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1. Introduction and preliminaries

The purposes of this paper are to improve a characterization of Riesz potential
spaces and to give relations between Bessel potential spaces and Riesz potential
spaces. Let R™ be the n-dimensional Euclidean space. ~ Throughout this paper,
let 0 < a < ooand | < p < oo. Fora real number r, we define the spaces L*” and
Lrrio8 as follows:

77 = (f € L Il = (o, LAIPUL+ [2]77d) 7 < oo},

12749 = (£ € L fllpriog = ([ 1F(@)P(1+ 1) (logle + [2])) d2)!”” < o)

where LL_ is the set of all locally integrable functions and e is the base of the natural
logarithm. ~ We simply write L?® = L and ||f|l0 = [|f|l,-  Further, L' denotes
the space consisting of all integrable functions.

We define the Bessel and Riesz potential spaces.  The Bessel kernel Ga(z) of
order a is given by

1 fee 2 ds
Ga — / '—1r|1‘| /s —s/41rb(a——n)/2_:'
(=) (47)e/2T(a/2) Jo ¢ ¢ y s

Since the Bessel kernel G,(z) is integrable ([St2: Proposition 2 in Chap.V]), for
[ € LP the Bessel potential of order o

Gi(2) = [ Galx = y)f(v)dy
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is well-defined. The Bessel potential space B is defined by
? = (G : fe L*}.
The norm ||u||gz of u = G/ is defined to be the LP-norm of f, i.e.,
lulleg = I1fllp if =G,

Let N denote the set of natural numbers including zero, and let 2/V stand for
the set of nonnegative even numbers.
The Riesz kernel k,(z) of order a is given by

C(y = L) =l a—n¢?2N
Ka(z) = — { (ban —log|z|)|z|®™™, a-—-ng€?2N

Ya,n
with '
m22°T(a/2)/T((n = a)/2), a—n¢2N
T { (=1)e=mle=tan /20 (af2)((a — n)/2)!,  a-n€2N
and Ma/2) | 1 L
an = —21,—((;)—+ 5(1 +§+-~-+m—C) — log 7

where C is Euler’s constant. [n order to define the Riesz potential of order a of an
LP-function, we introduce the modified Riesz kernel. For an integer k& < a, we set

o (. y) = Kold —y) — Zhlﬁk L":}:y—)x", 0<k<a.
a k(LY ) = Ii'a(.l'—y), k<0

where v = (11, - ,7n) is a multi-index, 27 = 27" -+ 2¥* (2 = (x4, --,24)), D7 =
DY*---DI(D; =9/0z;),v' = n! - -yland [y| =71 + -+ + Tn.
For a function f € L?, we define the Riesz potential U of order a of f as follows:

Ul(z) = { [ ka(z,y) f(y)dy, a—(n/p) ¢ N,
@ [ Kag-r(z,y) [L(y)dy + [ Kan(2,y) f2(y)dy, - (n/p) € N

where k =[a — (n/p)] is the integral part of a — (n/p), fi is the restriction of f to
{z:|z] <1} and f, = f — fi. The existence of U/ is guaranteed by the following
proposition.

ProposiTion 1.1 (cf. [Kul: Corollary 5.9 and Proposition 5.15]). Let f € L* and
k =[a— (n/p)]. Then U! exists and satisfies the following estimates:



([ 1L Pleld2) < Cllfl, o = (/p) ¢ N,

([ 102@)PIal (1 + llog el dw)'"* < Cllflly, &~ (n/p) € N.

The Riesz potential space R? is given by
RP = {U!: feL*).
By Proposition 1.1 we have

L, a—(n/p) ¢ N
14
Ra C { Lp,—a,log, a — (n,/p) € N.

We denote by P the set of all polynomials, and let P, = {P € P : degree of P < k}.
If K = [@ — (n/p)], then

L=, a—(n/p)¢N
Pr C { Lp_-—a,log’ o — (n/p) eN

Consequently, for k = [a — (n/p)] we have

Lp,—Of’ a — ('7'/P) ¢ [V
14
RE+ Py C { LP=los o —(n/p) € N.

