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Abstract

In the present paper we shall obtain the asymptotic expansions and the explicit ex-
pressions for (Mne;)(x) when {=2 and 3, respectively. We shall also derive some improved
estimate for Mpe,— e..

1. Introduction and the results.

Let Ar be the set of all complex-valued functions defined on the half-open interval

[0, 1) for which | f(2)| <P exp <T—E—?>’ t<(0, 1), where P and a are some positive
constants depending only upon the function f. Then the Meyer-Konig and Zeller oper-

ators M, are defined on Az by

(g (TR k(K ,
1.1 (MufYa)=—zr 5(" 7 )arf () @el, 15 neN).
a
It is easily seen that, if €(0, 1), then the series (1.1) converges for all n=1+ E;I
x J

where the square bracket denotes, as usual, the integral part of the argument. If f(%) is

continuous to the left at =1 and f(1) exists, then (M,f)(1) is defined as (M,f)1) :

=lirr¥1(Mmf)(x)=f(1). These operators are clearly linear and also positive. It is easily
X

verified that
(1.2) Mpe,=e;, (i=0, 1; n€N),
where the functions e; are defined by e; : x — x%, (€N Y{0}). It is also well-known
that Mne, converges uniformly to e, in [0, 1].
P. P. Korovkin [2] has proved the following theorem: If the three conditions

L1 x)=1+anx),  Lali)ax)=2x4Lx),

Lo 13)(x)=2*+ yal)
are satisfied for the sequence of linear positive operators Ln(f)(x), where ax(x), Bxx),
¥a(x) converge uniformly to 0 in [@, b], then the sequence L(f)(x) converges uniformly
to the function f(x) in [a, b], if f(x) is continuous in [a, b], continuous on the right
at x=>5 and on the left at the point x=a. Owing to this theorem, if f(x) is continuous
on [0,1], then (M, f)(x) converges uniformly to f(x)in [0,1]. Therefore Mne; (=0, 1,
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2) have a conspicuous meaning to study the asymptotic behavior of the operator.

The main purpose of this paper is to study the second moment and the third mo-
ment of M, operator. Especially we shall investigate the asymptotic expansions and ex-
plicit expressions for Mpe, and Mpes;. In §2 we shall follow the line of arguments by
Lupas and Miiller [3] and improve their results. In §3 we shall make use of the reason-
ing that is performed in §2 and refine the asymptotic expansion for Mne; which was
found by Sikkema [5]in 1970. In §4 we shall show some improvements on the estima- i
tion relating to M,e,— e,. Finally, in §5 we derive an explicit expression for (Mpe;)(x)
with the aid of a differential equation just as in [1]. {

The main results obtained in our research work are as follows:

— ) )2 _ )2 2
L. (Mpem)=zt+ DLy Ao PE2 1) | 226’60 +1) | (1)
n n n n
(n—o0) x€[0, 1),
2 2 2 2
2. (Mnes)(x)=x3+3x (1n_x) + (1 — )l ;29x—+—11x )
R _ 2 3
4 =z (—2+272—72% +50x)+0<%> (n—so0),
n n
3. if (Mpe,)(x)—x? attains the maximum at the point X, then
1, 4 16 208 4304 (1 .
x0_3 +27Tl 35nz 37,n3+39n4 0< 5> (n 00)9

4 4 20 964 , 356 1
4. (Mpe,)x,)—xi= 2Tn 3t 3 + o + PO + O<?> (n—00),

7+ 1
7“_3;) -unlx), where
x

v _ & (1R

Remarks. We mention the results obtained earlier by various authors to make our
results clear.
1. P.C. Sikkema [5] obtained

Mnez(x)=x2+x(1_x)z+x(1‘x)2(2x-1)+0< 1 )

n nt
as a special case of his Theorem 3.
2. P.C. Sikkema [5] also obtained the following result:

(Mnes)a)= gt + 38 =2V | 2 a9 +112Y | (L)
n n

(n—o0),

see expression (20) in [5].
3. J. A. H. Alkemade [1] recently obtained the following asymptotic expansion for X :
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——:1,;+%+ 0< ) (n—>o0),

see p. 270 in [1]
4. J. A. H. Alkemade [1] also established the following asymptotic expansion for || Fyll :

4 4 1
IFoll =g 2+0<—;> (n—oo),

where IIF,,II——max | Folx)| = Fr(x)) =(Mpe,)x,) — 3.
5. This result seems to be new.

