SOME RESULTS ON THE MEYER-KONIG AND ZELLER OPERATORS

著者	BABA Takaaki, MATSUOKA Yoshio
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	18
page range	1-18
別言語のタイトル	Meyer-KonigとZellerの作用素についての結果
URL	http://hdl.handle.net/10232/00003984

SOME RESULTS ON THE MEYER-KÖNIG AND ZELLER OPERATORS

Takaaki BABA and Yoshio MATSUOKA*

(Received September 10, 1985)

Abstract

In the present paper we shall obtain the asymptotic expansions and the explicit expressions for $(M_n e_i)(x)$ when i=2 and 3, respectively. We shall also derive some improved estimate for $M_n e_2 - e_2$.

1. Introduction and the results.

Let A_R be the set of all complex-valued functions defined on the half-open interval [0, 1) for which $|f(t)| \leq P \exp\left(\frac{a}{1-t}\right)$, $t \in [0, 1)$, where P and a are some positive constants depending only upon the function f. Then the Meyer-König and Zeller operators M_n are defined on A_R by

$$(1.1) (M_n f)(x) = (1-x)^{n+1} \sum_{k=0}^{\infty} {n+k \choose k} x^k f\left(\frac{k}{n+k}\right) (x \in [0, 1); n \in \mathbb{N}).$$

It is easily seen that, if $x \in (0, 1)$, then the series (1.1) converges for all $n \ge 1 + \left\lfloor \frac{a}{\log \frac{1}{x}} \right\rfloor$,

where the square bracket denotes, as usual, the integral part of the argument. If f(t) is continuous to the left at t=1 and f(1) exists, then $(M_nf)(1)$ is defined as $(M_nf)(1)$: $=\lim_{x\uparrow 1}(M_nf)(x)=f(1).$ These operators are clearly linear and also positive. It is easily verified that

$$(1.2) M_n e_i = e_i (i=0, 1; n \in N),$$

where the functions e_i are defined by e_i : $x \mapsto x^i$, $(i \in N \cup \{0\})$. It is also well-known that $M_n e_2$ converges uniformly to e_2 in [0, 1].

P. P. Korovkin [2] has proved the following theorem: If the three conditions

$$L_n(1)(x) = 1 + \alpha_n(x),$$
 $L_n(t)(x) = x + \beta_n(x),$ $L_n(t^2)(x) = x^2 + \gamma_n(x)$

are satisfied for the sequence of linear positive operators $L_n(f)(x)$, where $\alpha_n(x)$, $\beta_n(x)$, $\gamma_n(x)$ converge uniformly to 0 in [a, b], then the sequence $L_n(f)(x)$ converges uniformly to the function f(x) in [a, b], if f(x) is continuous in [a, b], continuous on the right at x=b and on the left at the point x=a. Owing to this theorem, if f(x) is continuous on [0,1], then $(M_nf)(x)$ converges uniformly to f(x) in [0,1]. Therefore M_ne_i (i=0,1,1)

^{*} Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan

2) have a conspicuous meaning to study the asymptotic behavior of the operator.

The main purpose of this paper is to study the second moment and the third moment of M_n operator. Especially we shall investigate the asymptotic expansions and explicit expressions for M_ne_2 and M_ne_3 . In §2 we shall follow the line of arguments by Lupas and Müller [3] and improve their results. In §3 we shall make use of the reasoning that is performed in §2 and refine the asymptotic expansion for M_ne_3 which was found by Sikkema [5] in 1970. In §4 we shall show some improvements on the estimation relating to $M_ne_2-e_2$. Finally, in §5 we derive an explicit expression for $(M_ne_3)(x)$ with the aid of a differential equation just as in [1].

The main results obtained in our research work are as follows:

1.
$$(M_n e_2)(x) = x^2 + \frac{x(1-x)^2}{n} + \frac{x(1-x)^2(2x-1)}{n^2} + \frac{x(1-x)^2(6x^2-6x+1)}{n^3} + O\left(\frac{1}{n^4}\right)$$

 $(n \to \infty) \quad x \in [0, 1),$

2.
$$(M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n} + \frac{x(1-x)^2(1-9x+11x^2)}{n^2} + \frac{x(1-x)^2(-2+27x-72x^2+50x^3)}{n^3} + O\left(\frac{1}{n^4}\right) \qquad (n \to \infty),$$

3. if $(M_n e_2)(x) - x^2$ attains the maximum at the point x_0 , then

$$x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} - \frac{208}{3^7 n^3} + \frac{4304}{3^9 n^4} + O\left(\frac{1}{n^5}\right) \qquad (n \to \infty),$$

4.
$$(M_n e_2)(x_0) - x_0^2 = \frac{4}{27n} - \frac{4}{3^4n^2} - \frac{20}{3^6n^3} + \frac{964}{3^9n^4} + \frac{356}{3^9n^5} + O\left(\frac{1}{n^6}\right)$$
 $(n \to \infty)$,

5.
$$(M_n e_3)(x) = x + \frac{(1-x)^{n+1}}{x^n} u_n(x)$$
, where

$$u_n(x) = (-1)^n n^2 t_n(x) + (-1)^{n+1} \left\{ n^2 h(n) + 2n \right\} \left\{ s_n(x) - \log(1-x) \right\} + (-1)^n n^2 \sum_{k=1}^{\infty} \frac{x^k}{k^2},$$

$$s_n(x) = \sum_{k=1}^n \frac{(-1)^k x^k}{k(1-x)^k}, \qquad t_n(x) = \sum_{k=1}^n \frac{(-1)^k h(k) x^k}{k(1-x)^k}$$

$$h(n) = \sum_{k=1}^n \frac{1}{k}.$$

Remarks. We mention the results obtained earlier by various authors to make our results clear.

1. P. C. Sikkema [5] obtained

$$M_n e_2(x) = x^2 + \frac{x(1-x)^2}{n} + \frac{x(1-x)^2(2x-1)}{n^2} + o\left(\frac{1}{n^2}\right)$$

as a special case of his Theorem 3.

2. P. C. Sikkema [5] also obtained the following result:

$$(M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n} + \frac{x(1-x)^2(1-9x+11x^2)}{n^2} + O\left(\frac{1}{n^3}\right) \qquad (n \to \infty),$$

see expression (20) in [5].

3. J. A. H. Alkemade [1] recently obtained the following asymptotic expansion for x_0 :

$$x_0 = \frac{1}{3} + \frac{4}{27n} + O\left(\frac{1}{n^2}\right) \quad (n \to \infty),$$

see p. 270 in [1]

4. J. A. H. Alkemade [1] also established the following asymptotic expansion for $||F_n||$:

$$||F_n|| = \frac{4}{27n} - \frac{4}{81n^2} + O\left(\frac{1}{n^3}\right) \qquad (n \to \infty),$$

where $||F_n|| = \max_{n \in \mathbb{Z}} |F_n(x)| = F_n(x_0) = (M_n e_2)(x_0) - x_0^2$.