Let k£ = [@ — (n/p)]. Since U/ + P = U +Q (f.g € L? and P,Q € Py) implies
f =g, P =Q (see Lemma 2.15 below), the sum R% + Py is a direct sum R & Py,
and we can define the norm in the direct sum space R?, @ Py as follows:

Ilwl|ge — ||f”p+||P“p,-—cvv a—-(n/p) ¢ N
Ba®Pe = 1 NIfllp + [IPllp-otogs @ —(n/p) €N

fu=U/+P€R&P.

In section 2 we give an improvement of a characterization of the Riesz potential
spaces (Proposition 2.17), which is necessary for discussions in section 3. In section
3 we present our main result (Theorem 3.7) concerning a relation between Bessel
potential spaces and Riesz potential spaces. Theorem 3.7 below gives the following
relation: Let k = [a — (n/p)]. Then

B = (RR@Pun L’

and
llullgz = |lullrear, + llullp

where the notdtion = stands for equivalent norms.



2. Characterizations of potential spaces

Let ¢ be a positive integér. For a function u on R™, the difference Aju of order ¢
with increment ¢ € R™ is defined by

¢

Alu(z) = 3 (~1Y Clulz + (€ - j)t)

=0
with C'f '(z 5 We define the space C? , as follows:
A“ T
Ch,={ue€l,: llm/ nﬁa)dt exists in LP}.
Jt|>e€ Itl

We write Alu(z)

u(x
DX‘u(a =/ ———=d
<ul) e [t

and

D*'u = lin& D**u.
E.M.Stein [Stl: Theorem 2], and S.G.Samko, A.A.Kilbas and O.[.Marichev [SKM:

Theorem 27.3] give the following characterization of the Bessel potential spaces.

Proposition 2.1. Let 2[(¢ 4+ 1)/2] > a if a is not an odd number. and ¢ = o if
a is an odd number. Then
Bt =LL,NnLP
and
llullsz = 1D ull, + [lull,.

Characterizations of the Riesz potential spaces are treated in S.G.Samko [Sa:
Theorem 10] and the author [Ku2: Remark 4.10]. However, the condition of ¢ in the
characterizations can be improved. In this section we give the improvement. We

Al
p?'l(:l:) — / L"(x_)_dt, e>0.
t

[g2e [t

We note that p>*(z) is finite for = # 0. In fact

. i) < e [ IRala+ (€= 9)0)
2.1) o (@) <Y C; dt + |k,
RN ACIEN k@ f

lt>e |t|mte

put

<

for + # 0. We simply write p®‘(z) = p*¢(z). We use the symbol C for a generic
positive constant whose value may be different at each occurrence.
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LemMma 2.6. Ifm > 20 — (n/p) and u € LP=198  then
Ao+ D2 u(z) = us (A7)

for almost every x in case of o < n, and for all x in case of a > n where the symbol
*+ means convolution.

Proor. We put

K(z) = ARke*DX%u(x)

- 26(=1)Cluly + (€= j)t) + (=1)‘u(y)
= /Ah ha(l‘ - y) /|l|>C Itln+a

dtdy.

Since

¢ — )t )
/ [u(y + ( J))ldt<oo, 3=0,1,---,¢-1
[t]>e [¢|nte

by the condition u € LP~*!°¢  we have

= JtAm N u(y + (¢ —))¢)
Jiz-reiarste =) Joe =

HoUaprae - [ S dyay

> ¢t

We can use Lemma 2.5 (i) and (ii) because of the conditions m > 2a — (n/p) and
w € LP~218  So by the changes of variables y + (( —j)t ==z () =0,1,---,{ - 1)
and Fubini's Theorem, we obtain

z

-1
K(x) = —1YCHl — )* Ak (2 — 1 _ulz)
(@ = [ O O [
—1)*AF Ka(z — y)u(; / dt}d
+(=1) AT ka(z — y)u(y) e T }dy
-1
cHe - j ARKa(z —y)
= —IJCL-K—'G ulz h dudz
2-1Cie ) JuO [ T

e f h Kt — 2)
+( l)/ /ll>c e[+ ————~dtdz

for almost every z in case of a < n, and for all = in case of a > n. Further, the
changes of variables (z —y)/(¢ —j) =t (y =0,1,---,0 — 1) give