2. An asymptotic expansion for (Mye,)(x).

This section is devoted to improve the order of the asymptotic expansion of Mne,
due to Lupas and Miiller [3]. For the sake of completeness we shall give the detailed

there. In what follows, for simplicity, we make a convention that

e 5.
Lemma 2. 1. (p. 20 in [3])
(2.1) (Mnea)@)= "+ 2(1— 0) Sy o o).

Proof. By definition

T

Noting that

ko _ kn o hlk=1)
n+k (n+kn+k—1) (n+k)n+k—1)
we see that
< otk n+k—1 ‘ kn k(k_l) ]
eaw)= 20272 (" ) i s =D G Rt =D
_ < ne1 ok M+ E—2 ne1 i MHE—2\ k
=50 —ar x| k—1 >n+k+2( xf k—2 Py
_v RPN SN N n+k—1 k+1 S n+1 + n+k k+2
=L0—x)"x < k >n+k+1 P b “< k >n—|—k+2
& ner mer/ M+ E—1 k © B
=21—-x) xk< k >n+k+1+x(1_ )4 k+1m"“~’°(x)
= 7+ 1 k+‘2 n+k d]t__j‘z—
tol—a) < k >n+k+2
& 7+ 1 k+1 n+k 1 n n+l +2 n+k k+2
=zi-2 <vk 1 >n+k+1+21_ x" < k >n+k+2
+x(l—x)X] 1 M-, X)

ioon+k+1
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=S-ara (" B ()RS,

s 1
+x(1—x)§n+k+l Man, )

— 2( P k<n:k>+x(1—x)§ﬁm"—" )

> 1

2 _ B S

=x’+x(1 x);fgn-i—k-i—lm""' xx).
Theorem 2.1. (p.20 in[3))

' 2
— 1
2.2) (Mnex)=edla)+ ZL=E 4 o(L)  (vco),

Proof. On the basis of Lemma 2. 1, we can prove the theorem, see p. 20 in [3].
Remark. In [3]it has been more generally shown that

(Maf Nao)— f () =ZL=ZLLB) (L) (o)
for the function f € C0, 1].

Lemma 2. 2.

@ Mar, ) (1—x) [/ t \
2.3) Snthtl - [(1—1&) at.

Proof. 1t is well know that
a-or=5" e <.

k=0
Hence ‘
n1_ 3\ -n— S n+k_1 n+k
(2.4) - t)"= 5 ; )i,
Integrating the both sides of (2.4) with respect to ¢ from 0 to x, x€[0, 1),
x t n . oo n+ k_l xn+k+l
@.5) ﬁ(l—t) de=3( k T

Thus we have

(lx_nfcl)f<1—t>dt 1= )"§<n+k 1>n+xkk+1’

which gives the desired result (2.3).

Lemma 2. 3. ,
(A=) =t \*,. _1—x  2x(1—x) 6x*(1—x)
o (27 = s T T Tt e A
whevre

=+ 10n+2n+3n+4) -z
Proof. Set I= f < > di. If we make a substitution u=—1_t—t, then
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X
= u
I= f o du
o (I+u)
Integrating by parts repeatedly,
x?’l+l 2x11+2 6xn+3

= +
I (n+1)(1—x (n+1)(n+2)(1 x) “+(n+1)(n+2)(n+3)(1—x)"“
. _1—13 ﬂ+3
MCES) n+2 n+3/ 1+ up
Thus :
I—xf', 1-x,  2x1-x) .,  6x(1—x)
s n+1 ' (n+1)(n+2)  (n+1)(n+2) n+3)
24 Tz *3
+(n+1)(n+2 n+3) x"“f 1+u
Let

_ 2 A—zf" [ u
A= 0 i +2Xn+3) xf a+ur

Then we see that

241~ TE nes g _ 24x°
TS e e e A e v s e ey
Theorem 2. 2.
(Mae )=+ ZL2) (1 ~x:§zx- 1), (1 ——x)z(G;Z—Gx-l— 1)

+O<#> x€[0, 1].

