripe to state an asymptotic behaviour of F(t) explicitly.

Theorem 1.
log F'(t)

t—oo logt

)

where p is the unique root of the equation

m
DN =1
Jj=1

In order to prove Theorem 1, it is sufficient to establish the following
more general Lemma 8. Let c be a constant, and define

reo=3 X X e (5 ) e (e
m J J

k=0 {Z;L zj=k}

k K
TrT o Tm —mll---xm!'

log F(t;c)
t—oo  logt

where

Lemma 8.

9

where p is the same number as that in Theorem 1.

Proof of Lemma 8.  We prove this lemma by induction on m. It is easy
to show that the assertion holds when m = 1. Assume that the assertion
holds for m — 1.

Using Stirling’s formula, we have

k mo1  kktE
¢ (2n)" T ——
T e x+'L
1 Tm ||j:1:jJ 2

where

1 1 1 1
exp 12k+1_zj:12mj <é<exp '1'2'5";12%“

Since z; > n for every j, we have exp(—m/(12n)) < £ < 1. Thus, for
arbitarily small €, we have 1 — ¢ < £ < 1 for all sufficiently large n.

17
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Now we put

F’,(f)(t;c)=§: > > k(m k N )Hp;”"f(tHAjf),
k=0 ;"zlmg:k,miﬁn} 1 m J J

for every i = 1,2,...,m. Then we have
~ m ~ 3
F(t;c) < Fua(tie) + ) FO(t0)
=1
and
F(t;c) > (1 - €)F(t;c) -

Accordingly, we obtain

(19) log F(t; ) — log F(t; c)}
1 ‘ ~
— . |F(t:o)-F t;c'
S T-ame IO
€ 1 i
< + . DY EO(te) .
1—€  (1-e€)Fn(t;c) ; "
Without loss of generality, we argue about ﬁ’,sm)(t;c). We can see easily
that
. n m k—x
(m) (4. P mt m
on=0 U e (T kg, "
m—1 m—1
o (o T )
=1 =1
the right hand side of which we will write as
n
> Zi' G(NE™; ) -
Tm=0 m:

Then, because of the assumption of induction, for each z,,,

log G(t; zn)
t—00 logt B

where 4/ is the root of the equation

m—1 ,
Jj=1
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Now it is obvious that the root of the equation (18) is larger than the root

of the equation (20). Thus, for each z,,, we can see

(21) F\™ (t:c) =0 (t“')

as t — 00. Therefore, combining (19) and (21) and using Lemma 7, we
obtain the conclusion.

Proof of Theorem 1.  From the definition (6) we have

(Akf)(t) = Z Z Pj1 * Pji, f(t’\jl "')‘jk)

J1=1 Je=1

S0 R b {0 5}

Hence F'(t) coincides F'(t;0). Thus Theorem 1 is a special case of Lemma 8.

4 Main theorem

Let N be a random variable with probability distribution @ = {g, : n =
0,1,2,...}, and for each n, let (Ag"), ...,A%n)) be a random vector with
probability distribution P, whose support contained in (0,1)™. Define a

£(t) = { logt fort>1

function f as

0 fort <1

and define an operator A as

N
Z A(N)
We set -
F(t) =) (A*f)(t) .
k=0

If all @ and P, (n = 1,2,...) are finite discrete distribution, then from
Theorem 1 of Section 3 it follows that
1
o o8 F(t)
t—oco logt

)

where p is the unique root of the equation defined by @ and P, (n =
1,2,...). In this section we first generalize Theorem 1 without any assump-

tion on P, (n =1,2,...), while we maintain the assumption on Q.

19
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Theorem 2. Assume that

(A3) Q is a finite distribution, that is, there is an integer 7,4, such that

gn =0 for all n > nppge.