K(z) Z( 1)JC/ (2 /”)E Rra(z =2+ (6= 4y,

ico |t|n+a




AlRo(z —2)
_ 4 ul z |}IQ|I.I :&N
i: \:A ) :_vﬂ _~_=+o m

¢ EERY) L. ko (x — v __
Jutz) \,_xmzﬁ Y CiARRa(z =2 +(E=)1)

e+

—1)C"Alky(z — 2+ (m —v)h
\.:Auv Mutlcﬁ v v ¢ QA A v v&n&N
[t]>e |t|nte
for almost every z in case of @ < n, and for all 2 in case of @ > n.  Finally, by
(2.1) we obtain

e Alko(z —z+ (m —v)h
K(z) = \.:ANVM.UT::&_\_,_V, (2 _N_ﬁ~ ) 4

m

- \_:E S (=1 Crpe(x — z + (m — v)h)d:

v=0
= [uz)Arpe Yz - 2)dz

= ux (A70)(a)

for almost every z in case of a < n, and for all z in case of @ > 1. This completes

the proof of the lemma.

Lemma 2.7 ([Ku3: Lemma 3.12]).  [fm > a — (n/p), then Af'ky € Uicsep L°
with (1/p) + (1/p") = 1.

Lemma 2.8. [f m > 2a and |z| > 4m|h|, then

. . R|* + [h]*)]z]7>" a—-n¢?2N
AT a,l <(C A_ !
AR NS O (R (L + | log RI) + [R*)]2]"", a —n € 2NV.

Proor. We rw<m
DS Q; v — \ DM\ N:nQANVRN
> [trre
-1 l

.| i e M:AQAN + A& |uvuv Eam [
= MUA v c: \ , dt + Al—v |V> RQANV\_._N_ _~_=+Q

o [e1>1 ¢t

The changes of variables z + (€ — j)t = y(y =0,1,---,¢ — 1) give
AR Kq

-1 :
Dibﬁ_ﬁ uv M Qm ¢ — 4 9.\‘ |||I&u + AT ?Q N
|A; (2)] WW \A 7) ly-z1>e-5 |y — z|*+e & > [t
AT ko (y)] 1
< claer [ om0y pape oy [ g
s Clef) -slz1 [y — 2*e | ) iz [t re

.

dt.
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ProoF. We denote by u; the restriction of u to {z:|z| < j"p/"(logj)(P"’/“}
for j =2,3,---. We have

() = wx(A7pY)() = daediiu(z)
= (ux (Azlpf/i)( T) — u; * (AZ‘pl’/ﬁ)(z))
o * (ATA)(@) — da AT u4(2)
+(da AR uj(z) — da A u(z))
= Ij(z)+ I’(z) + (z).

First, it is clear that

(2.2) lim 13( ) =0 forall z.

j—o0
Next, we shall prove

(23) (=)l < [u(t)[P(L + [¢]) > (log(e + [t])) 7Pdt)'/?

(/|t|zj°r/"(logj)<P-'>/"

for j such that j*?/*(log j)P~1/" > max(2|z| + L,4(|z| + 2m[k[)). ~ We have

@) =1 [ (uz = 1) = uyle - DNAT )

u(lz = t)(L + |z —¢t])"*(log(e + |z — ¢ !
Lo om0 = O = e loge 2= 1)

x(1+ |2 — t])*(log(e + |z — t])) (AT P37 )()dt|
lu(z — t)P(1 + |z — t])*"(log(e + |z — t[))"Pdt)"/?