Proof. From Lemmas 2. 2 and 2. 3,

@ Mo, X) 11—, 2x(1—2x) 6x*(1—x)
S nthtl ntl Tt lntd T nF1nsonL3

Noting Ax(x)= O<—;117> we have

= My, ) _1—2x , 1—2)2x—1) , (1—x)62’—6x+1) <L
son+k+1  n + 2 T nd +t0 n“)'
Combining the last expression and Lemma 2. 1, we obtain Theorem 2. 2.
Remark. In 1970 Sikkema [5] proved generally that

)+ Anx).

(Mo Yar)= £ )+ 20 EE oty L4 L~ e — 1))
Lol -5 @)+ 2 @)+ o ),

as far as the order of the expansion is concerned, Theorem 2. 2 is an improvement on
the result mentioned above. However, in 1984 Alkemade found for the first time the
explicit expression for Mne,. Therefore by using it we can find the asymptotic expan-
sion for Mpe, to any higher order without performing the above operation involving the
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integration. But since the explicit expression for M,e; ({=3) has not yet been found,
this procedure seems to be useful slightly.

3. An asymptotic expansion for (Mpe;)(x).

In this section we derive an asymptotic expansion for (M,e;)(x) by appealing to the
method dealt with in §2.

Lemma 3. 1. ‘
s, 3% (1—x)  9x*(1—x)* & M2, k)
(3.1) (Mnes)ox)= 2’ +57 " P ) Ny S
2 — m’n 1, k(x) 2 ad mn_z, };(.E)w
—x*(1 x)g___(n+k+2) +x(1—x) kg'w(nﬂ—k—i—l)"

Proof. By definition
_ nis k(M HE\_ Kk O\
(Mnew)=1—xr S " "))

which implies that

(Mnesx)=(1—ar+ Sz E

n+k
Since
E__ kn n k(k—1)
n+k (n+k)n+k—1)" (n+k)n+k—1)

— n+1°° kn+k_1\ k2n
It R e

_ p)utl w(N+k—1\ k(k—1)
+(1—-x) ,§x< k=1 /(n+kin+k—1)

=<1_x)n+1§xk+l<n+k—l>< E+1 >2+(1_x)n+1ixk+z<n;:k>< k+2 )2

k n+k+1 o) n+k+2

e B (M e e B (M )
=(1—x)"“§x"“<”:fl“l>ﬁﬁ)7+( MZI kH(nZkll)(_nﬁIﬁf
-l Bt o () i)

r=ar (") G <n+2£+2>2+<n(ﬁ-2:22>2]

L © Mn-1, ) o2 k(M E\(n+ k42 —n(n+ k+1)
=(-a S Tt ST ) IR




X =

=(1—x

Inasmuch as

we obtain that

)

=x*+

Thus we are led

Since

we see that

(3.2)  (Mpes)x)=2"+%

As

x(1— .’L‘)g’mn—l, k(x)(

x(1—
(n+
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DM

x)n+1
1

)2

Mn, k(x
=o(n+k+1

2 X <&
+x +l—x;§o

k=0

;2 +xi— 2 (1—af*

H«n+k+3_mn+n
(n+k+27

k

(1—2)PMn, kerlx)—n(n+1)xMAs1, )

(n+k+2)7

(1= Mn_1, k1(X)— n(N+1)XMni1, )

=(1—x

— _xk+1(1__x)n+2<

)"”(Zilf)x’”‘——n(nwL
n+k

k+1

1)3:"*‘(1—x)"+2<n+ k+1>

k

>(k2+ nk+2k+n),

x*1—xk*+nk+2k+n)

(5

(n+k+2)

(n+k)XE*+nk+2k+n)
(n+k+1)4k+1)

M, XN+ KN E+(n+2k+nl—(n+ k+2)k+1)]

x(1—x)
(n+1)

to

(Mnre;

M-, {XT)=

(n+k+24k+1)

n+1

s x(l_x)n+l
(x)=2x +——_(n+1)2

+ (1 —x)i Mo
k=0

n—1

1—x +

+x2(1—x)§mn_l, xlx

+3x(1-x)2]

n+1 3x2(1 _x)Z

(3k+3n+6)k+1)+n—k—2
’ (n+k+24k+1)

2 M-, k(_xz
ion+k+2
(n+k+2%k+1)"

1, Kl

k yn+k+2—wL

immz. )

)
(n+1) n—1
9x*(1—x)? i Map-,, xlx)
n—1 on+k+2

. © Mny, {X)
U= hror

n—1

n+k+24k+1)