Then
log F'(t)

t—oo logt

- I

where 1 is the unique root of the equation

(£ () -1

Proof of Theorem 2. Take an arbitarily positive integer r, and put
€- = 1/27. We divide the interval (0,1)" into a collection of subintervals

n
21 in H(@Jer,(ly“i‘l fr] )

where i; =0,1,...,2" for every j. We put

Piy...in =// AP,(A1,-- -y An) -

Lij.in

Since f is non-decreasing,

Diy...in Z f(tije)
/ /Zf(t,\ )APy(A1,. .., An)

Ill .in
n
< Piin Y, Ft (i +1)e) .
=1
Summing up with 4,...,4%,, we have
> Z Pir in Z f(tise)

'Lla
n

/Z FEX)AP (M, - M)

o~ =1
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o)

< Z Z Pii.in Z f(t (7’J+1)6)

zla
Furthermore, mutiplying g, and summing up with n, we get

nma.z

(2) ) Z Z Pir.. s Z f(tije)
n=0
= (Af)(t)

(23) < Z an Z Z Piy.in Z f(t (5 +1)e) .

Now we enumerate the set of pairs of numbers (g,p;, .. s, ,%;€) and denote
them by {(p;,A;) :  =1,...,m}. Then, defining

t) = ijf(t .)AJ)
Jj=1
we can write (22) simply as (A,.f)(t). Similarly, defining
m _—
t) = ijf(t Aj)
Jj=1

where {(pj,Xj) :j=1,...,m} is made by enumerating the set of pairs of
numbers (gnp;,...i., (i; + 1)€), we can write (23) as (A, f)(t) concisely.

Consider the following infinite series

(24) E6) =Y (akr) @
k=0

and -

(25) F.(0)=) (&f) .
k=0

Note that

(26) E.(t) S F(t) < F.(t) .

To series (24) and (25) applying Theorem 1, we see that

. log F.(t)
2 2 L
(27) tl—lglo logt E,

21
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and

(28) log F'r(t)

t—oo logt

=,

where W, is the unique root of the equation

(29) ZPJ ’\“ =1
and 7z, is the unique root of the equation

(30) Z P =1,

Setting
x,(A) =t1e  and  X.(A)=(i+ 1e

for ie, < A < (i + 1)e,, we define functions g and g, by

Nmaz n

9. (8)=Y_ an // 3 X, ()" dPa(My -, An)
n= (0,1)n j=1
and
Nmaz n
gr(ﬂ’) = Z dn / / Z dP )‘la---,)‘n)
n=0 (0,1)n =1

respectively. We can write (29) and (30) concisely by gr(,u) and g, (u)
respectively. Furthermore, we define a function g by

nmaa: n
oW = Y an [ [ 3 A dPO )
o =1
N -
= E A
;( )

Then it is easily seen that
1. For each r, g, and g, are non-increasing continuous functions.

2. Since both x (A) and x (A) converge to A as r — oo, the bounded
convergence theorem implies that both gr(p) and g,(u) converge to

g(p) for each u.
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3. {gr : r = 1,2,...} is a non-decreasing sequence of functions, and
{g, : r =1,2,...} is a non-increasing sequence of functions. That is,

for every r,

9, (W) <g . (w) and 7G.(k)27r 410
for every L.

Accordingly, Dini’s theorem implies that in any compact interval of y, g,

and g, converge to g uniformly.

Let 1 be the root of the equation ¢g(-) = 1. Then from uniform conver-
gence just proved and the fact that g, and g, are non-increasing, it follows
immediately that

b= and Lo — [

—r

asr — 00. Thus, by letting r large, we can make the difference of two limits
in (27) and (28) arbitarily small. Therefore by (26) the proof of Theorem 1

is completed.

For each n, let (A&"),egn), . ..,Ai,"),eg")) be a random vector with
probability distribution P,. Concerning the distribution P,, we temporarily
use the assumption.

(A) there is a constant &,;,(> 1) such that

, _ sin 6;") S

min  min —— -

By Lemma 2 in Section 2, this assumption means that every line l(Ag.n), eg."))
is at least cosh™ (8nsn) (> 0) distant from the line lg.

