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1 Introduction

In his famous Essay Mandelbrot (1982) has presented various fractal

models for the Universe. He and his predecessors have demanded that

these models satisfy the two conditions which on the surface are contra-

dictory each other. The one of these is that the mass M{p) in a sphere

with radius 〟 and center at the Earth grows as pかwhen 〟 tends to in五m-

ity. Here上) is a血action such that 0 ≦ 刀 ≦ 3, which Mandelbrot call the

fractal dimension of the Universe. The other condition is that the mass

distribution in the Universe satis丘es some cosmographic principle, which
●

roughly states that to every observer at any position, the mass distribution

has the same appearance. Mandelbrot has found that in order to satisfy

both conditions, it is necessary to introduce randomness into fractal models.

Although these models have great values both theoretically and practi-

cally, it seems to the present author that they have an unnecessary restric-

tion. Mandelbrot's study and later studies (for these see Falconer (1993))

have confined themselves to fractal models in Euclidean spaces. In Eu-

clidean spaces, among various types of fractals, the most simple are self-

similar ones. On the contrary, in hyperbolic spaces, it is impossible to

consider similarity. As is well-known, the existence of similar sets is equiv-

alent to the axiom of parallelism (As for the hyperbolic geometry, consult,

for example, Fenchel (1989)). How we define fractals in hyperbolic spaces?

In this paper we present a class of random tessellations in hyperbolic

planes, and show that they have a fractal property. To put it more ex-

plicitly, we construct random tessellations with unbounded domains which

are determined by ultraparallel straight lines. In a special case these tes-

sellations reduce to non-random ones which are composed of mutually con-
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gruent domains. Imagine that the mass lies uniformly on lines which are
●

boundaryies of constituent damains of a tessellation, and interiors of these

domains are void of the mass. Let 〟(〟) be the total mass in a disk with

radius /i and center at some point. Then our main theorem roughly states

that the expectation of M(p) behaves as eDp as p tends to infinity, where

D is a fraction such that 0 ≦ D ≦ 1. Thus we observe a somewhat peculiar

phenomenon that tessellation which is composed of strictly or statistically

congruent domains exhibit a fractal behaviour.

In Section 2 we first present the definition of random tessellations with

which we concern ourselves throughout the paper. And after preparing

several lemmas, we o鮎r a heuristic argument which derives an in丘nite se-

ries that approximates the expectation of 〟(〟). In Section 3 we study

asymptotic behaviour of this series in a special case. In Section 4, based on

the result established in the previous section, we prove our main theorem.

Before Section 5, we do not pay any atte山ion to any cosmographic princi-

pie. In Section 5 we construct tessellations with a cosmographic principle

whose composing domains are statistically congruent. Especially we offer
●

non-random tessellations whose domains are strictlty congruent.

2　Definitions and preliminaries

Random fractal tessellations which we consider in this paper will be con-

structed by generating ultraparallel lines according to a branching stocahstic

process. Thus we introduce a branching stocahstic process on {0, 1, 2,. ‥).

We represnt a realization of this process by a tree, whose nodes are finite

sequences of positive integers {1, 2, 3,...}. We denote this random tree by

T. Now, let i be a node of T and let N^ be the number of outgoing edges
●

from the node i. Particularly when i is the root node of T, we denote this

number by iVa. We assume that

(Al) all 〟 are mutually independent and idetically distributed.

We denotethis commonprobability distributionby Q - {qn : rc - 0, l,2,...}.

We allow the possibility that AT- - 0, that is, go > 0-

Now we go into the realm of the hyperbolic geometry a little while. Let

D be the Poincare disk and ∂D be the boundary of D. Furthermore, let
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Hbethehalf-plane {x+iy :y > 0} and/め betheline {x+iy :y -0}.

In D, a line represented by a circle which is orthogonal to ∂D. Denote by

I(α,6) the line whose two points of infinity are e^+α) and eW-α). Thus α

is the parallel angle at the origin (the center of D). Consider the translation

which moves the line /め to the line /(α,6). There are infinitely many such

translations. Out of these we adopt the translation ¢ - ¢( ･ ;α,♂) whose

inverse is expressed as

¢-1(z) - ie-id
Z-Zq
_  )

1-ZoZ

1-sin°

COS α

AS

Z∈D,

where

In order to state the manner of generating lines explicitly, we山roduce

a family of probability distributions {Qn : n - 1,2,...} where each Qn is a

distribution on {(01,01　On,On) : O < α,･ <昔,0 < 9j < 7T for everyj}.

Lines generated according to Qn lie in the half-plane H. In the following we

only consider the case that these generated lines are mutually ultraparallel.

Thus we assume that for each n

the support of Qn is contained in

((α.,Oi　　α ,0サ):O<Oi-α　<Oi+α1<-　<On-αn<On+αn<K}'

We turn to define tessellations which are determined by ultraparallel

lines. We generate these lines in the following manner
●

1. First we generate Nq lines according to the probability distribution

Q and the family of probability distributions {Qn : n - 1,2,...}. We

denote one of the resulting lines by /(α*1> K)-

2. Suppose that a line /(αW2...lk-i>^tit2...tfc-i) ^as already been gener-

ated. Then we generate JV,W2…ik_x lines. Then we translate these

lines by the translation め( ･ ;αiii2...ifc-i>ui¥ii'"ik_ ). We denote one

of these lines by /(al112..^ん_izfc5 vili2...ik-iik)'

3. We repeat the procedure stated in step 2 indefinitely.

As soon as we have generated in丘nitely many ultralparallel lines

(I(αi,'i) :i∈ T),
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we obtain a tessellation with unbounded domains.