+x*(1 —x)g%mn_l, xl)

=x2(l—x)fl<

k=0

n—1

(n+k+24k+1)

n+k—1
k+1

nok 1
>u_x)x(n+k+ )

k=0
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gy (k=2 e i s Maoe KX) x(1—x)
=zl x)g( k ><1 z/'x (n+k+1)° (1 )kZ=:'>(n+ k+1? (n+1)? °
the substitution of this expression into (3.2) yields Lemma 3.
Lemma 3. 2.
2 Mna-o, x(l‘)_(l——x)"“fx A
(3.3) Sntk+2 - 7 q_gpidt
Proof. In exactly the same way as in Lemma 2. 2 of §2, we have
n+1(1 __ 3\-N+1_— S n+k_2 n+k+1
- 1= 5 . )i,
hance
* n+1(q __ 3\-n+1 _< n+ k_z anHz
(3.4) [ (1 ¢) dt—é( . )——n+k+2.
Multiplying the both sides of (3,4) by x™* *(1—x)""", we obtain (3.3).
Lemma 3. 3.
2 Moo lX) _ 1—x , 4x(l—2x) 20x*(1—x)
(3.5) Snthiz ni2 (nt2mn+d  (nt2ntantd) Al
120x°
h A x)= .
where 0= AdX)= o 4 4N+ 51—z
AN . o _t
Proof. Let I= ~——~——~dt. Making a substitution U=7_p>
.__ n+1
I= f (1+u)
Integrating by parts successively, it follows that
n+2 n+3 n+4
= x — 4x — 20x __
(n+2)(1—x) (n+2)n+3)1—x)*""?  (n+2(n+3)n+4)1—x)
+ 120 fT—‘I‘ Tl+4
(n+2)n+3)n+4) (14 u)
Hence
Q—x)', _1-x, 4x(1—x) 20x*(1—x)
(3.6) 7t =2t mroin+3) T nr2n+3(nt 4
120(1 x)n 1 fﬁ n+4 du
(n+2)(n+3)(n+4)x"** A+u)
Denoting the last term on the right-hand side of (3.6) by Ax(x), we get
120(1—x)*! /T_
3.7 <A i
(3:0) 0= 44x)= (n+2)(n+3)(n+4)x™*’ du
120x*

T (n+2(n+3n+an+51—xF
Lemma 3.2, (3.6) and (3.7) lead us to Lemma 3. 3.
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Lemma 3. 4.
@ Mp1, W)  (1—2x)?, 4x(l—2x) 3x(1—x) 1
R D 3 e o i e i e T e
Proof. Obviously
n+1(q1 __ % n+k—1 n+k+1
1= 5 . )i,
Thus <n+k_1> n+k+2
ftn+1 - i k
k=0 n+k+2
follows. Hence we have <n+k—1> ki1
S
_f tn+l = i k
k=0 n+k+2 i
which implies that <7l+ k_1>x"+'°+2
fx<lfst"“( pdt )ds =3 k .
0 S Jo k=0 (n+k+2)z
Therefore
@ Moy, X) _ (1—2) [*( 1 [ g
(39) k=0(n+k+2)2— xn+z [ <S o (1 ) dt>d
. S tn+l _ t
Let I(S)—[0 (l—t)"dt and set 4=7_7, then we have

fT"

Integrating by parts, we see that

n+1

1+u)y

. 87L+2 3Sn+3
IS == sr T (ntalntaa—sp T Ash
where
12 5 pes g 12 S
°§A"(8)§<——“n+2)<n+3)[ u du_(n+2)(n+3)(n+4)<1—s
hence
_1_ 871+l 38n+2
1= oo Tl anraa_sy— T Bk
where
0<Bu(s)< 125

I(s)ds and let k=~§““, then

Let J(:L‘)zfxL

(n+2)n+3)n+4)1—s

)11.+4 *

—.’L‘ kﬂ+1 “‘*'j; k7L+2
J ()= n+2f 1+ k)* dk+(n+2 n+3f 1+ k)P dk+fB
Integration by parts yields
(1—x) _(=x7, 4xQ—x) 3x(1—x) 1
L e e e e e e v e
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Now (3.8) follows from the last expression and (3.9).