5. This result seems to be new.

2. An asymptotic expansion for $(M_n e_2)(x)$.

This section is devoted to improve the order of the asymptotic expansion of $M_n e_2$ due to Lupas and Müller [3]. For the sake of completeness we shall give the detailed proof of Lemma 2.1 below. This proposition is mentioned in [3], but its proof is omitted there. In what follows, for simplicity, we make a convention that

$$m_{n,k}(x) = (1-x)^{n+1} x^{k} {n+k \choose k}.$$

Lemma 2. 1. (p. 20 in [3])

$$(2.1) (M_n e_2)(x) = x^2 + x(1-x) \sum_{k=0}^{\infty} \frac{1}{n+k+1} m_{n-1, k}(x).$$

Proof. By definition

$$(M_n e_2)(x) = \sum_{k=0}^{\infty} (1-x)^{n+1} x^k \binom{n+k}{k} \left(\frac{k}{n+k}\right)^2 = \sum_{k=1}^{\infty} (1-x)^{n+1} x^k \binom{n+k-1}{k-1} \frac{k}{n+k}.$$

Noting that

$$\frac{k}{n+k} = \frac{kn}{(n+k)(n+k-1)} + \frac{k(k-1)}{(n+k)(n+k-1)},$$

we see that

$$(M_{n}e_{2})(x) = \sum_{k=1}^{\infty} (1-x)^{n+1} x^{k} {n+k-1 \choose k-1} \left\{ \frac{kn}{(n+k)(n+k-1)} + \frac{k(k-1)}{(n+k)(n+k-1)} \right\}$$

$$= \sum_{k=1}^{\infty} (1-x)^{n+1} x^{k} {n+k-2 \choose k-1} \frac{k}{n+k} + \sum_{k=2}^{\infty} (1-x)^{n+1} x^{k} {n+k-2 \choose k-2} \frac{k}{n+k}$$

$$= \sum_{k=0}^{\infty} (1-x)^{n+1} x^{k+1} {n+k-1 \choose k} \frac{k+1}{n+k+1} + \sum_{k=0}^{\infty} (1-x)^{n+1} x^{k+2} {n+k \choose k} \frac{k+2}{n+k+2}$$

$$= \sum_{k=1}^{\infty} (1-x)^{n+1} x^{k+1} {n+k-1 \choose k} \frac{k}{n+k+1} + x(1-x) \sum_{k=0}^{\infty} \frac{1}{n+k+1} m_{n-1, k}(x)$$

$$+ \sum_{k=0}^{\infty} (1-x)^{n+1} x^{k+2} {n+k \choose k} \frac{k+2}{n+k+2}$$

$$= \sum_{k=1}^{\infty} (1-x)^{n+1} x^{k+1} {n+k-1 \choose k-1} \frac{n}{n+k+1} + \sum_{k=0}^{\infty} (1-x)^{n+1} x^{k+2} {n+k \choose k} \frac{k+2}{n+k+2}$$

$$+ x(1-x) \sum_{k=0}^{\infty} \frac{1}{n+k+1} m_{n-1, k}(x)$$

$$\begin{split} &=\sum_{k=0}^{\infty}(1-x)^{n+1}x^{k+2}{n+k\choose k}\frac{n}{n+k+2}+\sum_{k=0}^{\infty}(1-x)^{n+1}x^{k+2}{n+k\choose k}\frac{k+2}{n+k+2}\\ &\quad +x(1-x)\sum_{k=0}^{\infty}\frac{1}{n+k+1}m_{n-1,\ k}(x)\\ &=x^2\sum_{k=0}^{\infty}(1-x)^{n+1}x^k{n+k\choose k}+x(1-x)\sum_{k=0}^{\infty}\frac{1}{n+k+1}m_{n-1,\ k}(x)\\ &=x^2+x(1-x)\sum_{k=0}^{\infty}\frac{1}{n+k+1}m_{n-1,\ k}(x). \end{split}$$

Theorem 2.1. (p. 20 in [3])

(2.2)
$$(M_n e_2)(x) = e_2(x) + \frac{x(1-x)^2}{n} + o\left(\frac{1}{n}\right) \qquad (n \to \infty).$$

Proof. On the basis of Lemma 2.1, we can prove the theorem, see p. 20 in [3]. *Remark.* In [3] it has been more generally shown that

$$(M_n f)(x) - f(x) = \frac{x(1-x)^2 f''(x)}{2n} + o\left(\frac{1}{n}\right) \qquad (n \to \infty)$$

for the function $f \in C^2[0, 1]$.

Lemma 2.2.

(2.3)
$$\sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{n+k+1} = \frac{(1-x)^n}{x^{n+1}} \int_0^x \left(\frac{t}{1-t}\right)^n dt.$$

Proof. It is well know that

$$(1-t)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} t^k, \qquad (\mid t \mid < 1).$$

Hence

(2.4)
$$t^{n}(1-t)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} t^{n+k}.$$

Integrating the both sides of (2.4) with respect to t from 0 to x, $x \in [0, 1)$,

(2.5)
$$\int_0^x \left(\frac{t}{1-t}\right)^n dt = \sum_{k=0}^\infty {n+k-1 \choose k} \frac{x^{n+k+1}}{n+k+1}.$$

Thus we have

$$\frac{(1-x)^n}{x^{n+1}} \int_0^x \left(\frac{t}{1-t}\right)^n dt = (1-x)^n \sum_{k=0}^{\infty} {n+k-1 \choose k} \frac{x^k}{n+k+1},$$

which gives the desired result (2.3).

Lemma 2. 3.

$$\frac{(1-x)^n}{x^{n+1}} \int_0^x \left(\frac{t}{1-t}\right)^n dt = \frac{1-x}{n+1} + \frac{2x(1-x)}{(n+1)(n+2)} + \frac{6x^2(1-x)}{(n+1)(n+2)(n+3)} + A_n(x),$$

where

$$0 \le A_n(x) \le \frac{24}{(n+1)(n+2)(n+3)(n+4)} \frac{x^3}{(1-x)^4}.$$

Proof. Set $I = \int_0^x \left(\frac{t}{1-t}\right)^n dt$. If we make a substitution $u = \frac{t}{1-t}$, then

$$I = \int_0^{\frac{x}{1-x}} \frac{u^n}{(1+u)^2} du.$$

Integrating by parts repeatedly,

$$\begin{split} I = & \frac{x^{n+1}}{(n+1)(1-x)^{n-1}} + \frac{2x^{n+2}}{(n+1)(n+2)(1-x)^{n-1}} + \frac{6x^{n+3}}{(n+1)(n+2)(n+3)(1-x)^{n-1}} \\ & + \frac{24}{(n+1)(n+2)(n+3)} \int_{0}^{\frac{x}{1-x}} \frac{u^{n+3}}{(1+u)^5} du. \end{split}$$

Thus

$$\begin{split} \frac{(1-x)^n}{x^{n+1}}I = & \frac{1-x}{n+1} + \frac{2x(1-x)}{(n+1)(n+2)} + \frac{6x^2(1-x)}{(n+1)(n+2)(n+3)} \\ & + \frac{24}{(n+1)(n+2)(n+3)} \frac{(1-x)^n}{x^{n+1}} \int_0^{\frac{x}{1-x}} \frac{u^{n+3}}{(1+u)^5} du. \end{split}$$

Let

$$A_n(x) = \frac{24}{(n+1)(n+2)(n+3)} \frac{(1-x)^n}{x^{n+1}} \int_0^{\frac{x}{1-x}} \frac{u^{n+3}}{(1+u)^5} du.$$