Now we prepare several lemmas concering lines in the hyperbolic plane.
●

Lemma 1. If the line /(αziZ2...fcfc-ltfc>Oiii2...ifc-in5) IS a translate ofa line

I(αIk,Oik) by the translation め( ･ ;αzilQ…ih_lik^iih-'-ik-iik) 5 then

tan αIl12...lk-11>k
SlnαzIZ2...lfc_l sin αik

cosαik + cOSαwi…ifc-l sin^fe

ProofLemmal.Denoteα2lZ2...tfc_15K/W2'"lk-1>ααik

and6ikbyα,0,α′,0′,Ooand#orespectively.InDlinesl(α0,00)an(iKα′,0′)

arerepresentedbytheequations

図2/�"=-,
-(coz+co蒼)+1-0and図-(dz+c′芝)+l-0

respectively,where

C=
1

_____　　　　--　~　~　-

COS αo

tiO-　and c=　　　AS'
cos α/

Then, because /(α′, 0′) is a translateofl(αo? #o) by the translation 0( α,0),

we can derive

c'= -ileid
lir +co +布(irf

1+再ir+cq蒜+回2'

1-sin°

COS α

Using (1) and (2), after an elementary calculation, we obtain

^-lc′I-

cosα0 4- cosαsinβo

cos^ αcos-* αo + sirr α 4- 2cosαcosαo sinβ0 4- cos2 αsirr βo

Prom this it follows that

tanα/ =
Slnαo sin°

cosα + COsαosinα

･ which is the result we have to prove.

Lemma 2.　Denote the hyperbolic distance between /め and l(α,0) by

d(lの,I(α,6)). Then

coshd(/0,/(α.ォ)) -

Sf MItl

●

Sln α

ProofofLemma2. Let u¥,v¥ be points of infinity ofl¥, and i^,^2 be

those of /2- Denote the cross ratio of four points ^1,^1,^2^2 by r. In the
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hyperbolic geometry it is known that if two lines Zi and I2 are ultraparallel,

then coshrf(/i5/2) -請等In order to prove the lemma, it is sufficient to
putu¥ - l,vi --1,^2-e*'*+α　andV2 -**{*-α).

Let Dp be the disk with radius p and with center at the origin, where
●    ●

〟 denotes the hyperbolic distance. Denote the length of a line segment by

m　- .

Lemma 3.

m(l(α,0)nD,) -210g
(
cosh/9sinα +

● cosh psirrα- 1

Proof ofLemma 3, Without loss of generality we suppose that 9 - 0.

In D the line Z(α, 6) can be represented by the equation ¥z¥2-(cz+c芝)+i - O,

where c - 1/cosα　Moreover, the circle Cp - ∂Dp can be represented by

an Euclidean circle with center at the origin and radius r - tanh f. Then,
●    ●

letting two points where l(α, 6) and Cp intersect be re士IuJ, we have

(3)　　cosu; -憲cosα - cothpcosα･

Now, from the hyperbolic geometry, we borrow the knowledge that for two

points z¥ and z2 in D, the hyperbolic distance between these points is given
●

by

*1-*2

1--~--T

1--=1

Then, putting z¥ - reZUJ and z2 - re~luJ , and substituting (3), we can

complete the proof.

In this paper we concern ourself with the total length of the portions of

lines {/(a^) ‥ i ∈ T} inside the disk Dp, that is,

M(p)-∑m　αA)nD,)-
i∈T

We are interested in asymptotic behaviour of E (M(p)) as p tends to infinity,

where E(-) denotes the expectation, and particularly in comparison with the

area of Dp. Now it is known that the area of Dp is given by 27r(coshp- 1),

which grows approximately as圭ep as 〟 tends to in丘nity. Thus it seems

reasonable to investigate asymptotic behaviour of log E (〟(〟)) instead of
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E(M(p)).Definethefunctionsf(t)andfo(t)as

･(*)-喜Iog(t+叩fort>1,

f｡rt<1

and

fo(t) -
fort>1,

fort<1

Then, by the usual argument in the calculus, we can show that there is a

constant 〟 such that

2/o(*) ≦ /(*) ≦Kk{t).

Thus, if we put

Mo(p) - ∑ /o(coshpsinαi),
i∈T

we have

2Mop ≦M(p)≦KMop.

Accordingly, it is su氏cient to study asymptotic behaviour of log E (Mo(p))

Now we give a following heuristic argument which will be rigorously
●                                  ●                                                                                                                       ●

proved later under appropriate assumptions :

1. Prom Lemma 1 it follows that

●

tanαiiz2.-i言tanαlllz'-lk-1設･

2. Accordingly, since sinαiん/sin^fc < 1, we can expect αni2.->ik - 0 as

kー∝).

3. Thus, when fc- ∞,

sinα%¥%1...%k tanαiit2...ifc - sinαW2'"lk_1
Sln αik

cos αfcfc 4- sin6oik

where the notation " - " means "both sides are asymptotically equal".

Based on these observations, in the remainder of this section, we o鮎r a
●

rough estimate for E (Mo(p)).

Before we set about this task, we prepare some notations. Let T^ be

the set of nodes of T with length k. Let Tァbe the trivial a -fields, and

given�"Ffc-i , define

●

Fk-v(カー1UOV(αiA)‥i∈Tた- }蝣
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Then we may expect

*e

Klll｡...lk

/o (coshpsin α%x%2...ik)

Ewl妄/o

lk

cosh p sin α^l^2…tk-1
●

ふN
2>

Sln αiA,

cosαIk + sin6iik

coshpsinα*1*2…lk-l
●

cosAf + sin9f)

W中ere N is a random variable with probability distribution Q, and when

n - n, (4n)>ゥr.-,A^,0^) is a random vector with probability

distribution Qn.

Now we introduce a random vector (A;nv.. , A^) by setting

A(n) -
sin AV(n)

cos4n) + sin eSn)

for j - 1,... ,n, and denote its probability distribution by Pn. Moreover,
●

we de丘ne an operator A by

A/o)(t) - E

Then we obtain the following

●
蝣M EieTfc

(4)

/o (coshpsinαi l**-1

～　∑ (A/o)(coshpsinαi)･
i∈Tfc_,

Applying (4) k times, we can get

･5)　完/o (cosh^∑ /o (coshpsinαi)
)
(A*/o)(ooehp).