Lemma 3. 5.
© Mnoz X))  (1—x)?, 4x(1—2x)? 3x(1—x)? 0< 1)

n'/’

=(n+k+1°2 (n+17 (n+14n+2) (n+1)n+2)

Proof. All we have to do is only replacing n by n—1 in Lemma 3. 4.

Theorem 3. 1.
2 2 2 )
(Mae )= +°% “n—x) L x(l=x) (1;29x+11x )
1—x)(—2+27x—72x*+50x* 1

Proof. Taking into account of Lemmas 3.1, 3. 2, 3. 3, 3. 4, and 3. 5,

_ s 32 (1—x) 9x*(1—x)[1—x , 4x(1—x)
(Mnes)(x)=2"+=2 7 n—1 n+2+(n+2)(n+3)]
oy | A—x)? dx(Q—x) 3x(1—x)
—x x)[(n+2)2+(n+2)2(n+3) (n+2)(n+3)2]
1—2x)

‘y 4dal-—xf | 3x(l—x)’ ] " O(L)
(n+1?  (n+1n+2) (n+1)(n+2) a
Therefore from this result Theorem 3. 1 follows at once.
Remark. In 1970 Sikkema [5] proved that
2(1 _ )2 V21 2
(Mye.)(x)=x*+3% (1n x) | x(l—xf( 29:.v+1130 )
Theorem 3.1 is an improvement of this expansion.

+x(1 —x)z[

+0<#).

4. Some improvements on the estimation relating to M,e.— e..

Let

(41) Fn(x)z(Mnez)(x)_xz (xE[O, 1], TLEN)
and let Il fIl denote the supremum norm of f € C[0, 1]. We observe that
(4.2) Fix)=——xl—xf,Fi(1, 2 n+2; ),

- n+1 ‘
which is established by J. A. H. Alkemade [1]. In this connection we refer to two
theorems ([5],[1]).

Theorem A. (Sikkema,[5]) Let Fp be defined by (4.1). Then we have
(a) IF\Il1=0.1113

4 (,_ n’=5
Zall 4<n2_1)2>

(n=2).

(b) IFll<

Theorem B. (Alkemade, [1]) Let Fy be defined by (4.1). Then the following state-
ments hold :
(a) 1 F1ll=0.0999032 (exact up to the last digit shoun)
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4

(b) IFll <575 (n=2)
4
(©) 1Pl = 2+0( ;) (n—oo).

For the part (c) of Theorem B we deduce the following refinement:

_ 4. 4 20 , 964 , 356 <L
Fll =g — 30 3 Fnt 3 +0 ">
which is stated as Theorem 4. 1. To prove this we need a lemma.

Lemma 4. 1. The asymptotic expansion of the value Xo€(0, 1), which is uniquely deter-
mined by | Fnll=| Fn(2o)|, is given by

_ 1, 4 16 208 , 4304 1
(4.3) =g g g e T g of n5>'
Proof. First we ﬁotice that a, satisfies the equation
. RN (N
(4-4) 2F1(1’23n+2,x0) n+x0’

see, p. 268 in[1]. We begin with showing
x=Lt4_4 16 1
+ +0( - ).

3 27n 3°p?
(4.4) is transformed into
22 6x 24} ntl/ 1
1+n—|—2+(n+2)(n+3)+(7'L+2)(n+3)(n+4)+O< ) n (H_ﬂ)‘
By a simple calculation we obtain n
2% 2,4 8 6ab(, 5,19\ 24xi(. 9
1+52(1 2+, n3>+ ~ (1 n+n2>+ o (1-2)

T X Xo 1 To Xi <L>
1= o).

Finally from this we see that

(4.5) 2523+ (6 —31)xd+ 3 —3n+8)zo— n+ 0( -+ ) =0.
1 ’ 1 4 .
Motivated by Alkemade's result X,= 3 +—27—n+ 0< > (see, p. 270 in [1]) we may

assume that

%-1_%4— k +O< > (k is a constant),

then
1 8

(4.6) | —+81—n+ o( ;). w=g+0(o ).

Substituting (4.6) into (4.5) yields +3k+ 0< p > 0, and consequently we see that

16 1

k=—g§. Conversely, Xo="3 +ﬂ_ 35 -+ < ) is clearly the solution of (4.4).
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: 1 4 16 1
This shows that xo= +—~27n 3 2-i-0< n3>.