Then we see that

$$0 \leq A_n(x) \leq \frac{24(1-x)^n}{(n+1)(n+2)(n+3)x^{n+1}} \int_0^{\frac{x}{1-x}} u^{n+3} du = \frac{24x^3}{(n+1)(n+2)(n+3)(n+4)(1-x)^4}.$$

Theorem 2.2.

$$(M_n e_2)(x) = x^2 + \frac{x(1-x)^2}{n} + \frac{x(1-x)^2(2x-1)}{n^2} + \frac{x(1-x)^2(6x^2-6x+1)}{n^3} + O\left(\frac{1}{n^4}\right) \qquad x \in [0, 1].$$

Proof. From Lemmas 2. 2 and 2. 3,

$$\sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{n+k+1} = \frac{1-x}{n+1} + \frac{2x(1-x)}{(n+1)(n+2)} + \frac{6x^2(1-x)}{(n+1)(n+2)(n+3)} + A_n(x).$$

Noting $A_n(x) = O\left(\frac{1}{n^4}\right)$, we have

$$\sum_{k=0}^{\infty} \frac{m_{n-1,\ k}(x)}{n+k+1} = \frac{1-x}{n} + \frac{(1-x)(2x-1)}{n^2} + \frac{(1-x)(6x^2-6x+1)}{n^3} + O\Big(\frac{1}{n^4}\Big).$$

Combining the last expression and Lemma 2.1, we obtain Theorem 2.2.

Remark. In 1970 Sikkema [5] proved generally that

$$(M_n f)(x) = f(x) + \frac{x(1-x)^2}{2n} f''(x) + \frac{1}{n^2} \left\{ \frac{1}{2} x(1-x)^2 (2x-1) f''(x) + \frac{1}{6} x(1-x)^3 (1-5x) f'''(x) + \frac{1}{8} x^2 (1-x)^4 f^{\text{iv}}(x) \right\} + o\left(\frac{1}{n^2}\right),$$

as far as the order of the expansion is concerned, Theorem 2. 2 is an improvement on the result mentioned above. However, in 1984 Alkemade found for the first time the explicit expression for $M_n e_2$. Therefore by using it we can find the asymptotic expansion for $M_n e_2$ to any higher order without performing the above operation involving the

integration. But since the explicit expression for $M_n e_i$ ($i \ge 3$) has not yet been found, this procedure seems to be useful slightly.

3. An asymptotic expansion for $(M_n e_3)(x)$.

In this section we derive an asymptotic expansion for $(M_n e_3)(x)$ by appealing to the method dealt with in §2.

Lemma 3.1.

$$(3.1) (M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n-1} - \frac{9x^2(1-x)^2}{n-1} \sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{n+k+2} - x^2(1-x) \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+2)^2} + x(1-x)^2 \sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{(n+k+1)^2}.$$

Proof. By definition

$$(M_n e_3)(x) = (1-x)^{n+1} \sum_{k=0}^{\infty} x^k {n+k \choose k} \left(\frac{k}{n+k}\right)^3,$$

which implies that

$$(M_n e_3)(x) = (1-x)^{n+1} \sum_{k=1}^{\infty} x^k {n+k-1 \choose k-1} \left(\frac{k}{n+k}\right)^2.$$

Since

$$\frac{k}{n+k} = \frac{kn}{(n+k)(n+k-1)} + \frac{k(k-1)}{(n+k)(n+k-1)},$$

$$(M_n e_3)(x) = (1-x)^{n+1} \sum_{k=1}^{\infty} x^k {n+k-1 \choose k-1} \frac{k^2n}{(n+k)^2(n+k-1)}$$

$$+ (1-x)^{n+1} \sum_{k=1}^{\infty} x^k {n+k-1 \choose k-1} \frac{k^2(k-1)}{(n+k)^2(n+k-1)}$$

$$= (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+1} {n+k-1 \choose k} \left(\frac{k+1}{n+k+1} \right)^2 + (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+2} {n+k \choose k} \left(\frac{k+2}{n+k+2} \right)^2$$

$$= (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+1} {n+k-1 \choose k} \frac{k^2}{(n+k+1)^2} + (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+1} {n+k-1 \choose k} \frac{2k}{(n+k+1)^2}$$

$$+ (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+1} {n+k-1 \choose k} \frac{1}{(n+k+1)^2} + (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+2} {n+k \choose k} \left(\frac{k+2}{n+k+2} \right)^2$$

$$= (1-x)^{n+1} \sum_{k=1}^{\infty} x^{k+1} {n+k-1 \choose k-1} \frac{kn}{(n+k+1)^2} + (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+2} {n+k \choose k} \left(\frac{k+2}{n+k+2} \right)^2$$

$$= (1-x)x \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+1)^2}$$

$$+ (1-x)^{n+1} \sum_{k=0}^{\infty} x^{k+2} {n+k \choose k} \left(\frac{(k+1)n}{(n+k+2)^2} + \frac{2n}{(n+k+2)^2} + \frac{(k+2)^2}{(n+k+2)^2} \right)$$

$$= (1-x)x \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+1)^2} + (1-x)^{n+1} \sum_{k=1}^{\infty} x^{k+2} {n+k \choose k} \left(\frac{(k+1)n}{(n+k+2)^2} + \frac{2n}{(n+k+2)^2} + \frac{(k+2)^2}{(n+k+2)^2} \right)$$

$$= (1-x)x \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+1)^2} + (1-x)^{n+1} \sum_{k=1}^{\infty} x^{k+2} {n+k \choose k} \frac{(n+k+2)^2}{(n+k+2)^2}$$

$$= (1-x)x\sum_{k=0}^{\infty}\frac{m_{n-1,\ k}(x)}{(n+k+1)^2} + x^2 - \sum_{k=0}^{\infty}(1-x)^{n+1}x^{k+2}\binom{n+k+1}{k}\frac{n(n+1)}{(n+k+2)^2} \\ = \frac{x(1-x)^{n+1}}{(n+1)^2} + x^2 + \frac{x}{1-x}\sum_{k=0}^{\infty}\frac{(1-x)^2m_{n-1,\ k+1}(x) - n(n+1)xm_{n+1,\ k}(x)}{(n+k+2)^2}.$$

Inasmuch as

$$\begin{split} &(1-x)^2 m_{n-1, k+1}(x) - n(n+1)x m_{n+1, k}(x) \\ &= (1-x)^{n+2} {n+k \choose k+1} x^{k+1} - n(n+1)x^{k+1} (1-x)^{n+2} {n+k+1 \choose k} \\ &= -x^{k+1} (1-x)^{n+2} {n+k \choose k+1} (k^2 + nk + 2k + n), \end{split}$$

we obtain that

$$(M_{n}e_{3})(x) = \frac{x(1-x)^{n+1}}{(n+1)^{2}} + x^{2} - x(1-x) \sum_{k=0}^{\infty} \frac{\binom{n+k}{k+1} x^{k}(1-x)^{n}(k^{2}+nk+2k+n)}{(n+k+2)^{2}}$$

$$= \frac{x(1-x)^{n+1}}{(n+1)^{2}} + x^{2} - x^{2}(1-x) \sum_{k=0}^{\infty} m_{n-1, k}(x) \frac{(n+k)(k^{2}+nk+2k+n)}{(n+k+1)^{2}(k+1)}$$

$$= \frac{x(1-x)^{n+1}}{(n+1)^{2}} + x^{2} - x^{2}(1-x) \left\{ \sum_{k=0}^{\infty} m_{n-1, k}(x) + \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)[(n+k)(k^{2}+nk+2)(k+n)]}{(n+k+2)^{2}(k+1)} \right\}$$

$$= x^{3} + \frac{x(1-x)^{n+1}}{(n+1)^{2}} + x^{2}(1-x) \sum_{k=0}^{\infty} m_{n-1, k}(x) \frac{(3k+3n+6)(k+1)+n-k-2}{(n+k+2)^{2}(k+1)}.$$