Accordingly, by a heuristic argume叫we have derived

●●

E(Mo(p)) ∑(Akfo)(coshp).
k=O

In the next section we will investigate asymptotic behaviour of this in丘nite
●

series.
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3　Asymptotic behaviour of an approximated

expectation of the mass distribution

Let {pi :j- 1,2,-,m} bepositivenumbers, {入j :j-1,2,...,m} be

positive numbers such that A-- < 1 (j - 1,2,... ,m), and define an operator

Aby
m

(6)　　　　　(A/)(t) - ∑ pi /(Ai*).
i=i

where

(7)　　　　　　　/* -
log*

o

fort≧1

fort<1

In this section we study asymptotic behaviour of an infinite series

●●

(8)　　　　　　F(t) - ∑(A*/)(ォ)
fc=O

as t tends to infinity. In turn, as will be seen later in this section, in order

to study asymptotic behaviour of the in丘nite series (8), we have to know

asymptotic behaviour of the following integral
●

(9) I(t)-棉c) - (2打)ヰi∞-L∞zc

zz+喜

∩-x--主
Up-
3

/ 'IK II**蝣

where z - ∑1=1 xi-> c IS a constant and the index j of every product in (9)

runsover {1,2,.‥,m}.

In the integal (9) we change variables as

i

Xj　　=　Z Un

Xr　　　ト∑′uJ)

j-l,2,...,m-1

where the sum ∑′ is taken over {1,2, … ,m- 1}. Then, since the Jacobian

∂(∬1,∬2,-,∬m)

9(ォ,u1,...,ォm_1)

we have

I(t) - (2打†-dzI-I n->喜(綿

" II入') )蝣牢+c]Xduj ,

- zm-1



A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA

where um =±ト∑′ur and

/

D-UuuU2,...,Mr-1):∑uj≦1)･

Now, using the vector notation u - (^1,^2,�"�"�",^m-i) , we introduce the

following functions

●

itih

h(u) -　-∑ujloguj,
i-i

絶i】

o(u)妄ajtij, a,,-.嘉,

lil

6(u)-∑bjiij, bj-log三
1
=二

Pi

1

J-l

ShbI

Then I(t) can be expressed as

w-(2打)一字　D ¥JU,与d/u

L∞g*(fc(U)-6(U)) f{te-za{U)¥ 2十dz

where d'u - Ylj^uj�"

Moreover we introduce the functions

〝u　-

fc(u) - (2打)一字

h(u) - 6(u)

α(u)

hujl

1
+　日

2

α(u)一半-C

and

Then, after the change of variable as z -不可log吉we have

l

(10)/(*)=I蝣蝣蝣Ifc(u)d'n

D

lf(ty)log-

0V2//寧十c

Atthispointweprepareseverallemmas.

dy

yl+MU)
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エemmα1.Let〟and∂bepositiverealconstants,andlet

g(t)-g(t¥n,∂)-rntx)

J｡Iog三)6品･

Then,ast-∞,

g(t) - M¥ogty十6 ･
M2Qogt 2

(l - (Mlogt+ l)e-'*kォ*) +e{t;p,∂),

where

e(<;/x,∂)) ≦ t号(Iog*V十6.

ProofofLemma 1. Changing variable as tx - y , we have

/Jo

g(t)-*//(y)(logi-logj/)a

#*/logy(¥ogt-logy)6

Againchangingvariableaslogy-zlogt,wehave●●

g(t) - tサ(logty十6 Ll

互5fc�"ァ�"

z(l-zf e~M*logt.

Then,notingthat

/1z(l-z)se--lo8*dz

2≦Lize--^dzK

i打
weget

g(t) - tpQogtY十6 Ll ze-^^gt dz +牀u.^∂).

Since

J｡ xe- cdx-去(l-(i/+l)e-"),
where v is any positive constant, the proof of lemma is completed.

Lemma 2. In the domain ｣>, the function /x(u) has the unique maxi-

mum /Jbmax a^ a point uq. This maximum /xmax is the unique root of the
●

equation
iitl

∑pj入ダニ1,
i=i

and the point uq can be determined by

uj - PjXgmax
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Proof of Lemma 2.　Regard the function /x as a function of variables

也- (ォ1,ォ2.-,nm) with the constraint ∑�"=1Uj - 1 , and consider the

function

A(u) -M(u)-7

-here 7 is a positive constant. Letting岩-0 for all j - 1,2,-,- , -e
have

(ll)　(1 4-logu, 4-bj)a(u) +aj(h(u) - 6(u)) +ja(u)2 - 0

Multiplying (ll) by Uj and summing over j - 1,2,- m , we get

7=

1

0(u)

Putting this i血o (ll), we can deduce that in the interior of the domainか

there exists only one extream point血which satisfies a system of equations

(12)　　　　　　　ォ, -サAJ<">.

Since this extream point lies on the hyperplane ∑　uj - 1, the extream

value [i has to satisfy the equation

m

(13)　　　　　　　∑p;A? - I-
i-i

It remains to show that this extream value is really the maximum. For this

purpose, it is su氏cient to prove that at this extream point which satis丘es

(12), the matrix

(一叢言) l≦i,j<m-l
is positive de丘nite.

Derivating the function /A(u) two times and substituting (12), we have

(14)
o(u) .ォ, Ui≡)

+ ∂i>3

where &一�"denotes the Kronecker delta. Then we can easily show that the

matrix

(一品;)1≦ij<m-1
is positive de丘nite. Thus the proof is completed.

ill
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Returning to the integral (10), we can rewrite it as

･(*)-　蝣蝣蝣　k(u)g(t;n(u),午+c)d'u,
刀

where g(t¥�",�") is the function introduced in Lemma 1.

Decompose the domain D into a domain

｣>i-{u∈D:/a(u)≧也翌)
2

and its complement D＼D¥. Then we easily have the following estimates.

Lemma 3. For any su氏ciently large t,

w ≦孟o<>g*)J 7-/k(u)tf*^d′u
β1

･o (t幣(logt)翠)
ffifial

w ≧志(logi)半/ Ik(u)tサWd′u
上)1

-o (t幣(logO竿)

ProofofLemma3. Put∂-守+c. Since
1-(∬+l)e"∬

∬2

from Lemma 1 it follows that

･--去,喜forx>0,

lit) ≦ (logty十6/･-/ fc(u)*^u)
か

M(u)2 logt)2

･(log*)2十6/･-/ Jfe(u) t乎d′u
p

･ (logO^十6/･-/ fc(u) if(u)
上)1

M(u)2(log <)2

･00g*)W--/ fc(u) tM(u)喜d′u
β＼β1

･冊(logf)2+5/ -/ k(u) d′u
刀

･孟(logO5/'-/ fc(u) *m(u) d′u
81

(l - (M(u)logt + l)e-"<u)i-gtj

♂/u

12
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･書冊(log*)一十6/-･/ k(u) d′u･
D

On the other hand, since

1-(∬+l)e-∬

∬2 ･這for any sufficiently large x > 0,
we have

w ≧ (log*)一十6/･-/ fc(u)f*W
D

M(u)2(log <)2

-(logty十6/･-/ fc(u) tやd′u
.D

･ (¥ogt)2+s [蝣I k(u)tサW

pl
2Ku)2(log *)2

一冊(log*)'十6/･-/ k(u) d′u
刀

･志(logt)6j -/ fc(u)*m(u) d′u
β1

一冊(¥ogty十6/･-/ k(u) d′u･
.D

Thus the proof is completed.