IN

/lr~tlzj°"/"(logj)(’“’/"

- — t)*"'(1 )P (AT ) (2) [P dt) P
KU oo ooyl H 1 = 107 Cog(e + J2 = e (ATATE)(OF 40

For jo?/*(log j)®~V/™ > max(2|z|+ L, 4(|z|+2m|h[), it is easy to check that |z —t| >
7°?/*(log j)»~Y/ implies
(24) () Hzlel+1, (i) 12 77"(0g))" /2 2 4mlhl,
(i) 14z —¢t| <20t], (iv) e+]z—t| <e+2[t
Hence , for such j by Corollary 2.9 and (2.4) we have

s g1 12~ 07 gl ¥ 12 = DA SO )

C(h);* / | 20t]))P |t| P )Y
(h)3°( “lzj”/"(bu_)(p_”,wi | (log(e + 2[¢]))” |¢] dt)
< C(h)

IN
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because of

t|="" (log(e + 2|t|))" dt)/? < Cj=.
Ul oo oo 117 0B (e + 212" d0)' < C

Therefore, we obtain (2.3), and hence

(2.5) Ii(z) -0 (j — )

on account of u € LP~*!°¢_ Finally we consider 112(1) Since d, ¢ = fp:'/‘i(t)dt,
we have

[Hz) = (AFw)*pj5(2) — daedfus(z)

m

= L-0Cr [(uie +(m=i)h = 1) = uj(z + (m = k)i (1)

1=0

We denote the Lebesgue set of u by B,. It follows from u € L}, that m(B:) =0
where m denotes the Lebesgue measure and B is the complement of B,.  We put
E.= B —(m —1¢h(z =0,1,---,m) and £ = U%,E; Then m(£) = 0 and for
v € Bz + (m —1)h is a Lebesgue point of u for: =0,1,---,m .  We shall show
that for a fixed x € Eand : =0,1,---,m,

a; = /(uj(;t +(m—c)h—t)—uj(x+(m- i)h))pl/ (t)dt =0 () — ).
We choose § > 0.  Since z + (m — ¢)h is a Lebesgue point of u, we can find an
n > 0 such that

(2.6) L lu(z + (m — )b —t) —u(z + (m —2)h)|dt < §

I!l(r
provided r <n. Weputy=2z+ (m —:1)h. We have
ol = 1 [ (usily = 1) = w0t
< / (y—t) — dt
= lt1<n |u1(y ) U.]( “pl/]( I

+ lui(y — t) — u;(y)l10575 ()|t

[t|>n

bj +¢j.

11



We let

fu(y - rt') — u

\.ou ™ w(r)

where S,,_; denotes nro surface of the unit sphere
Then, since W(r) = [, lu(y — )

w(r) = \m,_n_

W(s)

and

area on S,_,
(2.7) Wi(r) < ér"

provided r < n. Moreover we define for r > 1

(v)1dS(t)

dr

and dS is the element of surface
— u(y)|dt, by (2.6) we see that

n

(2.8) h(r) = pe=2(e+1)/2)-n
and forr <1

ro ", @
(2.9) h(r)=¢ 1 —logr, «

L, Q

n

>n.

By Lemma 2.2(i) and (ii), for j such that j*?/"(log j)®*="/™ > |z|+ m|h|+ n we have

b = \_“_Q_:H,inui e (t)]dt
< cyt h_Q_ u(y —t) — u(y)lh(s]t])dt
= Cj" \ " h(gr)dr
= CIWRGNR - Ci" [ W(r)dh(r).

[t follows from (2.7) and (2.9) that lim,_o W(r)h(yr

<

b,
b; + b3.

By the change of variables jr = s and (2.7), we ob

ud
cy" \

o) \o %T%?: = C6

b2

IN

On-1

12

(~dh(s)) < Cj"

0. Hence

)

C"W (mh(jn) +C5" [ W(r)(~dh(jr))

tain
\O: m@:l&%
/.. pllzl)da



where o._; is the surface area of the unit sphere. We note that A(|z|) € L'
because of (2.8), (2.9) and & < 2[(£+1)/2]. We may assume that jp > 1. Then
by (2.7) and (2.8) we see that

‘ne. ng ya—2[(¢ 2)-n __ . -2[(¢ 2
bl < Cj"8n™ (jn)o M V/Am = O§(jn)* A < s

on account of & < 2[(¢ 4 1)/2].  Thus for j such that jn > 1 we have

\.. h(|z|)dz).

