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Abstract

We consider an application of iterated cubic splines to Hermite intepolation which
is of much use for development of numerical integration formulas of singular integrals.

Some numerical examples are given to illustrate the usefulness of our methods.

1. Introduction and description of the methods

Iterated splines are of much use for order-preserving approximations to a given function.
There is computational evidence that these give better results than a single spline ([1], [4],
[6]). For n>1 and a sufficiently smooth function f defined on [0, 1], we consider an application
of the iterated cubic splines to the Hermite interpolant ps,+: of the function f at two points x;
and x5, (0<i<n—1), ie,

® P () =f%(z) (G=i, i+1;,0<k<m—1)

where x;=jh(=j/n, nh=1).
Note that polynomial psms: of degree 2m—+1 is given in ([1], [2]:

(2) P2m+1(x) =fz‘ Tm,o(e) +fi+1 Tm,o(l“@) +h{fi’ Tm,l(ﬁ) _fz'l+1 Tm,l (1_(9)} +eee
Fh" L Ty (0) + (=™ 7 Ty (1—0)}  (x=x:+60h, 0<60Z1)

with

3) k! Tm,k ( 6) =fk— % (_ 1);‘ (m;k+i) (2%—_@“) gm+s+1

j=0
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The iterated cubic spline s, (m=0) can be recursively defined as follows. Let s; and s,

(m=1) be the usual cubic spline interpolants of f and s,_;, respectively, ie.,

4) SO,j(ZSO(xj)) =fi Sm; (=sm (-Z'J)) :3;nJ 0 éjé")
subject to
5) A 50 0=V s5,,=0 (m=0)

where 0<k<n and A (V) is the forward (backward) difference operator. For the periodic
function f, end conditions (5) are to be replaced by

6) sih=sy, (0<r<2, m=0).

Here we have to notice that the coefficient matrices for determining the iterated cubic splines
sm (m=0) are exactly the same, ie., s, (m=1) are easily obtained with little additional effort
([1], page 14). For practical treatment of end conditions (5) (in order to get a tridiagonal

system for determining the iterated cubic spline s,.), see [4]. For example, A4°s,,,=0 (which
will be used in numerical examples) can be equivalently rewritten as follows:

%) Smo+ (265/71) sp1= (92017d,—24637d,+6567d;—1715d,
+419ds—87ds+13d,—ds) /15336

where d; is the right hand side of the consistency relation for the cubic spline S$u:

® (Smj+1 T 48+ Smio1) /6= (Smjs1— Smj-1) /2h.

To get an idea of how the m-th iterated cubic spline s, approximates the m-th derivative
f™ we give the following two lemmas based on results in [4] (non-periodic case) and [6]
(periodic case) where the term O(h?) (p>0) denotes a quantity whose size is proportional to

h? or possibly smaller and C£[0, 1] is the set of functions in C?(—o0, ) which are periodic
with period one.

Lemma 1. For 1<m<9 and f€ C;[0, 11 (periodic case) and 1<m<k<9 and f€C°[0, 11 (non-
periodic case), the iterated cubic spline s, (m=0) can be uniquely and recursively determined
Sor sufficiently small h under (4) and (5) (or (6)), and

(m) h’4 ( 4) h6 ( 6) L
= f(m) T fm+d) " r(m+
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with L=9—m in the periodic case and L=min (9—m, k+1—m) in the non periodic case, where
Jor m+4>9 and m+62=>9, the terms f™** and f;"*® are absorbed in the order term O(h"),
respectively.

Proof. The non periodic cases m=1, 2 were covered in [4] while the periodic cases for all m
were done in [6]. The similar technique in [4] gives the desired relations for m=3. Just use m
+4 and m+6 in place of m in the above lemma to obtain

@ B spra;=ht 70 00D (m=4)
€))
(i) 7 Smie;=h° 70 +0(h")  (m<2).

Combining the above asymptotic relations (9) with Lemma 1, we have

Lemma 2. For m=>1, under (4) and (5) (or (6))

h* h®

fj(rmzsm,j—i—m{msm+4,j 1512 10 Sm+6,j

J+om  ©<i<n).

On making use of the above Lemma 2, we can obtain useful approximations to the
derivatives [ (1<r<3):

@) for k=3, fi=s1,T70(h%

(10) () for k25, f=si,+1asss, H O, £ =s0,+0(h)
(i) for k=7 f'=sl~+h—4s w ——s7,+O0(h")
-0 77180 1512°™
. ht ht
f} =82,j+50—857+0(h6) f}(g)=33] _6637,j+0(h5).

Hence we have the following theorem where pon+1 of degree 2m+1 is the polynomial defined

by (2) with the derivatives £~ (j=i, i+1, 1<r<m) approximated by using (10) ()-(ii) for
m=1, 2 and 3, respectively.

