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Abstract

Denote by [Af c /?»»] the set ofisotopy classes ofembeddings of an n-manifold
Min Euclidean m-space. In this note, we shall study the set [JtfcJ?2»-*] for k=2
and 3 in the case when M is an n-manifold satisfying the condition H,(Af; Z)(g)22
= 0 for i<k, and generalize some results in [15] and [19].

§ 1. Introduction

Throughout this nots, an w-manifold and an embedding mean respectively a
closed connected differentiable manifold ofdimension n and a differentiable embedding.
Let [Afc/2OT] denote the set of isotopy classes of embeddings of a manifold Af in
Euclidean w-space Rm. The set [Afc/?2n_A] has so far been studied (see [17] - [19]
and [15]), when Mis an M-manifold and k=l, when Af is a homologically (Ar-1)-
connected M-manifold (£^2), and when Af is a lens space £<«-1)/2(/>) mod p and
l^fe^5. These results make us interested in [Afc/?2n_2] or [Afci?2"-*] for an
w-manifold M satisfying the condition

(*) Hi(M; Z)(g)Z2=0 for i<k.

In this note we shall study the set [Afcfl2"-*] for an «-manifold Af satisfying the
above condition (*) for k=2 and 3, and prove the following theorems :

Theorem A. Assume that M is an n-manifold (n^8) satisfying the condition
//i(Af; Z)(g)Z2=0. T^n, when it is not empty, the set [Afc/22n~2] isgiven as
follows:
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£M<zR2n-2l=H«-\M ; Z)®ff»-»(ilf; Z)x(l+/*)(tf»-i(j|f; Z)*//"-1^; Z))
' Hn~\M; Z2) «/ »s0 (4), M>2(Af)*0,

or »/w=2(4), w2(M)=0,

Hn-\M\Z2)xZz *7»s2(4), m>2(AO*0,
H»"3(Af; Z2) xH»-\M; Zi)/Sqmn-\M; Zj)

i/»=0(4), «/2(AO=0,

fl"-3(Af;Z)xJf»-*(A#;^) i/lis1(4), Mfc(JIO*0,
H»"3(Af ; Z) xH»~\M ; Za) xZj, i/ w=3 (4), «/2(AO*0

<?r t/« = l(4), K/aCAQ^O, tt>3CM)=0,
//»-3(Af; Z)xH»~\M; Z$/(Stp&*-\M; Z)+V^W-3(M; Z2))

xH»-2(M;Z2) i/»=i(4), «;2(ilO=0,
tf«-3(M;Z) xH»-\M ;^/SfptHH-^M ;Z) xH»~\M; Zz)

«/«=3(4), tt/2(AQ=0.

From now on *: MxM-+MxM is the map defined by *(*, y)=(y, x) and the
symbol * denotes the torsion product.

Corollary. // M is an odd torsion n-manifold, i.e. if M is an n-manifold
such that Hi(M; Z)®Z2=0 for i<n (cf [9]), then

[Mc/?2w-2]=H»-i(Af ; Z)®^»-2(M; Z) x(1+**)(//»^(Af; Z)*Hn~\M; Z))

0 «=0(2),

x<

X H*"*(jM\Z) «=1(2).

Theorem B. Assume that M is an n-manifold (m^IO) satisfying the con
dition Hi(M; Z)(g)Z2=0 for i<3 and that the first Pontrjagin class mod 3
Pi(Af) of M vanishes if n is even. Then, when it is not empty, the set
[A/c/?2w~3] is given by

\_M<zR2n-*-\=H»-\M ;Z)®//«-3GM; Z) xHn~\M ;Z)*Hn~\M; Z)

x (l-/*)(//"-2(M; Z)®Hn~\M; Z))

tH»-*(M; Z» xH»-\M; Zj)/S#H*-\M ; Zj,) ifn=l (4),
x\h»-\M]Z^) ,7«=3(4),

ltf"-4(Af ;Z) x^"-3(A/; Z2) xH»~\M; Z3)
,H«"3(Af ;2®/tS#ptf*-*(M ;Z)+SqiH»-\M ; Zg))

x *'/»=2(4),

l//»-3(A/ ;Zd/S#ptf*-*(M; Z) ,/ «=o (4).

358



Notes on enumerating embeddings

These are the generalization both of the Main Theorem for k=2 and 3 in [19]
and Theorem 4(2)-(3) in [15].

This note is, in a sense, a sequel to the papers [15] and [17]-[19]. Hence the
defintitions and notations used here are exactly the same as those explained in [18]-

[19].
The remainder of this note is organized as follows : In § 2, we give some definitions

and notations, and restate Haefiiger's theorem [3, Theoreme l']by using the homotopy
set of liftings and the reduced symmetric product M* of M. In §3, we state the
cohomology of M*, postponing the proof of the integral case till §5. The proofs of
Theorems A and B are given in § 4.