Thus we are led to

$$(M_n e_3)(x) = x^3 + \frac{x(1-x)^{n+1}}{(n+1)^2} + 3x^2(1-x) \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{n+k+2} + x^2(1-x) \sum_{k=0}^{\infty} m_{n-1, k}(x) \frac{n-1-(k+1)}{(n+k+2)^2(k+1)}.$$

Since

$$m_{n-1, k}(x) = \frac{1-x}{n-1} \left\{ (1-x)^{n-1} x^{k} {n+k-2 \choose k} (n+k+2-3) \right\},$$

we see that

$$(3.2) (M_{n}e_{3})(x) = x^{3} + \frac{x(1-x)^{n+1}}{(n+1)^{2}} + \frac{3x^{2}(1-x)^{2}}{n-1} \sum_{k=0}^{\infty} m_{n-2, k}(x)$$

$$- \frac{9x^{2}(1-x)^{2}}{n-1} \sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{n+k+2} + x^{2}(1-x) \sum_{k=0}^{\infty} m_{n-1, k}(x) \frac{n-1}{(n+k+2)^{2}(k+1)}$$

$$- x^{2}(1-x) \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+2)^{2}}.$$

As

$$x^{2}(1-x)\sum_{k=0}^{\infty}m_{n-1,\ k}(x)\frac{n-1}{(n+k+2)^{2}(k+1)}=x^{2}(1-x)\sum_{k=0}^{\infty}\binom{n+k-1}{k+1}(1-x)^{n}x^{k}\frac{1}{(n+k+2)^{2}}$$

$$=x^2(1-x)\sum_{k=1}^{\infty}\binom{n+k-2}{k}(1-x)^nx^{k-1}\frac{1}{(n+k+1)^2}=x(1-x)^2\sum_{k=0}^{\infty}\frac{m_{n-2,\ k}(x)}{(n+k+1)^2}-\frac{x(1-x)^{n+1}}{(n+1)^2},$$
 the substitution of this expression into (3.2) yields Lemma 3.1.

Lemma 3.2.

(3.3)
$$\sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{n+k+2} = \frac{(1-x)^{n-1}}{r^{n+2}} \int_{0}^{x} \frac{t^{n+1}}{(1-t)^{n-1}} dt.$$

Proof. In exactly the same way as in Lemma 2. 2 of §2, we have

$$t^{n+1}(1-t)^{-n+1} = \sum_{k=0}^{\infty} {n+k-2 \choose k} t^{n+k+1},$$

hance

(3.4)
$$\int_0^x t^{n+1} (1-t)^{-n+1} dt = \sum_{k=0}^\infty {n+k-2 \choose k} \frac{x^{n+k+2}}{n+k+2}.$$

Multiplying the both sides of (3,4) by $x^{-n-2}(1-x)^{n-1}$, we obtain (3.3).

Lemma 3. 3.

(3.5)
$$\sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{n+k+2} = \frac{1-x}{n+2} + \frac{4x(1-x)}{(n+2)(n+3)} + \frac{20x^2(1-x)}{(n+2)(n+3)(n+4)} + A_n(x),$$

where
$$0 \le A_n(x) \le \frac{120x^3}{(n+2)(n+3)(n+4)(n+5)(1-x)^6}$$
.

Proof. Let
$$I = \int_0^x \frac{t^{n+1}}{(1-t)^{n-1}} dt$$
. Making a substitution $u = \frac{t}{1-t}$,

$$I = \int_0^{\frac{x}{1-x}} \frac{u^{n+1}}{(1+u)^4} du.$$

Integrating by parts successively, it follows that

$$I = \frac{x^{n+2}}{(n+2)(1-x)^{n-2}} + \frac{4x^{n+3}}{(n+2)(n+3)(1-x)^{n-2}} + \frac{20x^{n+4}}{(n+2)(n+3)(n+4)(1-x)^{n-2}} + \frac{120}{(n+2)(n+3)(n+4)} \int_{0}^{\frac{x}{1-x}} \frac{u^{n+4}}{(1+u)^{7}} du.$$

Hence

$$(3.6) \qquad \frac{(1-x)^{n-1}}{x^{n+2}}I = \frac{1-x}{n+2} + \frac{4x(1-x)}{(n+2)(n+3)} + \frac{20x^2(1-x)}{(n+2)(n+3)(n+4)} + \frac{120(1-x)^{n-1}}{(n+2)(n+3)(n+4)x^{n+2}} \int_0^{\frac{x}{1-x}} \frac{u^{n+4}}{(1+u)^7} du.$$

Denoting the last term on the right-hand side of (3.6) by $A_n(x)$, we get

(3.7)
$$0 \leq A_n(x) \leq \frac{120(1-x)^{n-1}}{(n+2)(n+3)(n+4)x^{n+2}} \int_0^{\frac{x}{1-x}} u^{n+4} du$$
$$= \frac{120x^3}{(n+2)(n+3)(n+4)(n+5)(1-x)^6}.$$

Lemma 3. 2, (3.6) and (3.7) lead us to Lemma 3. 3.

Lemma 3.4.

$$(3.8) \qquad \sum_{k=0}^{\infty} \frac{m_{n-1, k}(x)}{(n+k+2)^2} = \frac{(1-x)^2}{(n+2)^2} + \frac{4x(1-x)^2}{(n+2)^2(n+3)} + \frac{3x(1-x)^2}{(n+2)(n+3)^2} + O\left(\frac{1}{n^4}\right).$$

Proof. Obviously

$$t^{n+1}(1-t)^{-n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} t^{n+k+1}$$

Thus

$$\int_0^s t^{n+1} (1-t)^{-n} dt = \sum_{k=0}^{\infty} \frac{\binom{n+k-1}{k}}{n+k+2}$$

follows. Hence we have

ave
$$\frac{1}{s} \int_0^s t^{n+1} (1-t)^{-n} dt = \sum_{k=0}^{\infty} \frac{\binom{n+k-1}{k}}{n+k+2},$$

which implies that

$$\int_0^x \left(\frac{1}{s} \int_0^s t^{n+1} (1-t)^{-n} dt \right) ds = \sum_{k=0}^\infty \frac{\binom{n+k-1}{k} x^{n+k+2}}{(n+k+2)^2}.$$

Therefore

(3.9)
$$\sum_{k=0}^{\infty} \frac{m_{n-1,k}(x)}{(n+k+2)^2} = \frac{(1-x)^n}{x^{n+2}} \int_0^x \left(\frac{1}{s} \int_0^s \frac{t^{n+1}}{(1-t)^n} dt\right) ds.$$