We put
i 4(n)
A(n’) _ sSin 14‘7
7 cos A;") + sin (9;.")

for j =1,...,n, and define an operator A by

N Nmaz n
ANB=E|D reca™) | =3 e[ re )
Jj=1

n=0 j=1

23
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By the assumption (A), there is a positive number €y such that the support
of P, is contained in the interval (0,1 — ¢y)™. Let € be an arbitary positive
number smaller than ¢y, and put

AL, AR = ((1- A, ..., (1 - eAM)

S2e, 1 2e,n

and

O Q) 1
Ay Rem) = (7= AP 7= A

Denote probability distributions of these random vectors by P, and P,
respectively. Because of the assumption (A) the supports of P, and P, are
contained in the interval (0, 1)". Finanlly we define operators A, and A by

(A (}:f (t AT)
and

1

N
(Ref)(t) =E (Zf (t Rey)

Lemmal. Let e be an arbitary positive number smaller than €. Under
the assumption (A), there exists an integer ko such that

(31) Z (Af"’“’f) (cosh p sinay)
ieTy,
(32) < (Z f(coshp sinqy) | fko)
ieT,
(33) < Z (Kf_kof) (coshp sinay)
iETkO

for all k& > kg.

Proof of Lemma 1. By Lemma 1 in Section 2 and the assumption (A),

we have

sina;,

tanay, . 4 < tanay,. 4, ¢ -tanag, . g, -

sinO,-k - 6min

Applying this inequality (k — 1) times, we get

1 k—1 1 1 k-1
tana;, . ;. < ‘tana;, < . ,
et (6mz'n) “ \/ 5m§ in 1 (6mz’n>
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because tana;, < 7;%?—7 by (A). Hence, for arbitarily small ¢, there is
an integer ko such that cosa;, . ; > 1— € for all kK > ky. Then we have

i
1—c¢

sinay,, 4, < tanay,. 4 < sinag,, g,
and
s Qg g = tan a’il...ik cosail...ik 2 sin (0 PO T (1 - e))‘zk ]

where .
s o,

cosa;, +sinf;,

ik

Accordingly, since f is non-decreasing, we see that

(34) f (coshpsin iy (1= e)/\ik)
< f(coshpsinay,. ;)
(35) < f (coshpsinah...ik_l - —15—_—;) .

From (35), it follows that

E Z f(coshp sinag) | Fr—q

ieT
Nij.igy
— Z E Z f(COShp Sinah...ik) I Fr-1
itin—1€Th_y =1

N
Z E Zf(coshp sinaixg)) | Fr—1

ieTi_s j=1

= Z (Aef)(coshp sinay) .

iGTk—1

IN

Repeating this procedure (k — ko + 1) times, we get an upper estimate (33)
for (32). Similarly, from (34), we can derive a lower estimate (31).Thus the
proof of Lemma 1 is completed.

Recall that M(p) denotes the total length of portions of lines {I(a;,6;) :
i € T} inside the disk D,. Let A(p) be the area of D,.

Lemma 2. Under the assumption (A),

m BE(M() _
ST Al

25
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where y is the unique root of the equation

: (i (A;.M)“) 1

Jj=1

Proof of Lemma 2. Put

E(t)=) (akF) )

k>0
and
= —k
Fe(t) =Y (Ref) @)
k>0
Using Theorem 2, we have
. logF(t) _
(36) % Tlogt K&
and —
log F¢(t _
(37) e Pelt) _ g

t—oo  logt

where p_is the unique root of the equation

N

N\ #

o =B (aP)" | =1
Jj=1

and 7z, is the unique root of the equation

7(w) =E (i (Kif?)“) =1.

j=1

Now we will show that

logE (ZieTko F (t sin ai)>

(38) tlirgo logt ="
and ( )
logE (> icT, F(t sinay)
. '0 —_
(39) tliglo log ¢ = He

