A NOTE ON THE RELATI ON BETWEEN THE GRAPH OF THE DEGREES OF THE GROUP CHARACTERS AND NON SI MPLI Cl TY

著者	ATSUM Tsuyoshi
j ournal or publ i cat i on title e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	9
page range	$39-41$
別言語のタイトル	群の既約指標の次数と正規性について
URL	htt p：／／hdl ．handl e．net／10232／00003965

A NOTE ON THE RELATION BETWEEN THE GRAPH OF THE DEGREES OF THE GROUP CHARACTERS AND NON-SIMPLICITY

By
Tsuyoshi Atsumi*
(Received September 27, 1976)

1. Introduction and Summary

Let G be a finite group, $D(G)$ the set of degrees of the irreducible complex nonprincipal characters of G. We introduce an ordering in $D(G)$ as follows: let a and b be two elements of $D(G)$. Then $a>b$ if and only if a divides b. Let k be the number of maximal elements in $D(G)$. Then G is k-headed. We form a graph $D(G)$ of G as follows: the points of $D(G)$ are the elements of $D(G)$. The (oriented) edge $a b$ of $D(G)$ exists, where a and b are points of $D(G)$, if and only if $a>b$. Now we shall have the following conjecture.

Conjecture. If $D(G)$ is a 2-headed graph then G is non-simple.
In special cases the above problem and the related problems were solved by I.M. Isaacs and D.S. Passman in [2], [3], [4] and [5]. In this note we shall prove the following theorem.

Theorem. Let G be a finite group with the following properties, the set of degrees of the irreducible complex characters of G is $\left\{1, m, n, k_{1}, k_{2}, \ldots \ldots, k_{l}\right\}$ and $m n \mid k_{i}$ for all i. Then G is not a simple group.

2. Proof of the theorem

Suppose the statement is false and let G be a counter example to the theorem. We can assume that $m<n$ and by a result of Thompson [6] $(m, n)=1$. Let χ be an irreducible non-linear character of G with $\chi(1)=m$. Since G has the irreducible characters of degree n it follows from a theorem of Burnside and Brauer (see Satz 10.8 on p. 519 of [1]) that some power χ^{r} has an irreducible constituent of degree n. Choose r minimal with this property. Similarly $\chi^{s_{i}}$ has an irreducible constituent of degree k_{i} and s_{i} is minimal with this property.

Let $\phi_{i} \in \operatorname{Irr}(G), \phi_{i}(1)=k_{i}$ with ϕ_{i} a constituent of $\chi^{s_{i}}$.
If there exists $i \in Z$ such that $s_{i}<r$, then let the minimal number of $\left\{s_{i} \mid s_{i}<r\right\}$ be s_{i}. For some irreducible constituent ψ of $\chi^{s_{i}-1}$ we must have

[^0]$$
0 \neq\left[\psi \chi, \phi_{i}\right]
$$
and by the minimality of s_{i} we have $\psi(1)=m$ or $\psi(1)=1$.
Then $\psi(1) \chi(1) \leq m^{2}<\phi_{i}(1)=k_{i}$. This is a contradiction.
So from now on we assume that for all $i s_{i} \geq r$. As above let $\phi \in \operatorname{Irr}(G), \phi(1)=n$ with ϕ a constitutent of χ^{γ}.

For some irreducible contitnent ψ of $\chi^{\boldsymbol{r}-1}$ we must have

$$
0 \neq[\psi \chi, \phi]=\frac{1}{|G|} \sum_{x \in G} \psi(x) \chi(x) \overline{\phi(x)}=[\bar{\psi}, \chi \bar{\phi}]
$$

and by the minimality of r we have $\psi(1)=m$. (The case that $\psi=1$ is impossible since then χ is irreducible of degree m.)

Thus $\chi \bar{\phi}$ has an irreducible constituent of degree m and has no linear constituent (in this case this is 1) since otherwise

$$
0 \neq[\chi \bar{\phi}, 1]=[\bar{\phi}, \bar{x}],
$$

contradicting $\bar{\phi}(1)=n>m=\bar{\chi}(1)$. Thus all irreducible constituents of $\chi \bar{\phi}$ have degree m, n or k_{i} and at least one has degree m. Let a be the number of constituents of degree m, b the number of those of degree n and c_{i} the number of those of degree k_{i}. We obtain $m n=a m+b n+\sum_{i=1}^{l} c_{i} k_{i}$. Now $n \mid a m$ and since $(m, n)=1$, we have $n \mid a$. However $a>0$ and thus $a \geqq n$. It follows that $a=n, b=0, c_{i}=0$ for all i. So every irreducible constituent of $\chi \bar{\phi}$ has degree m. We may write

$$
\chi \bar{\phi}=\sum_{i=1}^{n} \theta
$$

where the $\theta_{i} \in \operatorname{Irr}(G)$ all have degree m and not necessarily all distinct. Suppose some θ_{i} is not χ. Then we have

$$
0=\left[\chi, \theta_{i}\right]=\left[1, \bar{\chi} \theta_{i}\right] \text { and } \bar{\chi} \theta_{i} \text { has not } 1 .
$$

However $0 \neq\left[\chi \bar{\phi}, \theta_{i}\right]=\left[\bar{\phi}, \bar{\chi} \theta_{i}\right]$ so $\bar{\chi} \theta_{i}$ has a constituent $\bar{\phi}$ of degree n. Let c be the number of the irreducible constituents of $\bar{\chi} \theta_{i}$ of degree m, d the number of degree n and e_{i} the number of degree k_{i}. Then as above we have

$$
m=c m+d n+\sum_{i=1}^{l} e_{i} k_{i} .
$$

Thus $m \mid d$ and $d>0$ so $d \geqq m$ and we have $m^{2} \geqq d n \geqq m n$ which contradicts $n>m$. It follows that each θ_{i} is χ.

This yields

$$
\chi \bar{\phi}=n \chi
$$

Since $\bar{\phi}$ is faithful. $\chi(x)=0$ for $x \in G, x \neq 1$.
This yields $[\chi, 1] \neq 0$. This is a contradiction. So we complete the proof of the theorem.

Acknowledgment

The author is grateful to Prof. H. Nagao for suggesting the present form of the theorem in a letter to the author.

References

[1] B. Huppert, Endliche Gruppen 1, Springer-Verlag, Berlin, 1967.
[2] I.M. Isaacs, Groups having at most three irreducible character degrees, Proc. Amer. Math. Soc., 21 (1969), 185-188.
[3] I.M. Isaacs and D.S. Passman, Groups with representations of bounded degree, Canad. J. Math., 16 (1964), 299-309.
[4] - A characterization of groups in terms of the degrees of their characters, Pacific J. Math., 15 (1965), 877-903.
[5] , A characterization of groups in terms of the degrees of their characters, II, Pacific J. Math., 24 (1968), 467-510.
[6] J.G. Thompson, Normal p-complements and irreducible characters, J. of Algebra, 14 (1970), 129-134.

[^0]: * Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, Japan.