3
Next we put Xo= %4—%—3162*- k +0<#>. By substituting this expression

into the asymptotic equation

11924+ (25n — 215028+ (57— 31 n+ 114)t-+ (31 — 3+ 8n —16)1— -+ 0( - =0,
which is obtained from (4.4) by expanding the both sides of it up to the term of % ex-
plicitly, we get
1, 4 16 208 (1
To="3 +27n 3*n? 37n3+0< n“>'
. 1 4 16 208 , Kk 1 _
Finally we put xo=—§—+ 7In 3 37n3+;;+ O<F> In a similar way, from

the asymptotic equation
721x3+(119n —1681)xs+(25n*— 2151+ 1320)xs + (5n* —31n*+ 1141 —390)x?

B0 —3n'+8n°— 161 +32)T— n*+ 0<%)=0,

we have (4.3).

Remark. By means of the above method we can derive the asymptotic expansion for
Xo giving to as any higher order as we please. But the calculation involved is trouble-
some.

Theorem 4.1. For Fn we have

4 4 20 964 356 1
VPl =i 3°n3+39n‘+39n5+0<

Proof. In view of (4.2) we obtain

IFall= Fola) =gl — 22 Fill, 25 n+2 ; o),
thus by the definition of the hypergeometric series
__1 2% (. 2,4 8\ 6x5(,_5 19
@7 IF=gm(l— xo)[1+ <1 s n3)+ n2<1 n+n2>
24x; 9\, 120x3
+EB(1- 2 )+ 1208 o[ ).

From Lemma 4.1 it follows that

_1 ., 4 16 208 , 4304 1 ,_
Lo= 3 +277l 35 2 37n3+ 39714 O< >9 0
1

e

n5

@.8) § wi=g5+o-+0( ), +o(L),
416 8

704 6208
(l—xo)2=—9'_34n+3enz+3s 3 gt < )
Substituting (4.8) into (4.7), we obtain Theorem 4. 1.

8 16 544 1
3'n  3n’ 3“n3+0<n >’
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In the meantime, Alkemade’s theorem and Lemma 4. 1 lead us to the following
estimation for Il Fhyll.

Theorem 4. 2. For sufficiently large nEN,

32471’
=
VEnl = 1870+ 729n" + 324m° — 1440 —208

holds.

n+1
n+x’

Proof. Let fulx)= we already know from (4.4) that

:Fi(1, 25 n+2 ;5 x0)=fu(x0).
The function .Fi(1, 2; n+2; x) is monotonically increasing and fu(x) is monotonically
decreasing in (0, 1). From Lemma 4.1 we have
1 4 16 208 |, 4304 0< 1 >

Xo=—5 T 5
n

3 27n_35n2_37n3+39n4
hence the monotony of ,Fi(1, 2; n+2; x) and fx(x) implies that

2F1(1, 2:n+2; l‘o)§fn<%+ Z;n_31?12—§70:3>

_ 3 (n+1)n’
3n'+3°n°+3*xX4n*—3°X16n—208
for sufficiently large n€ N. From (4.2) and the above inequality we conclude that

IIFnII§~n~_1|_—1llx(1—x)2II2F.(1, 2:n+2: x0)

< 324n’
= 2187n'+729n*+324n*—144n—208"
This completes the proof of Theorem 4. 2.
We make use of Theorem 4. 2 to improve slightly upon the known theorems on M,
operators. We have the theorem by Shisha and Mond [4].

Theorem 4. 3.[4] Let Ly C[0, 11— C[0, 1] (nEN) be a sequence of linear positive
operators satisfying Lne,=e; (i=0, 1). Then for any 6>0
(4.9) [(Laf )= f(@)| < {1487 (Lnesx)— ")} ol f 5 5)
where w(f ; &) denotes the modulus of continuity of f on [0, 1].

If we replace L, by M, and set d=n"% in (4.9) and use Theorem 4. 2, we obtain
the following theorem.

Theorem 4. 4. For sufficiently large n€ N,

324n ] 1
—fll<i1l+ .
I\Mrf f”‘[l 2187n' +729n*+ 3241’ — 1441 —208 “’<f’ ﬁ>

holds.

Note that IM,f—fI< [1+ 27;117:_9 ‘ w<f : ﬁ),which was previously obtained by
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Alkemade [1]. Further we know the following theorem due to Lupas and Miiller [3].