13

(l - (/i(u) logt + l)e-"<u>i-8*J

♂/u

Lemma4.Ast-∞,

/-/fc(u)t^n)d′u-a(uo)-1-c-ヰ

β1

ProofofLemma4.DenotebyJ(t)theintegralwithwhichwehave

toconcernourself.Letuq-(u^u^->um-i)bethepointatwhichthe

functionJJ､attainsitsmaximum.Obviouslyuq∈D¥.Sincethefunction

〟istwicecontinuouslydi鮎rentiable,inaneighbourhoodofuqitcanbe

expandedas

/i(u)-fJLmax一芸m-1
Ttij(ui-u-i)(uj-u-
j)+-,

も,.7-1

where
Hj-9d2fi

Kduidujun
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By (14) we have

(15)　　　　　　　Ui -
o(u)¥um lJuiy

Now we apply Laplace's method ( Erdelyi(1956) p.36 ) to J(t). Then we

have

J(t)-fe(uo)tf4" Rm-1 exp一字岩ty(ォi-ォ<)(ォ,--1*5)I d'u

Since the matrix T - (｣y)i≦*サJ≦m-i is positive definite, there exists the

square root of T, which we denotes by S - (sij)i≦i,j≦ T-i. Changing

variables as V{ - ∑JLi siAui -ォー). we get

(16)　　　　J(t) - fc(uo) ***"訂¥s¥-1

Now, using (15), we can easily show that

(17)　　　　　　¥T¥ - |S|2 -

忘≒

am~l W=i ui
Using (16) and (17), we can complete the proof.

Combining Lemma 2, Lemma 3 and Lemma 4, we obtain the following
●                                                                                                                                                                                    ●

result.

Lemma 5.

HRm
log/ t)

i-- log*
=仏

where a is the unique root of the equation
●

(18)

Fii】

∑pj入ダニ1 ･
j-l

The above lemma yields the following result.
●

Lemma 6. Let n be a positive integer, c be a constant and set

･n(t;c) - (2打)一字/n∞ - ･/n∞zc

where z - ∑j=lxJ'
Then

lim
tー∞

zz+喜

∩-Jr-一主

log IJt; c)

log i

桓*iK'n**.
=〝)
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where ¥アis the same number as that in Lemma 5.

ProofofLemma 6.　Setting

w(t;c)-(2打)キト　/　zc
zz+喜

{x!≦J

n;xj>nf｡rallj^i}nxj十を
桓*ew n**.

fori- 1,...,m,wehave

rut

o≦I(t-c)-Ut-c)<∑#>(*;c)�"
t=l

Without loss of generality we argue about Jか)(恒). Then it is easily seen
that

･i-)(t;c) ≦ (2打)ヰr器官dx-

/Jn -/nW
(z +n)*+n+i+c m-1TT

p?f
i-i

m-1mギー+* (

m-1

堀口
3=1

Since there is a constant K such that (z + n)2+n+2+c < Kzz+n+^+c, we

have

･i-¥t;c) ≦ K′/n∞-/ yn-¥-c

zz+を

m-1
j=i

l17=X言サ+i

.
q
J
∬
.
α

/

蝣

e

v

.

隅
馴
馴
■
■
n
u

ii*訂.
q
J

ヽ
∧

;ォ:サ.

s
o

J

H

　

　

-

　

　

相

川

u

f
J

�
"
r
サ｡
巧

.
㌦
e
x

where Kf is a constant. Applying Lemma 5 to the right hand side of the

above inequality, we deduce that Inm'(*; c) is of the same order as t^', where

H! is the root of the equation ∑T=i Pj^j - 1- Now it is obvious that /x′ is

smaller than the root /A of the equation (18). Hence we get

J<m)(*;c) - o(f)

This implies that

I(t;c) - In(t;c) -o(tサ)

Thus by Lemma 5 we complete the proof.

Now we turn to the infinite series F(t). Introduce the following series

which plays a role as a bridge combining F(t) and I(t) :

●●

軸;c)-∑　∑　-　∑　(2打)一字
k=0　∑xj-k,Xj>n foreveryj}

kk+i+c

∩-x--主
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where n is a positive integer and c is a constant.

Lemma 7.

lim
log Fn(t; c)

log *
=仏

where ti is the same number as that in Lemma 5.

ProofofLemma7'. WhenXj <yj ≦ Xjr+1 , puttingz- ∑i=l*i. we
have

(z - m)2-m+2+c

IWw十喜

kk+喜十C

IL^　主

<
zz+圭+C

ILfo - i)w-* ワ#一�"/ {tjixrl

Summing over Xj > n for every Xj , we get

(*-my　十i+C

J

(n,｡｡)*＼~‥′Il謹十を

≦Fn(t;c)

/�"�">打)潔

･ / /(.〟)潔
(n,∞)m

/-･ /(2汀)潔
(n-1,∞)帆

zz+与十C

P-　デ

3

ILfo - i)*'-*

'IK-　n^

甲>-lf甲1 n*j
(z + m)z+m十i+C

n-X--主 桓ォn^ n**
It is easily seen that there are positive constants ∬　and ∬2 such that

(z-m)z-m+?+c ≧ Kx z-m+c r*+喜

SuBI

(z+my+m+i+c ≦ K2 zm+c zz+与.

Accordingly we get

Kx蝣In(t;-m+c) < Fn(t) ≦ K2 -iサ_i(*;m+c)

Hence , with the help of Lemma 6, we can complete the proof.
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Now the time is ripe to state an asymptotic behaviour of F(i) explicitly.