Because of (36), for any small positive number £, there is a sufficiently large
to such that
Cyt &~ <F (t) < Gyt &H
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for all t > tg, where C; and C; are constants. Take a positive number 7

sufficiently small so as the probability of the event {.m'%x sina; > n} be
1e kg

positive. Then we have

Ci (t sinay) Lt I(sinag > n) < F (t sina;) < Cy (¢ sineg) gt

for all ¢t > to/n and for every i € Ty,, where I( - ) denotes the indicator
function of events. Summing up with i and taking expectations, we get

C1E Z (sinai)ﬂe_e I(sinag >mn) | t g€
iETkO

IA

E Z F (t sing;)
iGTko

< G E Z (sin o) B | gt
iETkO

Hence it follows that

b, —§
logE (Z F.(t sina-))
< lim inf 1Ty, — !
t—oo lOgt
' logE (ZiETkO F_(t sin O‘i))
< lim sup
t—o0 logt
< B +¢&.

Since { can be made arbitarily small, we obtain (38). Similarly we can show

(39).

Put
My, (p) = Z Z f(coshp sinoy) .

k>ko iETk
After summing up (31), (32), and (33) over k > ko, we take their expecta-

tions. Then we have

E Z F (coshp sinay)
ieTko

< E (Mlco ()
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< E Zfe(coshp sinaj) |

iGTko
Using (36) and (37), we get
—e p—roo cosh p p—00 cosh p

Finally we put
g =E|D (A§N))“
7j=1

It is easily seen that
1. g and g, are continuous non-increasing functions.
Ze

2. As e decreases, g_ (1) decreases ( to state exactly, do not increase) and

J.(p) increases (do not decrease) for every u.

3. By the bounded convergence theorem, as € tends to 0, both g, (n) and
J.(p) converge to g(u) for each p.

Accordingly, Dini’s theorem implies that in any compact set of u, both
g, and g, converge to g uniformly. Hence it follows that both b, and 71,
converge to a common limit p which is the root of the equation g( - ) = 1.
Therefore, from (40), we deduce

im 08 E (Mio(0)) _
p—o0 cosh p

Since the number of terms of M(p) — My, (p) does not depend on p, we can
complete the proof of Lemma 2.

We arrive at an appropriate place to state our main theorem. Throwing

out the assumption (A), we introduce the the assumption that

(A4) there is a positive constant wg < % such that max A;n) < wy for
<j<n
every n.

Let € be a positive number, and put

t

0 = 049" for 1<t < (14¢€)?
Xe 1 for t > (1+ ¢)?
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For each n, we define random vectors

M 50 ) )
(47,60 ..., AD.0m) and (47,87 ... 4 80n)

€,n)

by
sin A_g;) = 1—_1+—e sin Ag.")
sin QE';) = sin 65.")
and

sin ZEZ.) = (1 +¢€)sin A;")

. =(n) sino{™ .
sin GGZ = Xe (s—m—zfn—)) sin e§n)
3

for every j = 1,...n. Then a random vector (Ag‘l), @2"1) el _Aﬁ”g, Qg",z) sat-

ifies the assumption (A), and moreover, if we choose € so that (14€)? sinwg <
1, then a random vector ((Zﬁ'}’ , @Stl) . ,Z(n) 6-82) also satifies the as-

en?
sumption (A). Denote a realization of A;"),Gg.") , A;"), 9_§“’,Z§"’ and @;n)
by a;,0;,a;,0;,a; and 6; respectively. When o and 6; for i € Ty are
given, we define o and 6; for i € T, by the recursive formula stated in
Lemma 1 of Section 2.

Lemma 3. Foreveryi€ T,
a; < oa;<q;.

Proof of Lemma 3. We prove this lemma by induction on k. Obviously
the lemma is true for K = 1. Assume that the assertion holds for k — 1.

Denote cosa;, . 4, _,,Co8 @, and cos@;, . ;,_, by &, € and & respectively.