Theorem 4.5.[3] Let Ln: Cl0, 1]— C[0, 1](REN) be a sequence of linear positive
operators satisfying Lne;=e; (i=0, 1). If f exists and continuous on [0, 1], then for any
0>0

IILJ—fII§(1+8‘:)IILnez—— ella(f ; 9).
If we replace L, by My and set 6=n"? and use Theorem 4. 2, we obtain the follow-
ing theorem.

Theorem 4. 6. For sufficiently large n€EN,

324n° , 1
M. F— Fll<(1+v7) .
M f = f1I=01 n’2187n“+729n3+324n2—144n—208w<f *Vn )
2vn ] 2 , 1 .
— . —
Note that |M,f fII_S[l-i- 3/3nT1)3/3nT1 w<f e > which was also

obtained by Alkemade [1].
5. An explicit expression for (M,e;)(x).

In this section we search for the explicit expression for (Mnes)(x) by means of the
way developed in [1]; namely the way appealing to a differential equation. Let us recall
a theorem in [1]:

Tj—t’ t€[0, 1). Foreach n€N, x€[0, 1) and f € A,
(Mo f \(x) defined by (1 .1) satisfies the differential equation

x(l—x%— M f)x)=—(n+1)x(Mnf)x)+ n(l — )N MA8F)x).

Theorem C. [1] Let 8(1)=

Lemma 5.1. For each n€ N, Mpe; satisfies the differential equation
(5.1) - 2Z1—x)y+x(1—x2)1+2n+2)y +(x’+Bn+1)x+ny
=n’x*+@Bn+1)x’+x,
1
(n+1)*

with the condition ¥(0)=0 and y'(0)=

Proof. By the definition of Mype; it is clear that

Ao fy— 1
y(0)=0, y'(0) nr1?’

where y(x)=(Mnes)x). We set f=e,— e, in Theorem C. Then we have
x(l’—x>(§l—x(Mn(ez— ) x)=—(n+1)x(Mne.— e3)x)+ n(l—x)Maes)x).
From the linearity of M, operators, we have
x(1— x)%(Mnez)(x)— x(1— x)g%(Mnea)(x)

—(n+1)x(Mpe,)x)+(n+ x)Mypes)x),
namely,
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6.2 -2 L Meda)+(n+DMaer)z)

= 21— 2r- L (M) + (n+ ) Mne))
From Lemma 1 in [1] (see. p. 263)
5.3 21—z L (Mae )= —(n+ 2 Maes)a) + nax+ .
Substituting (5.3) into (5.2) yields that
(nz—n)Maes)@)+ nz* + 2= 21— 2} (Mae ) + (@ + ) Mae:))

In other words, (Mnes)(x) is a solution of the differential equation

(5.4) x(1—x)y +(x+n)y=nlx—1)Mpe.)x)+ nx’+x.
Differentiating (5.4), we have
(5.5) x1—2)y"+1+n—x)y'+y

=n(Mpe,)x)+ nlx—1)(Mnpe.)x) +2nx+1.
Further from (5.3)
,_ nlx+n)Mpe,)x)

n(x—1)(Mne.)x)) = - —n'x—n.
Therefore from the last equation and (5.5) we get
(5.6) x(1—x2)y"+1+n—x)y+y= n(n+2xJ)C(Mnez)(x) —(n*—2n)x—n+1.
On the other hand, since Myre; is a solution of (5.4),
6.7 n(Mye o)=L =YL WY1

Substituting (5.7) into (5.6), we obtain (5.1), as required.

Lemma 5.2. Let wnlx)=(Mpes)x)—x. Then wix) satisfies the following differential
equation
(5.8)  x(1—x)wy (x)+x(1—x)14+2n+ x)w, (x)+ { x*+@n+1)x+ nz}wn(x)
=—nx(l—x)nx+n+2).

Proof. By making use of the relation wn(x)=(Mnes)x)—x and Lemma 5. 1, we
obtain the result.

Lemma 5.3. y=x""1—x)""" is a solution of the differential equation
(5.9) (1—x)y"+x(1—x)14+2n+x)y + {x2+(3n+1)x+ nz} y=0.