Theor℃m 1.

hIMl
log F(t)

log*

where a is the unique root of the equation
●

=〝)

til

∑pjXダニ1･
J-l

In order to prove Theorem 1, it is sufficient to establish the following
●

more general Lemma 8. Let c be a constant, and define

F(t;c)-皇∑　∑ kc
fc=O　∑ =1Xj-k}

where

Lemma 8.

hill]

xiXr桓'IK'

3

logF(t;c

i-∞　log*

=〝1

where a is the same number as that in Theorem 1.

ProofofLemma 8. We prove this lemma by induction onm. It is easy

to show that the assertion holds when m = 1. Assume that the assertion

holds for m- 1.

Using Stirling's formula, we have

Xx xr　-t蝣(27T)-

写去l
<t<exp

where

Since Xj > n for every j, we have exp(-m/(12n)) < ｣ < 1. Thus, for

arbitarily small e, we have 1 - e < ｣ < 1 for all su氏ciently large n.
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Nowweput

･J-(';<0-｣｣

fc=｡tE7=i*i=吉≦n}xiXrワx<jr
pj'f河

foreveryi-1,2,...,m.Thenwehave●

itt}.
F(t;c)≦Fn(t;c)+∑F^(t;c)

i=l

and

F(t;c)≧(l-e)Fn(t;c)

Accordingly,weobtain

19 logF(t- cトIogFn(t; c)

(トe)Fn(t;c)

^^^^^蝣1
< +

F(t;c) - Fn(t;c)

1-e (l-e)Fn(t;c)午8=1

Without loss of generality, we argue about酔(t;c). We can see easily
that

rL

J*m>(t;c) ≦　∑
zm-0

pk

∬m!

77B I

･n
i=i

∑　∑　∑
k≧x- (∑rn-j. ,-x-)

p?fヰ宮
the right hand side of which we will write as

n

∑警G(t¥^;xm).靴xmH
xm-O

kx-十C

Then, because of the assumption of induction, for each xr

log G{t; xm)

t--　log *

where 〝′ is the root of the equation

20

lim - ll'

m-1

∑pj入デ′-1 ･
J=l

18
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Now it is obvious that the root of the equation (18) is larger than the root

of the equation (20). Thus, for each xm, we can see

(21)　　　　F^>(*;c) - 0 (y)

as t一蠎oo. Therefore, combining (19) and (21) and using Lemma 7, we

obtain the conclusion.

Proof of Theorem 1. From the definition (6) we have

uv^^^^^mm

(Afc/)W　　∑ - ∑ pjl -Pju /(*入j1 -人jk)
71-1　jk-l

E-E xI Xr mt車･
Hence Fit) coincides F(t¥0). Thus Theorem 1 is a special case of Lemma 8.

4　Main theorem

Let N be a random variable with probability distribution Q - {qn : n -

0,1,2,...}, and for each n, let (A¥(n) …,An ) be a random vector with

probability distribution Pn whose support contained in (0, l)n. Define a

function / as

f(t) -

and de丘ne an operator A as

logt iort>l

fort<1

A/(t -E

(差->

m?')

We set
冨琶

∑(Afe/)(o
た=O

If all Q and Pn (n - 1,2,...) are finite discrete distribution, then from

Theorem 1 of Section 3 it follows that

log F(t)

i-- log*

‖Rm =〝)

where /x is the unique root of the equation defined by Q and Pn (n -

1,2,...). In this section we first generalize Theorem 1 without any assump-

tion on Pn (n - 1,2,...), while we maintain the assumption on Q.

19
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Theorem 2. Assume that

(A3) Q is a finite distribution, that is, there is an integer nmax such that

qn-Oforalln>nr

Then

lim
log F(t)

t二　Iog t
=〃)

where〟istheuniquerootoftheequation

e｣(Arr-i

^-i

Proof of Theorem 2. Take an arbitarily positive integer r, and put

- l/2r. We divide the interval (0, l)n into a collection of subintervals

n

4.-in - T[( ijtr,(ij +1-)｣r ]
i-i

where Lr -0,1,...,2r for everyj. We put
●

Ph.,.in - /-守
iti...ir

dPn(Ai,...,An).

ノーis non-decreasing,

n

pu...in ∑ fit *;ォ)
i=i

-< /-･/墓f(tA,)dPn(Al,-･,入n)
Ii¥...in　3=1

n

≦ Ph.‖in ∑ f(t(サー蝣+l)e)
3=1

Summing up with ix,...,in, we have
●

n

∑-∑ pii...in ∑ fitij牀)
81,-,ln　　　　　　　3-1

≦上
n

∑ I(t入j)dPn(入1)入n)
3-1
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ehr/Kn))

^'-i

n
≦∑-∑Ph.‥in∑f(t(u+l)e)

n,iln3-1

Furthermore,mutiplyingqnandsummingupwithn,weget●

"maxfl
(22)∑qn∑･･･∑pi
't1...ln∑f(tt,e)

n-0号1,…i-i

(AJ)(り

Umaxn
(23)≦∑qn∑-∑pii...in∑fit{U+1)6).

n-0n,3-1

Now we enumerate the set of pairs of numbers {qnpil...irx > ije) and denote

them by {{pjtも) : j - 1,...,m}. Then, defining
m

Ur/)(0 - ∑pjf(t &)
3-1

we can write (22) simply as (Arf)(t). Similarly, defining

var.

(Ar/)(t) - ∑pifit A,).
i-i

where {(p,-,A,-) : j - 1,… ,m} is made by enumerating the set of pairs of

numbers (qnPix...ini (ij + !)ォ), we can write (23) as (Arf)(t) concisely.