< C8(1 +

On-1

Since § is arbitrary, this implies lim;_, b; = 0. Furthermore, we have

_}\uﬁ )|dt

[tI>n

< ujly —t t)|dt + |u
— 2
= &+&.

It follows from p°¢ € L' that limj_co c? = 0 in view of |u(y)| < oo. We also may
assume that jp > 1. Then by Lemma 2.2 (i) and (ii) we have

D
[t|>n

= oA/ uly — )|(1 + |¢]) " (log )"
J o acsonimug e 1108 = DL+ 1) Clog(e + 1)

X(L+ |t])* (log(e + ¢ e[/
Co~ M [ lu(y — )P(1 + 1)~ (log(e + Ie)) 7de)

IN

<([ (1 -+ [t)°7 (log(e + [e))7" (e 2072100 gy
le[2n,ly—¢t1<5P/ " (log §)(P=1)/n ,

We note that the condition a < 2[(¢ + 1)/2] implies (1 + Z)[(¢ +1)/2] > _ ¢+
1)/2]+ 3. Wealso notice that o < [(¢+1)/2]+ 35 gives ANQ N_ (£+1)/2]—n)p' <

—n and nrm assumption & < (1+ 2)[(€+1) )/2] _Bvrom L —2(1+22)[(£+1) \N_ < 0.
Therefore

- 2[(L+1)/2 _ G1) 4 n
.“Q [ u. _ a < — 2 _ + 2
¢ < Cllullp-atog § 7 LHDA(log j)P">, a=[%+2

.nnu a . .
NG A log ), [HL) + £ < o< (14 5[]

with ¢ = wfﬂF_:Q -[(e+1)/2]) + w, and hence limj_,o ¢j =0. Thus

(2.10) lim Nnﬁa =0 for z € E°.

j—oo
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the inverse operator of the Riesz potential operator of order a (cf. [Ba: Theorem

4.4], [Sa: Theorem 2] and [SKM: Theorem 26.3]).

Now we give an improvement of S.G.Samko [Sa: Theorem 10] and the author
[Ku2: Remark 4.10).

ProposiTioN 2.17. (i) We assume that 2[(¢ + 1)/2] > a,¢ > a — (n/p). Then

Lr=e,  a-(n/p)¢ N
P P
RE®P.CL, Lp—2los, a—(n/p)eN

with k = [a — (n/p)], and

__bn.nﬁ__u + [[ullp.-a < CllullrzoP: a—(n/p) ¢ N
__bo:.ﬁ__w + __.C.__?lo:—om < Q__ﬁ__mMQﬂvn. @ - AS\EV €N.

(i) We assume that min(2[(¢ + 1)/2],( m.m.v:m +1)/2] >a and ¢ > a — (n/p) ¢
Qﬂo&&\azamnm&\nno&&mza Wmmm_lc Aw @R:

. Le—e a—(n/p)g N
P T P “
R, P DLy Lp—log a—(n/p)€N

and
[1D*“ull, + [lullp, o a~—(n/p) ¢ N

ul|ge <C r
lellzzar. < €4 jipoall, + llulh-oter: @ = (n/p) € ¥,

Proor. (i) letué€ R2®P,. Thenu=U/+ P with f€ L? and P € Px.
Proposition 1.1 and k = [@ — (n/p)] imply u € LP~* in case a — (n/p) ¢ N and
u € LP~*I€ in case of a — (n/p) € N. Moreover, since ¢ > a — (n/p), by Lemmas
2.12 and 2.14 we see

D¥*y = D*'UL = p™' « f.
On account of 2[(¢ + 1)/2] > a, it follows from Lemma 2.2 that D*‘u = p*‘ * f
converges in L? as ¢ — 0.  Thus we have u € £},