Theorem 1. For k=2m+1 (1<m<3) (The restriction on k, defined in (4), is not necessary in
the periodic case) and fE€ CJ[0, 1] or f€C°[0, 1], then

Pomir (2) —f(2) =0 (h2™+2)  (0<2<1)

Next, for an approximation of the derivative function f’, we can use Lemma 2 again to

obtain more accurate approximations to f;”' (1<7<4) at node points:
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@) for k=4, fi=s1,70(h"), fi' =s.;+0(h®

an (i) for k=6, fi=s1;+ 18035,+O(h6) i =s,; 9037,+O(h5)
¥ =s3,+0(h*
(i) for k=8, fi=s K w ——s7;,+0(h®
=5t 1g0% T 15127
g h4 _h ,
(3) — h 6 (4) — h4 5
fi¥=s3;+ 37J+O(h) fiY=s4;+ i+ 0 (h°).

6 4558

Hence as an approximation of the first derivative, we have a polynomial §..+1 of degree

2m~+1 which is the Hermite interpolant of f” given by (2) with the derivatives ;' (j=1i, i+1,
1<r<m+1) approximated by use of the right hand sides of 11 (i)-(iii) without the order
terms.

Theorem 2. For k=>2m~+2 (1<m<3) (This restriction on k, defined in (4), is not necessary in

the periodic case) and f€C3[0, 1] or f€C°[0, 11,

Gom+1 () —f () =0 (h*"*?) (0<z<1).

For an approximation of the second derivative f”, there exists a polynomial 7p+1 of

degree 2m—+1 which is the Hermite interplant of f” given by (2) with the derivatives f;’
(j=1i, i+1, 2<r<m+2) approximated by using Lemma 2:

@) for k=5, fi =s,,7+0(hY), P =s5;+0(h%

(12) () for k=7, f =s,;+ gosaj-l-O(hﬁ) P =s3,+ gos7j+0(h5)
f}(4):S4,j+0(h4)
(i) for k=9, fi'=s ~+h—4 ; e ——s3,;,+0(h®),
= TR0 7568

h4

h® h
f}'(m:Sg; 60 j 50439]+O(1’l7) f](4)=54] Ss;+0(h6)

45

ht
f(S)-SSJ %Sg,j'l'O(hs).

Theorem 3. For k=>2m~+3 (1<m<3) (This restriction on k, defined in (4), is not necessary in
the periodic case) and f€ C310, 11 or f€C°[0, 1],

Vome1 () —f" (2) =0 (K% (0<zx<1).



Polynomial Approximations Based on Iterated Cubic Splines and their Applications 5

Finally we note that polynomials poms+1, Gomsr and Zems1 of degree 2m~+1 are all m-times
continuously differentiable functions on [0, 1] and order-preserving, i.e., O (h?"*?)-approxima-

tions to f (0<x<2), respectively.

2. Numerical integration formulas for singular integrals

We consider an application of the above stated polynomial approximation to numerical
integration formulas for singular integrals of the form:

xj+1
(13) f}H w(x)f(x)dx = “ a linear combination of f; (0<i<n—1)"~
xJ]

for some or all j (0<j<n—1) where w(x)=x° (6>—1) or log(x). Now use of the above

stated polynomial approximation pam+1 to f leads to following numerical integration formulas
Lo (h) 1<m<3):

zi+1 . m L o
(14) Ins ()= [ 0(@) pomer () da = £ W taf? 710+ (=1 810 i)
Z. i=0
with
X 1 . 1
(15) a;~=hf0 w (2,4 6h) Ty, (6)d6 and 5;~=th W (z,+0h) Ty, (1—6) db.

For the error in I,,;(h), by means of Theorems 1-3, it is straightforward to show the
following theorem.
Theorem 4. For k=>2m~+1 (1<m<3) (This restriction on k is not necessary in the periodic
case),

[T w@ @ de=1,m+00m [P w@lar <<=

x]

Corollary. Under the same restriction on m and k in Theorem 4,

[ 0@ f@)dz=" L, (1) +0 )

while the error in compound Simpson rule is O(h*In h) ([2)).
For the calculation of the weights «;” and B;” (0<i<m), define the following auxiliary

integrals:
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(16) c,!“zhfo1 0! w(x,+h0)do (0<i<2m+1)

which can be evaluated by means of the following recurrence formulas:

@) for w(x)=z% (a>—1), A+a)c=x41® —z/1+®
(i+H1+a) "=z —gei™ A<i<2m+1)
a7
() for w(x)=log(x),c;”=ux;;1log(xj+1) —x;log(x;) —h
(i+1) ¢’ =211 log (2,51) —h—ij ¢V +ih/ (i+1) (1<i<2m+1).

Then, the weights in the integration formulas I,,; (k) (1<m<3) can be represented in terms
of ¢/ (0<i<2m+1):

2m+1 ) . X 2m+1 . .
(18) tal= 2 pun(i,r)e? and ! BP= X A, r)c?.

r=m+1 r=m+1

Here values of 1, (7, #) and A, (i, ) A1<m<3; i<m+1<r<2m+1) are given in Table 1.