Consider the following in丘nite series
●

●●

(24)　　　　EM) - ∑ (a*/) (*)
k=O

and

25

Note that

(26)

●◆

Fr(t) -∑ (a*/) (*)�"
fc=O

Fr(t) < F(t) < Fr(t)

To series (24) and (25) applying Theorem 1, we see that

(27) hm
logJr(<)

i-- log*
=Er

21
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log戸r(t)

i-- log*

lim
⇒w ら

where /x is the unique root of the equation
●

iitl

(29)　　　　　　　∑pjギ-1
.7-1

and声is the unique root of the equation
●

m

(30)　　　　　　　∑pjギ-1 ･
3-1

Setting

も(A)-ier and xr(A-サ+!)牀,

forier <入≦ (i+l)er, we definefunctionsg andgr by

9lv)-若"/-/
0,1)†l

(ifffin純

gM-∑
n=0

(0,1)"

n

∑ Y/A;)"dPn(入1>　入n)
i=l

n

∑ xAXjfdPn(入1,人n)
i=i

and

respectively.Wecanwrite(29)and(30)conciselybyg(/i)andgr(n)

respectively.Furthermore,wedefineafunctiongby

9(v)'"maxn

n=｡Jtr,-/f入dPn(入1?入n)Eは(?,1)*i-l

D"

Thenitiseasilyseenthat

1.Foreachr,grandgrarenon-increasingcontinuousfunctions.●

2.Sinceboth宣r(A)and左r(A)converget0人asr-∞thebounded

convergencetheoremimpliesthatbothg(/x)and#r(/x)convergeto

g(fi)foreach/x.
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3- i9r　　- 1,2, -} is a non-decreasing sequence of functions, and

{g : r - l,2,...} is a non-increasing sequence of functions. That is,

for every r,

｣>)≦軋十(fi) and gr(fj,)≧5,十1 /*

for every fj,.

Accordingly, Dini's theorem implies that in a町compact interval of 〟, 臥

and gr converge to g uniformly.

Let /x be the root of the equation g(-) - 1. Then from uniform conver-

gence just proved and the fact that旦and gr are non-increasing, it follows

●                                                                                                                                                                                ●

immediately that

Er →I*　　and MrーP

as r - ∞　Thus, by letting r large, we can make the difference of two limits

in (27) and (28) arbitarily small. Therefore by (26) the proof of Theorem 1

is completed.

For each n, let ¥A^¥e^¥-,^kn),ゥnn)) be a rando- vector -ith

probability distribution Pn. Concerning the distribution Pn we temporarily

use the assumption.

(A) there is a constant 6min(> 1) such that

mm min
O≦n≦Tlma l<7≦n

sine n)
■■■■■■■llllllllll-

an A)(サ)

≧　∂min-

By Lemma2 in Section2, this assumption meansthat everyline l(Aj ,ゥj )

isat least cosh (∂　x) (> 0) distant fromthe line ls.

We put

A^-
sinA),

(n)

cos^ + sinG^
forj - 1,... ,n, and define an operator A by

●

･Af)(t)-E墓　l^max/(*<}) -｣ *サEn=｡差(n)>f(tA)n>)

23
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Bytheassumption(A),thereisapositivenumbereosuchthatthesupport

ofPniscontainedintheinterval(0,X-eo)n.Letebeanarbitarypositive

numbersmallerthaneo,andput

as.-.,蛮)-((トe)AV(n)-,(l-OA(n))

and
･A(n)-鶴)-(占A(n)

ill,...,占Ain))�"

DenoteprobabilitydistributionsoftheserandomvectorsbyJLandP牀

respectively.Becauseoftheassumption(A)thesupportsofとeand戸are

containedintheinterval(0,l)n.FinanllywedefineoperatorsA^and瓦eby

(AJ)(t) - E

(瓦/)(<) - E

and

Lemma 1. Let e be an arbitary positive number smaller than cq. Under

the assumption (A), there exists an integer ko such that

31

(32)

(33)

∑ fA^-fco/) (coshp sinαi)
i∈Tko

･ Eri=T,
/(coshp sinαi)

≦∑(瓦k-ko

ef)(coshpsinOi)
i∈Tko

forall k> ks.

ProofofLemma 1. By Lemma 1 in Section 2 and the assumption (A),

we have

tanαサ....ih < tanOil…lk-¥

in°    1

聖聖k tan｡tl...tk_1 ･
sin6ik　∂min

Applying this inequality (k - 1) times, we get

tana*,..*. ≦ (よfc-1 tana^≦ (よk-1

24
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because tana,言フ覆:=冒by (A). Hence, for arbitarily small e, there is
1

an integer /cq such that cosαl¥...lk > 1 - e for all k ≧ fcn. Then we have

sinαil…ih ≦ tanαH...lk ≦ sinαil…ih-1

sinαil…Ik -tanαil…IkCOSα11...Ik ≧ sinαil…iん-1 - 1-0人ih ,

入iん-
Sln αiA;

cosαIk + sinO;ik

and

where

Accordingly,since∫isnon-decreasing,weseethat

(34)/(coshpsinαil…Ik-i�"(!-ォ)入ik)

≦/(coshpsinα11...ik)

(35)≦/Icoshpsinα^fc
tl...tk-11-e

From(35),itfollowsthat

E(i妄/(coshpsinαi)IJ*-l

ii...ifc_iGTfc_i¥J=1

≦　∑
i∈Tfc_,

^/(coshpsinajA^)|Tk^

J=1

∑ (瓦:/)(coshp sinαi) ･
i∈Tfc_!

Repeating this procedure (k - ko + 1) times, we get an upper estimate (33)

for (32). Similarly, from (34), we can derive a lower estimate (31).Thus the

proof of Lemma 1 is completed.

Recall that M(p) denotes the total length of portions of lines {/(α�"0*)�"

i G T} inside the disk Dp. Let A(p) be the area ofDp-

Lemma 2. Under the assumption (A),

u日嗣1

クー∞

log E (M(p))

A(p)
=〝)

25
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wherefiistheuniquerootoftheequation●

etmi-i

^蝣=1

ProofofLemma2. Put

｣U(t) - ∑ (A*/) (0
k≧O

and

F牀(t)-∑(｣/)w蝣
k≧O

Using Theorem 2, we have

･i-響-隻
log戸:(<)

i-∞　log*

旧珊 =〝eI

whereとis the unique root of the equation

●

監(m)-e差(卿)-1
and声is the unique root of the equation

●

9AM-E

Now we will show that

(38)　　　七聖

and

39 HRMl
tー∞

logEf∑i∈TF¥(tsin

蝣*｡αi))

log *

logE f∑i∈ -fcn Fe(t sinαi))