(i) letue £ ,NLP~*in caseof a—(n/p) ¢ N and u € L ,N LP—log ip case
of a — (n/p) € N. We take an integer m such that m > 2a. Since u € LP~*8
and m > 2a — (n/p), by Lemma 2.6 we see that

h Ko * b_\h u(z) = u = :b_\g )(z)
for almost every x. Since u € h..,;, there exists an f € L? such that Dwx: — fin
L? as € = 0. Since m > a — (n/p), by Lemma 2.7 there exists a number » such

that | < r < p' and APk, € L. Hence, if we put 1/q = (1/p) + (1/r) — 1, then

15



Young’s inequality implies Aj'k, * D‘l’/ju — Al'ky * fin L7 as j — oo. On the
other hand, since the assumptions about ¢ satisfy those of Lemma 2.10, we have

u* (APpS)(T) = daeATu(z)  asj - o0
for almost every x. Hence
AT Ko * f(2) = da AR u(z)
for almost every z. Moreover, by Lemma 2.11 we see that
AU = ARko* f.

Therefore, dg e APu = APU, and hence by Remark 2.3 and Lemma 2.14 there exists
a polynomial P € P,,_; such that ‘

u= Ut + P
By Proposition 1.1 and the condition

| Lr—e, a—(n/p) ¢ N
u € Lp,-a,log, o — (n/p) € N,

we have

P, a=(nfp) ¢ N

This implies P € Py, and hence u € R? + Pj.
The estimates of the norms in (i) and (ii) follow from Proposition 1.1 and Corol-
lary 2.13,  This completes the proof of the proposition.

3. Relations between Bessel and Riesz potential spaces

[n this section we are concerned with relations between Bessel and Riesz potential
spaces. At first, we treat a correspondence between individual Bessel potentials
and Riesz potentials. For a tempered distribution u, we denote by Fu the Fourier
transform of u. The Fourier transform of u € L! is defined by

Fu(z) = /e'i"”u(y)dy

16



where 2 -y = 2y, + - + oy, denotes the usual inner product.  The [Fourier
transforms of the Bessel kernel and the Riesz kernel are given by

(3.1) FGa(z) = (1 + |z[*)~*/*> ([St2: Proposition 2 in Chap.V])
and
(3.2) Fro(z) = Pf.x|™® ([Sc: section 7 in Chap.VII])

where Pf. stands for the pseudo function [Sc: section 3 in Chap.II].
The following lemma is due to E.M.Stein [St2: Lemma 2 in Chap.V].

LemMa 3.1.  There exists an integrable function h, so that its Fourier transform

Fh, is given by
|z[*

1+ Fho(z) = T 1)

LemMa 3.2.  [f ¢ is a nonnegative integer such that £ > a — (n/2), then

AlG, = Alk, + Alk, * by

Proor. By (3.1) we have
(3.3) F(ALG,)(x) = (—1)(1 = =) (L + [f*) /2
Further, by (3.2) and { — a > —n/2 > —n, we obtain
(34)  F(Alka)(x) = (=1)"(1 = e*)PLI2™ = (=1)(L — e*) [z
We denote by g,(z) the restriction of Alk,(z) to {z : |z < 2¢|t|}, and let

g2(x) = Alko(z) — gi(z). It is clear that g; € L', and it follows from Lemma 2.4
and ¢ > a — (n/2) that g, € L2 Therefore we have

f(A‘tf"'a xho)(z) = F(g1*ha)(z) + F(g2 * ha)(2)
= Fgi(2)Fho(z) + Fgo(z)Fhalz)
= (Fau(z) + Fg2(z)) Fha(z)
= F(Afka)(2)Fha(z).
Hence by (3.3), (3.4) and Lemma 3.2 we have
F(Afke + Alk, xh,)(2)
= (=11 = ") |2|%(L + Fha(z))

— 11 _ sty —-cx___lflc:___
- ( 1) (1 € ) I:Ll (1 + |1:|2)a/'2
(=) (1 = =91 + a7/

= F(AG.)(2).

17



['hus we obtain the lemma.

Remark 3.3. By lemma 2.4, Ak *hy(z) exists almost everywhere for ¢ > a—n.
Lemma 3.4 ([Ku2: Lemma 4.4 (ii)]). If¢> a—(n/p) and f € L%, then

|Af'€a(y)|
- ———=—dtd 00
/If(x y)l e I y <

for almost every z in case of a — (n/p) <0, and for all x in case of a — (n/p) > 0.