Proof. A straightforward calculation gives the result.
The following two lemmas are concerned with some definite integrals. In the se-

quel, we employ the notation:
n Kook k k]

& (=1 _ & (=D hlk)x —y 1
Su@)= 2y W= e where Alk)=25

Lemma 5. 4. For each n€ N and for each x<[0, 1),
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fox(l__‘tt_)ﬁﬁdt =(— 1)"{ six)—log(l —x)] .

n

Proof. Denoting In=£ ﬁﬁdt, we obtain the relation

L=

n+1

X
(n+1)1—2x

)n+1 _In+h

n+1

X
(n+1)1—x*"
Adding the equalities obtained by setting n=0, 1, 2, -, m—1 in the last equation, we
have

by the integration by parts. Thus (—1)*"'Li,,—(—1)"L,=(—1)"*"

PTGk Vi i
(—1Ph—k=3,

Observing I;=—10g(1 —x), we establish the lemma.

= Sn(X).

Lemma 5.5. For each n€ N and for each x€[0, 1),

X tn _ xn+1
./<:(1—t)"”dt_(n—l—l)(l—x)"“'

Proof. By putting u=1Ttt, we easily obtain the result.
By employing these lemmas we are now in a position to solve the differential equa-
tion (5.8). Motivated by Lemma 5. 3 we may set ¥y= wn(x)=(Mnes)x)—x= () Ux),

where y,(x)=x"™1—x)*"". Then obviously we have

(5.10) W (X)= 1 Un+ thtn, Wa(X)=0"Un+ 20" Ur + 11Uy
Substituting (5.10) into (5.8), we have '
(5.11) 21— 2Py ua’+ {200 — 22y, + 21— D1 +2n+2)9: f us

=—nx(1—x)nx+n+2).
As y/'=—x""'(1—x)n+x), we have from (5.11)

n’x™'  n(n+2)x"
(1 _x)n+2 (1 ___x)n+2 ¢

XU (X)+ un(x)=—

Solving this equation, we get

xu,{(x):—nzlxmdt—n(n+2)[xui%)m7dt,

here we use the condition [xus (x)]z=o=0. By appealing to Lemmas 5. 4 and 5. 5 we
obtain

tn+l n

n(n+2)x™"!
(n+1)1—a)*

zu (@) =(—1"n{ sn.r(x)—logl —2)} —

Thus we have
, Snn(x)  log(l —x)] n(n+2)x"
=(—1 n 2[ n — — .
@) == g PR ey
Finally, from the above equation we get

(5.12) ulz=(~1ya| [l g “logll=t);,|
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_n(n+2)/x ¢
n+l b q— o

here we use u(0)=0.
Now by definition

[romlt) g ST gy

. + (_l)k x tk—l _ 1;—1~
= ./o(l—t)’“dt [ —zdt

by making use of Lemma 5. 4 again we have
Z Spii(t) _ =1
(5.13) [ ar= =31 sv @) logl — x)] +log1 )
=-3 %Sk—l(x)"’_ h(n+1)log(1—x).
k=2

Next we prove that

(5.14) —Sk-1{x)=h(n+1)sx(x)— tx).

T
- o~
o >

In fact, by the change of order of double summation, we get

Combining (5.13) and (5.14) we get
(5.15) [ES'”Tl(t)dt= tn(x)—h(n+l){sn(x)—log(l—x)}.

Again in view of Lemma 5. 4 we conclude from (5.12) that
Un@)=(— 10 1)+ (— 17" nh{n +1)] su(x)—log(1 — x)]
e Xt n(n42) L, B B
-1y S P 1 six)—log(1— )],
that is,

(5.16)  wdx)=(—17nt)+(— 11 {n*h(n)+2n | { sia)—log(1 — 2]
+(—1)"n2§%:.

Recall the relation set at the outset

)t

(5.17) (Mnes)(x>=x+%un(x).

(5.16) and (5.17) lead us to the following theorem.
Theorem 5. 1. We have

(1 _ x)n+1

(Mpes)x)=x+ S Un(X),
X
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k

where un(x)-:(—l)"n’tn(x)+(—1)"“[n2h(n)+2n}[sn(x)—log(l—x)}+(—1)"n2§%,
_ & (1) _ & (—1*hlk)x" _a1
S"(x)—fg"lk(l—x)’“ tnla) El Rl—xf h(n) :L:ik'
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