=色

蝣I^vMa i

Because of (36), for any small positive number ｣, there is a su氏ciently large

to such that

cltと.-*　丑(i)≦C2化十e

26
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forallt>to,whereC¥andC2areconstants.Takeapositivenumberr¥

sufficientlysmallsoastheprobabilityoftheevent{maxsin

ieTfc｡α>r/}be
●

positive.Thenwehave

c¥(tsinαi)坐-e/(sinαi>り)≦F,(tsinαj)<C2(tsinαi)巴十e

forallt>to/1]andforeveryi∈Tfc｡,where/(�")denotestheindicator

functionofevents.Summingupwithiandtakingexpectations,weget●

cI E ｢i晃
sinαi)と亡~ /(sinαi > '7)

〕

≦

･ qEri晃sinα.)H｣+* fr-H
Hence it follows that

iL-i

≦ liminf
t→∞

≦ limsup
tー∞

≦　色+E･

tと亡-i

logEf∑i∈TF>(｣sin

-knαi))

log*

logEf∑i∈rpF¥(tsin

-kQαi))

log *

Since J can be made arbitarily small, we obtain (38). Similarly we can show

(39).

Put

Mk｡(p)-∑∑/(coshpsinαi)･

k≧fcoi∈Tk

Aftersummingup(31),(32),and(33)overk≧fco,wetaketheirexpecta-

tions.Thenwehave

E^2^(coshpsinaj)

<E(Mkn(p))E(Mko(p))

27
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･南ア牀(coshp sinαi)
Using (36) and (37), we get

(40) n <lim inf
pー∞

Finally we put

log ｣ (MfcO(p))

cosh 〟

9{ti -E

(

< lim sup
p一〇〇

圭(Af>y

log E (MkJp))

cosh 〟
_<声e

It is easily seen that

1. g and百are continuous non-increasing functions.
●

2. As e decreases, g (/x) decreases ( to state exactly, do not increase) and

百(fi) increases (do not decrease) for every /J･

3. By the bounded convergence theorem, as e tends to 0, both g (//,) and

g (/z) converge to g(/x) for each /i.

Accordingly, Dini's theorem implies that in any compact set of /x, both

g and百　converge to g uniformly. Hence it follows that both ¥i and声e

converge to a common limit /x which is the root of the equation g(�") - 1.

Therefore, from (40), we deduce

¥og E (MkJp))

クー-　　cosh /)

HRm =〝･

Since the number of terms of M(p) - M^o(p) does not depend on p, we can

complete the proof of Lemma 2.

Wearriveatanappropriateplacetostateourmaintheorem.Throwing●

outtheassumption(A),釈introducethetheassumptionthat

(A4)thereisapositiveconstantu>q<昔suchthatmaxA^<uqfor

Kj<n3
everyn.

Let e be a positive number, and put

xォ(t) -

:i+e)

tforl<t<(1+ef
for<>(l+e)2

28
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For each n, we define random vectors

(iiS.fi:,1 -,幼虫霊J and (貢e,l'We,l -,貢(n)百霊)

by

sinA　売sinA)n)

sin旦皇7 - sin9 n)

I

sin王ォ_-/ - (l+e)sin4n)

･サBJ?-x,(詳sinO(n)

Shhi

foreveryj - 1,-n. Thenarando-vector (4*?.flS - ,幼虫霊sat-
ifi.es the assumption (A), and moreover, if we choose e so that (1+e)2 sino;o <
1,thenarandomvector([Ael,Q牀^

n)1

..4_.百三二

sumption (A). Denote a realization of A) ',Q¥ ',A)

)
n

also sati£es the as-

4uUf and司n)
by αjj6j>Q-jサ｣j5aj an(i Oj respectively. When αj and Oj for i ∈ Tfc-i are

given, we define αj and Oj for i ∈ Tfc by the recursive formula stated in

●

Lemma 1 of Section 2.

Lemma3.　Foreveryl∈T,

旦i≦αi_<存i ･

ProofofLemma 3. We prove this lemma by induction on k. Obviously

the lemma is true for k = 1. Assume that the assertion holds for k - 1.

Denote cosαii...ifc_i 5 COS旦H...Zk-l and cos百il.‥Ik_! ty ｣,呈and J respectively.

By the assumption of induction, we have ｣ > ｣ ≧ i.

We first argue about tan旦il…Ik We have

●

Sln旦ik

cos旦ik +主sin旦ik

<

<

1+e sinαik
●

･- (*)'sin αIk +｣sinO,tk
●

mtwPi毘甥

sirr αi血+ isineih

●

Sln αik

cosαifc + ｣ sinOifc

29



30

鹿児島大学教育学部研究紀要　自然科学編　第48巻(1997)

Since sin旦il…Ik　< smaili#.ifc_1 by the assumption of induction, usi< sinαh...ik-i by the assumption of induction, using

Lemma 1 in Section 2, we get

(41) tan旦zl>..u ^ tanαil…ik ･

Next we argue about tan百il…<fc. When室生> (1 4-e)2, we have
●

● Slnαik

COS αik

Hence follows that

(42)

た

t
o
n.sl

一
亡
も
+

(l + e)sinαiん

l - (l +牀)2sin2αik +亨sinftik
●

Sln αik

トsin αifc +｣sinOifc
●

Sln αik

cosαIk + 5 sinftik

tanαil…ik ≦ tanαll...lk

Onthe other hand, when地≦ (1+e) , we have●

Slnαih

●

Slnαik

COS αik .
ね

IQbn.sl

言
も+

(l +ejsinαik

l- (l+e)2sin2αiん+亨(1+e)2sinαik
●

Sln αiA:

(ik) -sin2aifc +^�"(l+e)sinaik

It is easily seen that if we set g(t) - ¥Jt2 - a2 +普, where both a and b are

constants smaller than 1, then g(t) ≦ g(l) for all t ≦ 1 in a neighbourhood

of 1. Thus, choosing su氏ciently small e we have
■

1+e

Accordingly,

-sin αik+亨sinαtk (l+ォ)≦

Sln αil,

1-sin2αIk +｣sinαik.

(lfc) -sin2<*ik +｣'Cl+e)sinaifc
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Sln αiA;

cosαIk + ｣sinOik
●

Sln αik

cosαIk + ｣sinOik

from which follows (42). Thus the proof of Lemma 3 is completed.