Let $I(s) = \int_0^s \frac{t^{n+1}}{(1-t)^n} dt$ and set $u = \frac{t}{1-t}$, then we have

$$I(s) = \int_0^{\frac{s}{1-s}} \frac{u^{n+1}}{(1+u)^3} du.$$

Integrating by parts, we see that

$$I(s) = \frac{s^{n+2}}{(n+2)(1-s)^{n-1}} + \frac{3s^{n+3}}{(n+2)(n+3)(1-s)^{n-1}} + A_n(s),$$

where

$$0 \leq A_n(s) \leq \frac{12}{(n+2)(n+3)} \int_0^{\frac{s}{1-s}} u^{n+3} du = \frac{12}{(n+2)(n+3)(n+4)} \left(\frac{s}{1-s}\right)^{n+4},$$

hence

$$\frac{1}{s}I(s) = \frac{s^{n+1}}{(n+2)(1-s)^{n-1}} + \frac{3s^{n+2}}{(n+2)(n+3)(1-s)^{n-1}} + B_n(s),$$

where

T

$$0 \leq B_n(s) \leq \frac{12s^{n+3}}{(n+2)(n+3)(n+4)(1-s)^{n+4}}.$$

Let $J(x) = \int_0^x \frac{1}{s} I(s) ds$ and let $k = \frac{s}{1-s}$, then

$$J(x) = \frac{1}{n+2} \int_0^{\frac{x}{1-x}} \frac{k^{n+1}}{(1+k)^4} dk + \frac{3}{(n+2)(n+3)} \int_0^{\frac{x}{1-x}} \frac{k^{n+2}}{(1+k)^5} dk + \int_0^x B_n(s) ds.$$

Integration by parts yields

$$\frac{(1-x)^n}{x^{n+2}}J(x) = \frac{(1-x)^2}{(n+2)^2} + \frac{4x(1-x)^2}{(n+2)^2(n+3)} + \frac{3x(1-x)^2}{(n+2)(n+3)^2} + O\left(\frac{1}{n^4}\right).$$

Now (3.8) follows from the last expression and (3.9).

Lemma 3.5.

$$\sum_{k=0}^{\infty} \frac{m_{n-2, k}(x)}{(n+k+1)^2} = \frac{(1-x)^2}{(n+1)^2} + \frac{4x(1-x)^2}{(n+1)^2(n+2)} + \frac{3x(1-x)^2}{(n+1)(n+2)^2} + O\left(\frac{1}{n^4}\right).$$

Proof. All we have to do is only replacing n by n-1 in Lemma 3.4.

Theorem 3.1.

$$(M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n} + \frac{x(1-x)^2(1-9x+11x^2)}{n^2} + \frac{x(1-x)^2(-2+27x-72x^2+50x^3)}{n^3} + O\left(\frac{1}{n^4}\right).$$

Proof. Taking into account of Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5,

$$(M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n-1} - \frac{9x^2(1-x)^2}{n-1} \left\{ \frac{1-x}{n+2} + \frac{4x(1-x)}{(n+2)(n+3)} \right\} \\ - x^2(1-x) \left\{ \frac{(1-x)^2}{(n+2)^2} + \frac{4x(1-x)^2}{(n+2)^2(n+3)} + \frac{3x(1-x)^2}{(n+2)(n+3)^2} \right\} \\ + x(1-x)^2 \left\{ \frac{(1-x)^2}{(n+1)^2} + \frac{4x(1-x)^2}{(n+1)^2(n+2)} + \frac{3x(1-x)^2}{(n+1)(n+2)^2} \right\} + O\left(\frac{1}{n^4}\right).$$

Therefore from this result Theorem 3.1 follows at once.

Remark. In 1970 Sikkema [5] proved that

$$(M_n e_3)(x) = x^3 + \frac{3x^2(1-x)^2}{n} + \frac{x(1-x)^2(1-9x+11x^2)}{n^2} + O\left(\frac{1}{n^3}\right).$$

Theorem 3. 1 is an improvement of this expansion.

4. Some improvements on the estimation relating to $M_n e_2 - e_2$.

Let

(4.1)
$$F_n(x) = (M_n e_2)(x) - x^2 \qquad (x \in [0, 1], n \in N)$$

and let $\|f\|$ denote the supremum norm of $f \in C[0, 1]$. We observe that

(4.2)
$$F_n(x) = \frac{1}{n+1}x(1-x)^2 {}_2F_1(1, 2; n+2; x),$$

which is established by J. A. H. Alkemade [1]. In this connection we refer to two theorems ([5], [1]).

Theorem A. (Sikkema, [5]) Let F_n be defined by (4.1). Then we have

(a) $||F_1|| \le 0.1113$

(b)
$$||F_n|| \le \frac{4}{27n} \left(1 - \frac{n^2 - 5}{4(n^2 - 1)^2}\right) \quad (n \ge 2).$$

Theorem B. (Alkemade, [1]) Let F_n be defined by (4.1). Then the following statements hold:

(a)
$$||F_1|| = 0.0999032$$
 (exact up to the last digit shown)

(b)
$$||F_n|| \le \frac{4}{27n+9}$$
 $(n \ge 2)$

(c)
$$||F_n|| = \frac{4}{27n} - \frac{4}{81n^2} + O\left(\frac{1}{n^3}\right) \quad (n \to \infty).$$

For the part (c) of Theorem B we deduce the following refinement:

$$||F_n|| = \frac{4}{27n} - \frac{4}{3^4n^2} - \frac{20}{3^6n^3} + \frac{964}{3^9n^4} + \frac{356}{3^9n^5} + O\left(\frac{1}{n^6}\right),$$

which is stated as Theorem 4.1. To prove this we need a lemma.

Lemma 4.1. The asymptotic expansion of the value $x_0 \in (0, 1)$, which is uniquely determined by $||F_n|| = |F_n(x_0)|$, is given by

(4.3)
$$x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} - \frac{208}{3^7 n^3} + \frac{4304}{3^9 n^4} + O\left(\frac{1}{n^5}\right).$$

Proof. First we notice that x_0 satisfies the equation

$${}_{2}F_{1}(1, 2; n+2; x_{0}) = \frac{n+1}{n+x_{0}},$$

see, p. 268 in [1]. We begin with showing

$$x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} + O\left(\frac{1}{n^3}\right).$$

(4.4) is transformed into

$$1 + \frac{2x_0}{n+2} + \frac{6x_0^2}{(n+2)(n+3)} + \frac{24x_0^3}{(n+2)(n+3)(n+4)} + O\left(\frac{1}{n^4}\right) = \frac{n+1}{n} \left(\frac{1}{1+\frac{x_0}{n}}\right).$$

By a simple calculation we obtain

$$1 + \frac{2x_0}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} - \frac{8}{n^3}\right) + \frac{6x_0^2}{n^2} \left(1 - \frac{5}{n} + \frac{19}{n^2}\right) + \frac{24x_0^3}{n^3} \left(1 - \frac{9}{n}\right)$$

$$= 1 - \frac{x_0}{n} + \frac{x_0^2}{n^2} - \frac{x_0^3}{n^3} + \frac{1}{n} - \frac{x_0}{n^2} + \frac{x_0^2}{n^3} + O\left(\frac{1}{n^4}\right).$$

Finally from this we see that

$$(4.5) 25x_0^3 + (5n-31)x_0^2 + (3n^2-3n+8)x_0 - n^2 + O\left(\frac{1}{n}\right) = 0.$$

Motivated by Alkemade's result $x_0 = \frac{1}{3} + \frac{4}{27n} + O\left(\frac{1}{n^2}\right)$, (see, p. 270 in [1]) we may assume that

$$x_0 = \frac{1}{3} + \frac{4}{27n} + \frac{k}{n^2} + O\left(\frac{1}{n^3}\right)$$
 (k is a constant),

then

(4.6)
$$x_0^2 = \frac{1}{9} + \frac{8}{81n} + O\left(\frac{1}{n^2}\right), \quad x_0^3 = \frac{1}{27} + O\left(\frac{1}{n}\right).$$

Substituting (4.6) into (4.5) yields $\frac{16}{81} + 3k + O\left(\frac{1}{n}\right) = 0$, and consequently we see that

$$k = -\frac{16}{243}$$
. Conversely, $x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} + O(\frac{1}{n^3})$ is clearly the solution of (4.4).