Table 1. Values of u,, and A, 1<m<3).

w (G, 7) A G7 w2 (G, 7) A2 (G, )
\r 2 3 2 3 3 4 5 3 4 5
0 —3 3 -2 —10 15 —6 10 —15 6
1 -2 1 1 -1 —6 8 -3 4 -7 3
2 —3 3 —1 1 -2 1
Table 1 (continued)
us (@, 7 A3 (4, )
i\ 4 5 6 7 4 5 6 7
0 —35 84 —70 20 35 —84 70 —20
1 —20 45 —36 10 15 —39 34 —10
2 —10 20 —15 4 5 —14 13 —4
3 —4 6 —4 1 1 -3 3 —1
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3. Numerical Examples

First we consider an application of the above stated methods by taking some examples
f(x)=1/1+252% (—1<x<1) (or 1/(1+100(x—1/2)?): 0<x<1) and sin(dznzr) (0<x<1).
In Table 2—4, we give the observed maximum absolute errors of the function, first and second

derivative values at mid-points where a—b=a X 107%. Methods I-III mean the ones by use of

Doms, Gom+1 and 7pme1 (1<m<3), respectively. Rates are the observed ones obtained from the
numerical results with =64 and 128 while the figures in parentheses are the predicted ones
given in Theorems 1-3.

Table 2
The observed maximum absolute errors of the function values at mid-points.

1/(1+2522) : —1<z<1 sin(drx) : 0<x<1
n\Method I 1I 11T I II III

16 3.79—2 5.67—2 3.94—2 1.06—3 5.41—5 8.17—6

32 6.47—4 2.02—4 1.55—4 6.31—5 1.11—-6 2.99—8

64 4.02—5 1.37—6 3.09—7 3.89—6 1.83—8 1.15—10
128 2.38—6 2.57—8 1.76 —9 2.42—7 2.90—10 4.47—13
rate 4.1(4) 5.7(6) 7.5(8) 4.0(4) 6.0(6) 8.0(8)

Table 3

The observed maximum absolute errors of the first derivatives at mid-points.

1/(1+25zx% : —1<x<1 sin(4zx) : 0<x<1
n\Method I II III I II ' II1
32 1.04—1 7.27—2 5.56—2 2.45—3 8.75—5 3.14—5
64 5.69—3 1.26—3 3.00—4 1.52—4 1.37—6 8.31—9
128 3.12—4 1.97—5 1.47—6 9.53—6 2.14—8 3.24—11
rate 4.2(4) 6.0(6) 7.7(8) 4.0(4) 6.0(6) 8.0(8)
Table 4

The observed maximum absolute errors of the second derivatives at mid-points.

1/(1+2522) : —1<x<1 sin(4rx) 1 0<xr<1
n\Method I II III I . II III
64 5.78—1 8.29—2 4.71-2 3.22—3 6.05—6 1.03—7
128 3.69—2 8.41—4 1.80—4 2.01—4 9.26—8 4.00—10

rate 4.0(4) 6.6(6) 8.0(8) 4.0(4) 6.0(6) 8.0(8)
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Next we consider an application of the numerical integration formulas I, (h) (1<m<3)
for the weight function w(zx)=1/+x or log(z). In the following Tables 5—6, we give the
observed absolute errors of the integration formulas on subintervals and the whole interval
[0, 1] in the case when f(x) =exp(5x). The rates are the ones from the numerical results
with #=32 and 64 while figures in parentheses are the theoretical ones given in Theorem 4.
Note that the observed maximum absolute errors of the integration formulas on subintervals
occurred at node points bounded away from x=0. In comparison with the proposed methods
in [3], the errors in the cases when (w, f) = (1/y/x, exp(z)) and (log(x), exp(z)) are 9.32—
7 and 8.89—7 (#=400), while the errors of our methods (1<m<3) are 5.94—38, 2.93—11,
3.15—14 and 2.76—8, 1.36—11, 1.47—14 (n=16), respectively. Taking into account of

these results, our methods would be of much use in the case when a finer mesh is not
acceptable.

Table 5
The observed maximum absolute errors of the integration formulas on subintervals.

wx)=1/vx w(x) =log(x)
n\m 1 2 3 1 2 3
16 1.03—4 1.08—6 2.90—7 9.92—6 1.30—7 1.10—7
32 3.55—6 1.08—8 3.02—10 3.16—7 9.85—10 3.27—11
64 1.16—7 8.93—11 2.50—13 9.91-9 7.66—12 1.60—14
rate 4.9(5) 6.9(7) 10.2(9) 5.0(5) 7.0(7) 11.009)
Table 6

The observed absolute errors of the integration formulas on the whole interval [0, 1].

w(x)=1/vx w(x) =log(x)
n\m 1 2 3 1 2 3
16 4.38—4 5.23—6 5.04—7 9.85—5 1.14—6 1.12—7
32 2.81—5 8.77—8 6.55—10 6.25—6 1.95—8 1.14—10
64 1.77—6 1.37—9 1.65—12 3.93—7 3.03—10 3.43—13
rate 4.0(4) 6.0(6) 8.6(8) 4.0(4) 6.0(6) 8.4(8)
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