Lemma 3.5. Let f € LP,2[(¢ +1)/2] > a and ¢ > max(a — (n/p),a — (n/2)).
Then
Da.(Gi = da,lf + da,lf * h'or‘

Proor. Since ¢ > max(a — (n/p),a — (n/2)) and f, f * h, € L?, by Lemmas
3.2, 3.4 and Fubini’s Theorem we have
¢ :
DG (x) / Mdt
le]>e

|t|n+u

_ [ (it M th) « fle),
Iti>e

|t|n+a

1

L C
Jo. s | D) (e = y)dyet
1

t2e [E[7 e
Afka(y)
= — Zedd] did
J 529 T
AfKa(y)

hos fla—y) [ o= Ldid
+/ TEY s e

= pj‘" * f(z) + pf""’ * h, * f(:c)

Since 2((¢ + 1)/2] > a, by Lemma 2.2 and Remark 2.3 we obtain

D**G] = lim DGL = daof + dagha f
in LP. This completes the proof of the lemma.

We define the bounded operator T on L? as follows:

T*f=f+[*ha

18



We set
T*(LP) = {T*f: f€ L?}.

PreposiTiON 3.6. (i)  For a function f € L?, we have
GL=u"'+pP

where P is a polynomial of at most degree k.
(ii) The operator T is one-to-one on L7, and if g € T*(LP), then

Us + P=GIN7's

where P is a polynomial of at most degree k and (T*)~" s the inverse operator of
T

Proor. (i) Let f € LP. We take a positive integer ¢ such that ¢ > max(a —
(n/p),«@ — (n/2)). By Lemmas 3.2 and 2.11 we have

(3:5) AlGL = AGaxf
= (Affa + Dika*ha) [
= Alkg*(f + ha* f)
AtyT
So, it follows from Lemma 2.14 that there exists a polynomial P of degree £ — | such

that
¢l =ul" +P

This also implies P € L*~° in case of a — (n/p) ¢ N and P € LP~*1°8 in case of
a — (n/p) € N, and hence P € P.

(i) Let fi,f, € L? and T*f, = T*f, = g. By (i) there exist polynomuals
Py, P, € Py such that

Gh=US+P, GE=Ui+P,.

Therefore, P, — P, = G/t — Gf2 € L?, and hence P, = ;. So, Gi =G, This
implies f, = fo.  Thus the operator T* is one-to-one on LP. Next, let g € T*(LP).
If we put f = (T*)"'g, then in the same way as (3.5) we have

ALGL = AlLUS.

Hence there exists a polynomial P € Py such that U + P = GI{.  We have thus
proved the proposition.

19



By Proposition 3.6(ii), for g € 1°(L*), we have Qwﬂiln —US€P.. We define
the operator P*? as follows:

por(g)=GT " —Us, g€ T (L)
The operator P** maps T*(LP) to Py Further, we define the space SP as follows:
57 = (U2 + P**(g) 19 € TH(L)}

Let ue S2.  Thenu = Us + P**(g).9 € Te(LP). Since the operator T* is one-
to-one on LP, there exists an unique LP —function f such that g = Tef. We define
the norm ||u||s? to be the LP—norm of f. .

Now we are in a position to prove our main theorem.

Tueorem 3.7. Let k =[a— (n/p)]. Then
B?, = 5t = (R ®Py)NLF
and

llullaz = llullsz = llullrzem, + lull

Proor. First, B = S and ullgr = llullsz follow from U$ + P**(g) =
G, g € T(LP), Next, S? C (Rh &Py)NLP is clear from the definition. We
show

(3.6) lullrzar, + llully < Cllullsz-
Let u€e Sh. Then u Q% + PoP(g) and g = u..p.,ﬁ feLr. Since

) T S (YO
ullnzar, = lollo +\ [1p=#(g)lly-siors = (n/P) €N

We must estimate __.Q__E_:u?qu__u.J::w?uG:_u.ng._om and ||ul||,- Since T° is a
bounded operator on L7, we see that

lglly = 1T fllx < Cllfllp = Cllullsz:
Further, in case a — (n/p) ¢ N, by Proposition 1.1 we have
1P ()llpee = 1IGT7% = Ulllp-a < 11Gally + Uallp—
< C(lIfll, + Nlgllp) < Clifllp = Cllullse:

The estimate of || P*?(g)|lp.-a.log 1N CaSE of a — (n/p) € N is the same. Moreover,
we have _

NGT 7|l
Q__:__mn.

lull, = 1US+ P79l
= IG5l < Clifllp

20
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Thus we obtain (3.6). Finally we show that (Rf & Pe)N LP C BE and ||u||pz <
C(||ullregp, +lullp). In case a— (n/p) ¢ N, we take a positive integer ¢ such that
2((€+1)/2] > aand € > a = (n/p) Then by Proposition 2.1 and 2.17(i), we have

(RR@®Py)NLP C L, NLP ™o NLP=LE,N LF = B°
and

llullgz ~ 1D=4ullp + llully < [1D*“lp + llullp.-a + llulls < C(llullrzep, + llulle)

The proof of the case a — (n/p) € N is the same. We have thus completed the
proof of the theorem.

Remark 3.8. Ifa # odd, or a = odd and 2251 < 2 then B = (RE®P:)NL?
follows from Propositions 2.1 and 2.17.

CoroLLARY 3.9. Let g € L? and k = [a — (n/p)].  Then the following three
conditions are equivalent:
(1) geT(L?),
(II)  there ezists a polynomial P such that US + P € LP,
(III)  there exists an unique polynomial P of degree k such that U + P € LP.

Proor. First, we show (II) <= (III).  Since (III) = (II) is trivial, it suffices
to show (II) = (III). We suppose that there exists a polynomial P such that

(3.7) US + P e LP.

The condition (3.7) implies P € LP~* in case of & — (n/p) ¢ N and P € LP~>"% in
case of a — (n/p) € N, and hence P € Pr. In order to show the uniqueness of P,
we assume that P,Q € P and UJ + P,U2+ Q € L. Then we have

P-Q=Us+P—-(Ul+Q)e L”

This gives P = Q.  Next, we show (III) = (I). We suppose that there exists
a polynomial P € P such that U + P € L?.  Then US + P € (R ®Pi)N L7,
and hence US + P € B? by Theorem 3.7.  Therefore there exists an f € L? such
that US + P = GL.  We take a positive integer £ such that 26 +1)/2] > @, € >
max(a — (n/p),a — (n/2)) if a is not an odd number, and ¢ = a if @ is an odd
number. Then by Lemma 3.5 we have

D*GE = doof + daif * ha.
On the other hand, by virtue of Corollary 2.13 and Lemma 2.14 we see

DU + P) = daeg.
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Consequently we obtain g = f + f * ha by Remark 2.3, and hence g € T*(LP).
Finally, we show (I) => (I[). Let g € T*(L?). By Proposition 3.6 (ii) there
exists a polynomial P € Py such that U + P = G{T™'9.  Since GT) ™9 g [P, we
obtain the required conclusion.

ReMARK 3.10. By Corollary 3.9 P*?(g) is the unique polynomial P € Py such
that US + P € L”.

Remark 3.11(cf. [No: Theorem 2]). We assume that 2[(¢ + 1)/2] > a,t >
max(a — (n/p),a — (n/2)) if a is not odd, and ¢ = a if o is odd. By Lemma
3.5, Proposition 3.6 and Remark 2.3, the operator D**/dg ¢ is a one-to-one mapping
from B? to T*(LP), and ~
Da,l

(T“)'ITG.’, =f
a,l

¥

for f € LP.

Remark 3.12. The Lizorkin space ® is defined as follows [SKM: §25]:
¢ = {¢ €S: /¢(17)1f7d1' =0 for any v}

where S is the Schwartz space. Then ® c T(L*). Indeed, if f € ®, then
g= ]:'(Ll—ﬂill-z;ﬁﬁff) € ® and f =g+ g *h, where F stands for the inverse Fourier
transform.  Since ® is dense in LP(see [Li]), T*(L?) is also dense in LP.
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