Theorem 3. Assume that (Al), (A2), (A3), and (A4). Then

log E (M(p)

Mp)
lim =〝)

where 〃･ is the unique root of the equation

●

NE　可-1･

Proof of Theorem3. Put

A^-

and

x-
●　　　　　-

sin A(n)

cos,4^ + sinG(n)

…;-. 4 -- ●

cos貢(n) + sin百霊)

forj- 1,...,n, and define

●

監(m)-e墓w)
and

MM-E

Moreover we put

姓(p) - ∑ /(coshpsin旦i) /
i∈T

and

万>(p) - ∑ /(coshpsin古i) ･
i∈T

From Lemma 3 it follows that

姓(p)≦M(p)≦肩

31
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Since the assumption (A) holds for both random vectors LaQ, e｣?... ,鵡Qi霊)
and A{n)育(n)私有霊J,usingLemma2,-eget

logE姓(p
クー∞　　A(〟)

=円Fm =色,

where色is the unique root of the equation g (�") - 1, and

logE牢<{p))
クー-　　A(〟)

lim =M6

where声is the unique root of the equation g (�") - 1.

Then, using an argument similar to that which we have done in the proof
●

of Lemma 2 with the help of Dini'theorem, we can complete the proof.

5　Tesselations with strictly or statistically

congruent domains

In this section we study tessellations which satisfy a cosmographic prin-
●

ciple, that is, tessellations with symmetry. To state it exactly, in case with-
●

out randomness , we construct tessellations with congruent (血bounded)

domains, and in case with randomness, those with "statistically" congruent

domains.

Our method of construction is as follows:

1. Consider an experiment that on the circle #D, we drop n + 1 arcs

with a constant length 2叫〕 so that they do not mutually overlap.

Here the word "arc" denotes the concept in the Euclidean geometry.

Parametrize these arcs by position of their center, and denote them

by{ij :j-O,l,...,n}, ｣hereO<t,�"<2打foreveryj.

J■■l′

2. Out of these arcs we choose an arc, say Jqi a* random, and put tj -
■-～

tj -to mod 2tt for j - 1,...,n. Note that to each arc corresponds a
●

line in D. Let </>o be a translation which moves an arc to to the line

lo.

3. Moving lines which correspond to arcs {tj : j - l,...,n} by the

translation ¢O, we get n lines in the half-plane H, which we denote by

(I(αj,6j):j-l,...,n}.
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Suppose that n+ 1 random arcs {Tj : j - 0,1,... ,n} are placed according
′ヽ′

to a symmetric probability distribution ‰　where the word "symmetric"

means that

Jn(d*<7(0)>d'cr(l)i - idta(n)) - Sn(dtoi dtli - , dtn)

′■′　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　J■ヽ′

′lヽ′                  ～′

for any permutation a on {0,1,-,n}. Put Tj - Tj - Tomod2tt for

j - 1,...,n. Let Qn be the probability distribution of a random vector

(j4i, Oi,... ,An, Qn) which specify n random lines correponding to n arcs.

Weput

A,- sin Aj

cosAj + sinゥj

for every j - 1,... ,n, and denote by Pn the probability distribution of a
●

random vector (Ai,...,An). Then a random vector (Ai,...,An) can be

obtained directly from (Ti,... , Tn).

Lemma 1.

forj-1,...,n.
●

Aj-
1 - cosa;o

coscjq - cosTj

ProofLemma 1. We can see easily that a translation ¢o which moves

points e土zu- to points士1, is given by
●

¢o*)-
i(ro- z)

l-roz '

where ro -
1 - sinu^o

COS (x>o
Let t�"31αj and Oj be a realization of Ty,Aj and Qj

respectively.Sincelines/(αj,Oj)areobtainedbytranslatingarcstjby¢O,

wehave

･<(サJ土αi)-¢o(e'
,t(tj土<^o)

forj-1,...,n.Afteranelementarybuttediouscalculation,wecanobtain●

COtoj

(43)<cosoj

sinotj

Substituting(43)into

A;-

weget

A,-

sin ujq

l

●

sin t^n

竺聖旦(1- cos^)�"　2

sin tj

Sln Oj

cosαj + sin9j

1 - COSuJq

cOsuJq - COStj

＼＼
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which is that we have to prove.

Example 1.　Consider a non-random tessellation where

1. at every time of generation, a constant number n new lines are gen-

erated, that is, qn - 1.

2. supposing that n lines are arranged so astobe 9¥ < 62 <�"�"�"< Om

●

all distances between lines

d(l(αJサW(αi+ii fy+i))

are identical to each other and equal to cosh-1∂ for j - 0,…,n,

●

where /(αォ�",Oj) forj - 0 andj -n+1 denote /0.

We can explicitly construct this model by dropping n + 1 arcs such that
●

tj-豊forj-0,1,- ,n. Thus,byLemmal,wehave
′-

*i-

1 - COSuJn

COScJn - COS豊
As for an indeterminate value ujq, it is determined by solving a system of

three equations (43) and室生= ∂ for 7 = 1. By an easy calculation we●

Slnαj

get

sin ujq -

1-COS*!

∂-1

The fractal dimenson u of this non-random tessellation are calculated by

solving the equation

(44)　　　　云入ダニ1 ･
j-l

To our regret, it seems that we can solve this equation only by numerical

methods. On the other hand, the simplest case n - 2, we can solve (44)

and see that

〃=
log 2

有言=司
log 2

(∂+1)(∂一書)+∂

Example 2.　Consider a random tessellation where

1.qn-1.

2. a random vector (7i,... , Tn) has the uniform probability distribution

onthe set

｣>-{(<!,...,O :wo<h-^o<tl+wQ< -　<tn-LOo <tn+ujQ<2n-LUo}.
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Then the血�"actal dimension of this random tessellation is equal to the root

〟 of the equation

(45)　j-i D

1 - cosa;o

COscJq - COStj

dtl-　dbn-¥

It seems that we can solve this equation only by numerical methods. Even

in the simplest case n - 2 where the equation (45) reduces to

2上ニ~4u>o
1 - COslcJo

COSCJq - COSt

we can not solve in the closed form.
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