This shows that $x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} + O\left(\frac{1}{n^3}\right)$.

Next we put $x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5n^2} + \frac{k}{n^3} + O\left(\frac{1}{n^4}\right)$. By substituting this expression into the asymptotic equation

 $119x_0^4 + (25n - 215)x_0^3 + (5n^2 - 31n + 114)x_0^2 + (3n^3 - 3n^2 + 8n - 16)x_0 - n^3 + O\left(\frac{1}{n}\right) = 0,$ which is obtained from (4.4) by expanding the both sides of it up to the term of $\frac{1}{n^4}$ explicitly, we get

$$x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5n^2} - \frac{208}{3^7n^3} + O\left(\frac{1}{n^4}\right).$$

Finally we put $x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} - \frac{208}{3^7 n^3} + \frac{k}{n^4} + O(\frac{1}{n^5})$. In a similar way, from the asymptotic equation

$$721x_0^5 + (119n - 1681)x_0^4 + (25n^2 - 215n + 1320)x_0^3 + (5n^3 - 31n^2 + 114n - 390)x_0^3 + (3n^4 - 3n^3 + 8n^2 - 16n + 32)x_0 - n^4 + O\left(\frac{1}{n}\right) = 0,$$

we have (4.3).

Remark. By means of the above method we can derive the asymptotic expansion for x_0 giving to as any higher order as we please. But the calculation involved is troublesome.

Theorem 4.1. For F_n we have

$$||F_n|| = \frac{4}{27n} - \frac{4}{3^4 n^2} - \frac{20}{3^6 n^3} + \frac{964}{3^9 n^4} + \frac{356}{3^9 n^5} + O\left(\frac{1}{n^6}\right) \qquad (n \to \infty).$$

Proof. In view of (4.2) we obtain

$$||F_n|| = F_n(x_0) = \frac{1}{n+1} x_0 (1-x_0)^2 {}_2F_1(1, 2; n+2; x_0),$$

thus by the definition of the hypergeometric series

From Lemma 4.1 it follows that

$$(4.8) \begin{cases} x_{0} = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^{5}n^{2}} - \frac{208}{3^{7}n^{3}} + \frac{4304}{3^{9}n^{4}} + O\left(\frac{1}{n^{5}}\right), & x_{0}^{2} = \frac{1}{9} + \frac{8}{3^{4}n} - \frac{16}{3^{6}n^{2}} - \frac{544}{3^{8}n^{3}} + O\left(\frac{1}{n^{4}}\right), \\ x_{0}^{3} = \frac{1}{27} + \frac{4}{3^{4}n} + O\left(\frac{1}{n^{3}}\right), & x_{0}^{4} = \frac{1}{81} + \frac{16}{3^{6}n} + O\left(\frac{1}{n^{2}}\right), \\ (1 - x_{0})^{2} = \frac{4}{9} - \frac{16}{3^{4}n} + \frac{80}{3^{6}n^{2}} + \frac{704}{3^{8}n^{3}} - \frac{6208}{3^{9}n^{4}} + O\left(\frac{1}{n^{5}}\right). \end{cases}$$

Substituting (4.8) into (4.7), we obtain Theorem 4.1.

In the meantime, Alkemade's theorem and Lemma 4.1 lead us to the following estimation for $||F_n||$.

Theorem 4.2. For sufficiently large $n \in N$,

$$||F_n|| \le \frac{324 n^3}{2187 n^4 + 729 n^3 + 324 n^2 - 144 n - 208}$$

holds.

Proof. Let $f_n(x) = \frac{n+1}{n+x}$. we already know from (4.4) that

$$_{2}F_{1}(1, 2; n+2; x_{0})=f_{n}(x_{0}).$$

The function ${}_{2}F_{1}(1, 2; n+2; x)$ is monotonically increasing and $f_{n}(x)$ is monotonically decreasing in (0, 1). From Lemma 4.1 we have

$$x_0 = \frac{1}{3} + \frac{4}{27n} - \frac{16}{3^5 n^2} - \frac{208}{3^7 n^3} + \frac{4304}{3^9 n^4} + O\left(\frac{1}{n^5}\right),$$

hence the monotony of ${}_{2}F_{1}(1, 2; n+2; x)$ and $f_{n}(x)$ implies that

$$_{2}F_{1}(1, 2; n+2; x_{0}) \leq f_{n}\left(\frac{1}{3} + \frac{4}{27n} - \frac{16}{3^{5}n^{2}} - \frac{208}{3^{7}n^{3}}\right)$$

$$=\frac{3^{7}(n+1)n^{3}}{3^{7}n^{4}+3^{6}n^{3}+3^{4}\times4n^{2}-3^{2}\times16n-208}$$

for sufficiently large $n \in \mathbb{N}$. From (4.2) and the above inequality we conclude that

$$||F_n|| \leq \frac{1}{n+1} ||x(1-x)^2||_2 F_1(1, 2; n+2; x_0)|$$

$$\leq \frac{324 n^3}{2187 n^4 + 729 n^3 + 324 n^2 - 144 n - 208}.$$

This completes the proof of Theorem 4. 2.

We make use of Theorem 4. 2 to improve slightly upon the known theorems on M_n operators. We have the theorem by Shisha and Mond [4].

Theorem 4. 3. [4] Let $L_n: C[0, 1] \to C[0, 1]$ ($n \in N$) be a sequence of linear positive operators satisfying $L_n e_i = e_i$ (i = 0, 1). Then for any $\delta > 0$

(4.9)
$$|(L_n f)(x) - f(x)| \le \left\{ 1 + \delta^{-2} ((L_n e_2)(x) - x^2) \right\} \omega(f; \delta)$$

where $\omega(f;\delta)$ denotes the modulus of continuity of f on [0, 1].

If we replace L_n by M_n and set $\delta = n^{-\frac{1}{2}}$ in (4.9) and use Theorem 4.2, we obtain the following theorem.

Theorem 4.4. For sufficiently large $n \in N$,

$$||M_n f - f|| \le \left\{1 + \frac{324 n^4}{2187 n^4 + 729 n^3 + 324 n^2 - 144 n - 208}\right\} \omega \left(f; \frac{1}{\sqrt{n}}\right)$$

holds.