21 e0ell—1
By the assumption of induction, we have £ > £ > 3

We first argue about tang; . We have

2100k

sina,,

cosa, +¢&sinf,,
L _sina,
_ Te Sinay,

\/1 - (T_%)z sin® a;, + ¢ sind;,
sin a;,
/1 -sin? a, + sinf;,
sin oy,
cosa;, + Esinb;,

IA.

29
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Since sina,, , . < sinay,. ;_, by the assumption of induction, using

Lemma 1 in Section 2, we get

(41) tana

=%1..%k < tanail---ik :

sin;
Next we argue about tan@;, ;. When S0 (1+ €)%, we have

s o,

sin oy,

cos@;, +&sinf,,
(14 ¢€)sinay,
\/1 — (14 €)?sin® oy, + Esind;,
sin oy,
vV 1- sin? o, +&sinb;,
sin oy,
cosay, +&sinf;,

v

Hence follows that
(42) ta’nail...ik S tana—il...ik .

-
On the other hand, when ———% < (1+ ¢€)?, we have

81N o,

sin oy,

cos oy, —I-Zsin—é,-k
(1+¢€)sinay,

V1- (1 +e2sin? oy, +E-(1+¢)2sinay,

sin oy,

- - :
\/(%{-e) —sinfa;, +&- (14 €)sinag,

It is easily seen that if we set g(t) = Vit?2 — a2 + -‘%, where both a and b are
constants smaller than 1, then g(t) < g(1) for all ¢ < 1 in a neighbourhood
of 1. Thus, choosing sufficiently small ¢ , we have

2
1 -~ —
\/<1+e) —sin?a;, +Esinay, - (1+¢€) < 4/1—sina;, + Esinag, .

Accordingly,

sin a;,

2 _
\/(ﬁ;) —sin® ay, + & (1 + €)sinay,
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sin oy,

> =
cos o, + & sinf;,

sin oy,
cosay, +&sinf;,

from which follows (42). Thus the proof of Lemma 3 is completed.

Theorem 3.  Assume that (A1), (A2), (A3), and (A4). Then

. logE(M(p)) _
plinc}o A(p) =K

where p is the unique root of the equation

N
E(Y (AgN))” =1.

i=1

Proof of Theorem 3. Put

(n) _ sin Aé';)

=€,J -

cos Aﬁ';) + sin _6_2';)

and

sin Zg’;)

cos XS;) + sin @S;.)

~(n)
Ae,j =

for j=1,...,n, and define

9. (w)=E i (Aﬁf}'))“
j=1
and
N pa— 12
ge(w) =E Z (Ag))

1

J
Moreover we put
M.(p) = Z f(coshpsingy) -
ieT
and

M(p) = Z f(cosh psinay) .
ieT
From Lemma 3 it follows that

M_(p) < M(p) < Mc(p) .

31
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=e,1 1 =¢,1

Since the assumption (A) holds for both random vectors (A(") o™ ...,

and (47,807 ..., A

—=(n) .
e 6€,n>, using Lemma 2, we get

. logE(M,(p)) _
pllrngo A(p) ~ Lo

where p_ is the unique root of the equation g, (-)=1,and

where Ti, is the unique root of the equation g (- ) = 1.

Then, using an argument similar to that which we have done in the proof

of Lemma 2 with the help of Dini’ theorem, we can complete the proof.

5 Tesselations with strictly or statistically

congruent domains

In this section we study tessellations which satisfy a cosmographic prin-

ciple, that is, tessellations with symmetry. To state it exactly, in case with-

out randomness , we construct tessellations with congruent (unbounded)

domains, and in case with randomness, those with ”statistically” congruent

domains.

Our method of construction is as follows:

1. Consider an experiment that on the circle 0D, we drop n + 1 arcs

with a constant length 2wy so that they do not mutually overlap.

Here the word ”arc” denotes the concept in the Euclidean geometry.

Parametrize these arcs by position of their center, and denote them

by {t;: j=0,1,...,n}, where 0 < t; < 2m for every j.

2. Out of these arcs we choose an arc, say g, at random, and put tj =

t; — to mod 2m for j = 1,...,n. Note that to each arc corresponds a

line in D. Let ¢ be a translation which moves an arc ¢y to the line

lo.

3. Moving lines which correspond to arcs {t; : j = 1,...,n} by the

translation ¢q, we get n lines in the half-plane H, which we denote by

{l(a,-,ej) _7= 1, .. .,n}.
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Suppose that n + 1 random arcs {TJ :j=0,1,...,n} are placed according
to a symmetric probability distribution S'n, where the word ”symmetric”

means that
Sn(dts(0), o1y, - - - dlo(ny) = Sn(dio, dt1, . .., dty,)

for any permutation o on {0,1,...,n}. Put T; = T, — Tp mod 27 for
j=1,...,n. Let @, be the probability distribution of a random vector
(A1,04,...,An,0,) which specify n random lines correponding to n arcs.

We put
_ sinA;
7" cosA; +sin©;

for every j = 1,...,n, and denote by P, the probability distribution of a
random vector (Aj,...,A,). Then a random vector (Aq,...,A,) can be
obtained directly from (77,...,T5).

Lemma 1.
1 — coswyg

A, =
7 coswp — cos T}

for j=1,...,n.

Proof Lemma 1. We can see easily that a translation ¢g which moves
points e*™° to points +1, is given by

(]50(2) = Z(TO—_Z) ’

1—1roz
1—sinw g
where rg = %. Let t;,a; and 6, be a realization of T}, A; and ©;
wo
respectively. Since lines l(a;,6;) are obtained by translating arcs t; by ¢o,
we have
ei(@j:taj) — ¢0 (ei(tjiWQ))

for j =1,...,n. After an elementary but tedious calculation, we can obtain

cosw

cota; =-— % (1- cost;)

S1N™ wo

(43) cosf; .
: = = sint;
sina; sinwg
Substituting (43) into
sin Qi
Aj = ————te
cos a; + sin f;

we get

1 - cosw

Aj = 0

coswg — cost; ’

33
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which is that we have to prove.

Ezample 1. Consider a non-random tessellation where

1. at every time of generation, a constant number n new lines are gen-

erated, that is, q, = 1.

2. supposing that n lines are arranged so as to be §; < 0; < -+ < 0,,

all distances between lines

d(l(aj,0;),l(a41,0541))

are identical to each other and equal to cosh™!§ for j = 0,...,n,
where I(a;,0;) for j =0 and j =n + 1 denote lp.

We can explicitly construct this model by dropping n + 1 arcs such that

t; = 3—_7% for j =0,1,...,n. Thus, by Lemma 1, we have
1 — coswy
Aj = T
COSwWp — COS HJT
As for an indeterminate value wyp, it is determined by solving a system of
sin @
three equations (43) and — = § for j = 1. By an easy calculation we
sina;
j
get
.9 1—-cost
sinwg = ———

6—-1
The fractal dimenson g of this non-random tessellation are calculated by

solving the equation

(44) M=l

1

n
J:
To our regret, it seems that we can solve this equation only by numerical
methods. On the other hand, the simplest case n = 2, we can solve (44)
and see that

log 2 log 2

h= log 5o 1og(,/(6+1)(5—-;-)+6) '

Ezample 2. Consider a random tessellation where

1. ¢, =1.

2. arandom vector (773, ...,7,) has the uniform probability distribution

on the set

D= {(tl,...,tn) two < t1—wp < l1Hwp < - < tp—wo < tptwp < 27’(‘—(.4)0}.
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Then the fractal dimension of this random tessellation is equal to the root

w of the equation

1—coswy \*
(45) Z/ / (coswo—cost ) dty - din =1

It seems that we can solve this equation only by numerical methods. Even

in the simplest case n = 2 where the equation (45) reduces to

m—dwo /1 _coswy \*
[ (e Yy
2 coswpy — cost

wo

we can not solve in the closed form.
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