Note that $||M_n f - f|| \le \left\{1 + \frac{4n}{27n + 9}\right\} \omega \left(f; \frac{1}{\sqrt{n}}\right)$, which was previously obtained by

Alkemade [1]. Further we know the following theorem due to Lupas and Müller [3].

Theorem 4.5. [3] Let $L_n: C[0, 1] \to C[0, 1] (n \in \mathbb{N})$ be a sequence of linear positive operators satisfying $L_n e_i = e_i$ (i=0, 1). If f' exists and continuous on [0, 1], then for any $\delta > 0$

$$||L_n f - f|| \le (1 + \delta^{-1}) ||L_n e_2 - e_2|| \omega(f'; \delta).$$

If we replace L_n by M_n and set $\delta = n^{-\frac{1}{2}}$ and use Theorem 4. 2, we obtain the following theorem.

Theorem 4.6. For sufficiently large $n \in N$,

$$||M_n f - f|| \le (1 + \sqrt{n}) \frac{324 n^3}{2187 n^4 + 729 n^3 + 324 n^2 - 144 n - 208} \omega \left(f'; \frac{1}{\sqrt{n}}\right).$$

Note that $||M_nf-f|| \le \left\{1 + \frac{2\sqrt{n}}{3\sqrt{3n+1}}\right\} \frac{2}{3\sqrt{3n+1}} \omega \left(f'; \frac{1}{\sqrt{n}}\right)$, which was also obtained by Alkemade [1].

5. An explicit expression for $(M_n e_3)(x)$.

In this section we search for the explicit expression for $(M_n e_3)(x)$ by means of the way developed in [1]; namely the way appealing to a differential equation. Let us recall a theorem in [1]:

Theorem C. [1] Let $g(t) = \frac{t}{1-t}$, $t \in [0, 1)$. For each $n \in \mathbb{N}$, $x \in [0, 1)$ and $f \in A_R$, $(M_n f)(x)$ defined by (1.1) satisfies the differential equation

$$x(1-x)\frac{d}{dx}(M_nf)(x) = -(n+1)x(M_nf)(x) + n(1-x)(M_n(gf))(x).$$

Lemma 5.1. For each $n \in N$, $M_n e_3$ satisfies the differential equation (5.1) $x^2(1-x)^2y'' + x(1-x)(1+2n+x)y' + (x^2+(3n+1)x+n^2)y$ $= n^2x^3 + (3n+1)x^2 + x,$

with the condition y(0)=0 and $y'(0)=\frac{1}{(n+1)^2}$.

Proof. By the definition of $M_n e_3$ it is clear that

$$y(0)=0, y'(0)=\frac{1}{(n+1)^2},$$

where $y(x)=(M_ne_3)(x)$. We set $f=e_2-e_3$ in Theorem C. Then we have

$$x(1-x)\frac{d}{dx}(M_n(e_2-e_3))(x) = -(n+1)x(M_n(e_2-e_3))(x) + n(1-x)(M_ne_3)(x).$$

From the linearity of M_n operators, we have

$$x(1-x)\frac{d}{dx}(M_ne_2)(x)-x(1-x)\frac{d}{dx}(M_ne_3)(x)$$

$$=-(n+1)x(M_ne_2)(x)+(n+x)(M_ne_3)(x),$$

namely,

(5.2)
$$x(1-x)\frac{d}{dx}(M_ne_2)(x) + (n+1)x(M_ne_2)(x)$$
$$= x(1-x)\frac{d}{dx}(M_ne_3)(x) + (n+x)(M_ne_3)(x).$$

From Lemma 1 in [1] (see. p. 263)

(5.3)
$$x(1-x)\frac{d}{dx}(M_ne_2)(x) = -(n+x)(M_ne_2)(x) + nx^2 + x.$$

Substituting (5.3) into (5.2) yields that

$$(nx-n)(M_ne_2)(x)+nx^2+x=x(1-x)\frac{d}{dx}(M_ne_3)(x)+(x+n)(M_ne_3)(x).$$

In other words, $(M_n e_3)(x)$ is a solution of the differential equation

(5.4)
$$x(1-x)y'+(x+n)y=n(x-1)(M_ne_2)(x)+nx^2+x.$$

Differentiating (5.4), we have

(5.5)
$$x(1-x)y'' + (1+n-x)y' + y$$

$$= n(M_n e_2)(x) + n(x-1)((M_n e_2)(x))' + 2nx + 1.$$

Further from (5.3)

$$n(x-1)((M_ne_2)(x))' = \frac{n(x+n)(M_ne_2)(x)}{x} - n^2x - n.$$

Therefore from the last equation and (5.5) we get

(5.6)
$$x(1-x)y'' + (1+n-x)y' + y = \frac{n(n+2x)(M_ne_2)(x)}{x} - (n^2-2n)x - n + 1.$$

On the other hand, since $M_n e_3$ is a solution of (5.4),

(5.7)
$$n(M_n e_2)(x) = \frac{x(1-x)y' + (x+n)y - nx^2 - x}{x-1}.$$

Substituting (5.7) into (5.6), we obtain (5.1), as required.

Lemma 5.2. Let $w_n(x) = (M_n e_3)(x) - x$. Then $w_n(x)$ satisfies the following differential equation

(5.8)
$$x^2(1-x)^2w_n''(x) + x(1-x)(1+2n+x)w_n'(x) + \{x^2+(3n+1)x+n^2\}w_n(x) = -nx(1-x)(nx+n+2).$$

Proof. By making use of the relation $w_n(x)=(M_ne_3)(x)-x$ and Lemma 5. 1, we obtain the result.

Lemma 5.3.
$$y = x^{-n}(1-x)^{n+1}$$
 is a solution of the differential equation (5.9) $x^2(1-x)^2y'' + x(1-x)(1+2n+x)y' + \{x^2+(3n+1)x+n^2\}y = 0$.

Proof. A straightforward calculation gives the result.

The following two lemmas are concerned with some definite integrals. In the sequel, we employ the notation:

$$s_n(x) = \sum_{k=1}^n \frac{(-1)^k x^k}{k(1-x)^k}, \quad t_n(x) = \sum_{k=1}^n \frac{(-1)^k h(k) x^k}{k(1-x)^k}, \quad \text{where } h(k) = \sum_{i=1}^k \frac{1}{i}.$$

Lemma 5.4. For each $n \in \mathbb{N}$ and for each $x \in [0, 1)$,

$$\int_0^x \frac{t^n}{(1-t)^{n+1}} dt = (-1)^n \{ s_n(x) - \log(1-x) \}.$$

Proof. Denoting $I_n = \int_0^x \frac{t^n}{(1-t)^{n+1}} dt$, we obtain the relation

$$I_n = \frac{x^{n+1}}{(n+1)(1-x)^{n+1}} - I_{n+1},$$

by the integration by parts. Thus $(-1)^{n+1}I_{n+1}-(-1)^nI_n=(-1)^{n+1}\frac{x^{n+1}}{(n+1)(1-x)^{n+1}}$.

Adding the equalities obtained by setting $n=0, 1, 2, \dots, m-1$ in the last equation, we have

$$(-1)^m I_m - I_0 = \sum_{n=1}^m \frac{(-1)^n x^n}{n(1-x)^n} = s_m(x).$$

Observing $I_0 = -\log(1-x)$, we establish the lemma.

Lemma 5.5. For each $n \in N$ and for each $x \in [0, 1)$,

$$\int_0^x \frac{t^n}{(1-t)^{n+2}} dt = \frac{x^{n+1}}{(n+1)(1-x)^{n+1}}.$$

Proof. By putting $u = \frac{t}{1-t}$, we easily obtain the result.

By employing these lemmas we are now in a position to solve the differential equation (5.8). Motivated by Lemma 5.3 we may set $y = w_n(x) = (M_n e_3)(x) - x = y_1(x)u_n(x)$, where $y_1(x) = x^{-n}(1-x)^{n+1}$. Then obviously we have

$$(5.10) w_n'(x) = y_1'u_n + y_1u_n', w_n''(x) = y_1''u_n + 2y_1'u_n' + y_1u_n''.$$

Substituting (5.10) into (5.8), we have

(5.11)
$$x^{2}(1-x)^{2}y_{1}u_{n}'' + \left\{2x^{2}(1-x)^{2}y_{1}' + x(1-x)(1+2n+x)y_{1}\right\}u_{n}' = -nx(1-x)(nx+n+2).$$

As $y_1' = -x^{-n-1}(1-x)^n(n+x)$, we have from (5.11)

$$xu_n''(x)+u_n'(x)=-\frac{n^2x^{n+1}}{(1-x)^{n+2}}-\frac{n(n+2)x^n}{(1-x)^{n+2}}.$$

Solving this equation, we get

$$xu_n'(x) = -n^2 \int_0^x \frac{t^{n+1}}{(1-t)^{n+2}} dt - n(n+2) \int_0^x \frac{t^n}{(1-t)^{n+2}} dt,$$

here we use the condition $[xu_n'(x)]_{x=0}=0$. By appealing to Lemmas 5. 4 and 5. 5 we obtain

$$xu_n'(x) = (-1)^n n^2 \left\{ s_{n+1}(x) - \log(1-x) \right\} - \frac{n(n+2)x^{n+1}}{(n+1)(1-x)^{n+1}}.$$

Thus we have

$$u_n'(x) = (-1)^n n^2 \left\{ \frac{s_{n+1}(x)}{x} - \frac{\log(1-x)}{x} \right\} - \frac{n(n+2)x^n}{(n+1)(1-x)^{n+1}}.$$

Finally, from the above equation we get

(5.12)
$$u_n(x) = (-1)^n n^2 \left\{ \int_0^x \frac{s_{n+1}(t)}{t} dt - \int_0^x \frac{\log(1-t)}{t} dt \right\}$$

$$-\frac{n(n+2)}{n+1}\int_0^x \frac{t^n}{(1-t)^{n+1}}dt,$$

here we use $u_n(0) = 0$.

Now by definition

$$\begin{split} \int_0^x \frac{s_{n+1}(t)}{t} dt = & \sum_{k=1}^{n+1} \frac{(-1)^k}{k} \int_0^x \frac{t^{k-1}}{(1-t)^k} dt \\ = & \sum_{k=2}^{n+1} \frac{(-1)^k}{k} \int_0^x \frac{t^{k-1}}{(1-t)^k} dt - \int_0^x \frac{1}{1-t} dt, \end{split}$$

by making use of Lemma 5. 4 again we have

(5.13)
$$\int_{0}^{x} \frac{s_{n+1}(t)}{t} dt = -\sum_{k=2}^{n+1} \frac{1}{k} \left\{ s_{k-1}(x) - \log(1-x) \right\} + \log(1-x)$$

$$= -\sum_{k=2}^{n+1} \frac{1}{k} s_{k-1}(x) + h(n+1) \log(1-x).$$

Next we prove that

(5.14)
$$\sum_{k=2}^{n+1} \frac{1}{k} s_{k-1}(x) = h(n+1) s_n(x) - t_n(x).$$

In fact, by the change of order of double summation, we get

$$\begin{split} \sum_{k=2}^{n+1} \frac{1}{k} s_{k-1}(x) &= \sum_{k=1}^{n} \frac{1}{k+1} s_{k}(x) = \sum_{k=1}^{n} \frac{1}{k+1} \sum_{i=1}^{k} \frac{(-1)^{i} x^{i}}{i(1-x)^{i}} \\ &= \sum_{i=1}^{n} \frac{(-1)^{i} x^{i}}{i(1-x)^{i}} \sum_{k=i}^{n} \frac{1}{k+1} = \sum_{i=1}^{n} \frac{(-1)^{i} x^{i}}{i(1-x)^{i}} \Big\{ h(n+1) - h(i) \Big\} \\ &= h(n+1) s_{n}(x) - t_{n}(x). \end{split}$$

Combining (5.13) and (5.14) we get

(5.15)
$$\int_0^x \frac{s_{n+1}(t)}{t} dt = t_n(x) - h(n+1) \left\{ s_n(x) - \log(1-x) \right\}.$$

Again in view of Lemma 5. 4 we conclude from (5.12) that

$$u_n(x) = (-1)^n n^2 t_n(x) + (-1)^{n+1} n^2 h(n+1) \left\{ s_n(x) - \log(1-x) \right\}$$

$$+ (-1)^n n^2 \sum_{k=1}^{\infty} \frac{x^k}{k^2} - \frac{n(n+2)}{n+1} (-1)^n \left\{ s_n(x) - \log(1-x) \right\},$$

that is,

(5.16)
$$u_n(x) = (-1)^n n^2 t_n(x) + (-1)^{n+1} \left\{ n^2 h(n) + 2n \right\} \left\{ s_n(x) - \log(1-x) \right\} + (-1)^n n^2 \sum_{k=1}^{\infty} \frac{x^k}{k^2}.$$

Recall the relation set at the outset

(5.17)
$$(M_n e_3)(x) = x + \frac{(1-x)^{n+1}}{x^n} u_n(x).$$

(5.16) and (5.17) lead us to the following theorem.

Theorem 5.1. We have

$$(M_n e_3)(x) = x + \frac{(1-x)^{n+1}}{x^n} u_n(x),$$

where
$$u_n(x) = (-1)^n n^2 t_n(x) + (-1)^{n+1} \left\{ n^2 h(n) + 2n \right\} \left\{ s_n(x) - \log(1-x) \right\} + (-1)^n n^2 \sum_{k=1}^{\infty} \frac{x^k}{k^2},$$

$$s_n(x) = \sum_{k=1}^n \frac{(-1)^k x^k}{k(1-x)^k}, \quad t_n(x) = \sum_{k=1}^n \frac{(-1)^k h(k) x^k}{k(1-x)^k}, \quad h(n) = \sum_{k=1}^n \frac{1}{k}.$$

References

- [1] J. A. H. Alkemade, The second moment for the Meyer-König and Zeller operators, J. Approx. Theory, 40 (1984), 261-273.
- [2] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp. (1960).
- [3] A. Lupas and M. W. Müller, Approximation properties of the M_n -operators, Aequationes Math. 5 (1970), 19-37.
- [4] O. Shisha and B. Mond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. U. S. A., 60 (1968), 1196-1200.
- [5] P. C. Sikkema, On the asymptotic approximation with operators of Meyer-König and Zeller, Indag. Math. 32 (1970), 428-440.