§ 2. Preliminaries

We study the set [Afc/?2w_*] along the lines of Haefliger [3]-[4]. The cyclic
group Z2 of order 2 acts on the product X2 of X via the map t above. The diagonal
AX in X2 is the fixed point set of this action. The quotient spaces

X*=iX2-AX)/Z2 and A2X=X2/Z2

are defined. The former is called the reduced symmetric product of M. Here the

projection p : X2-AX-*X* is a double covering, whose classifying map we denote by

£ : X* >P°°.

Haefiiger's theorem [3, Theoreme 1'] can be restated as follows (cf. [18, Theorem

l.l]):

Theorem 2.1 (Haefliger). 7/2m>3(»+ 1), then for an n-manifold M, there
is a bisection

[Afc/2m] = [Af*, Pw_1 ; £].

Here the right hand side of this equality is the homotopy set of liftings of

$:M*->P°° to (500Xz25w,-1)=Pw"1.

To compute [Mc/22M~*] = [A/*, p2"-*-1 ; £], we may use Proposition4 in [1] or
Proposition on p.414 of [14] if k=2, and Proposition 1.1 in [15] if k=3.

we give some notations which will be used later.
Zr<a> denotes the cyclic group of order r generated by a (r<oot Zm=Z).
The non-trivial elements weH^P00 ; Z2) and v^H\X* ; Z2) denote the first

Stiefel-Whitney classes of the double coverings S°°-+P°° and X2-AX-*X*, respectively.
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The relation $*u=v holds.

For x^Hl(M; Z2), Zr\x~\ (r^oo) denotes the sheaf of coefficients over X, locally
isomorphic to Zr, twisted by x, and Zj. denotes either Zr or Zr\x\. Let

pr: H\X ; Z5[*])—>#«'(* ; Zr[*]) (s=0 (r) or s=oo)

and

?,: H*-i(jr; zr[*])—>hxx : z[*]) (r<oo)

denote the reduction mod r and Bockstein operator, respectively, twisted by x. Then

pr and J8V for x= 0 are the ordinary /or and £r, respectively. pr and £r denote either
pr and J5V or the ordinary pr and j8r, respectively. By [2] and [11], we have

f ty if Z=Z,
(2.2) /°2£2 = {

lty»+* if Z=Z[xl

For an orientable «-manifold M, there is a short exact sequence

(2.3) 0-+H\M ;Zr)—W+^JM2 ; Zr)—>H***(AP -AM ;Zr)-> 0(r^oo),

where * : A/2—JAf-^Af2 is the natural inclusion,

(2.4) &(*) = £/(l(g)*) for x<=H'\M ; Zr),

and £/eHw(A/2 ; Z) is called the Thorn class or the diagonal cohomology class of

M [8, §11]. Further there are the following relations (cf. [12, p.305] and [8,

Theorem 11.11]) :

(2.5) **0iOO=(-l)"fcOO for X€=H\M; Zr)

and

(2.6) tf=±(l(g)Af+(-l)wAf(g)l)

mod S /f>(Af; Z)®W»->(Af; Z) + S //>(Af ; Z)*//M+1->(Af ; Z)
lgyg»-l lS/gn-2

where

//»(Af; Zr')=Zr<M> (r^oo).
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§ 3. The cohomology of M*

Throughout this section we assume that M is an «-manifold satisfying the condition

(*) Bi(M; Z)(g)Z2=0 for*<fc (6^2).

It is equivalent to the condition Hn'\M ; Z2)=0 for 0<i<k.
Under this condition we should like to determine the cohomology of M*. The

notations used here are the same as those explained in [18]—[19] (most of them are

the same as those in [13, §2]). Let

<r=i+t* : H*(M2; z2)—>H\M2; z2).

Then Lemma 3.1 of and (4.1)-(4.2) of [19] are valid if the condition #,<Af; Z)

= 0 for i<k in [19] is replaced by (*)•

Lemma 3.1 (cf. [19]). Assume that M is an n-manifold satisfying the
condition #,(Af ; Z)(g)Z2=0 for i<k. Then

(i) H1(M* ; Zj) =0 for i> 2n-k,

(ii) //2M-*(Af* ; z2) = (MME>*) I*e//»-*(Af; Z2)} (s//M"*(Af; zjf),

(Hi) //2M-*"1(Af* ; Zj) ={p(uk-l®x2) | x<zH»-\M ; Zj,)} (s H»"*(Af; Zj))

+ W****1®*2) IxeH»-k-\M; Zjj)} (s H»-*-i(A/ ; Z^),

(iv) H2"-*-2(Af* ; Z£) = K«*®*2) | xeH»-b-\M \ Zj)} (s //""^(Af ; Zj))

+ K«*~2®*2) | x<=H»-\M ; Zz)} (=;//«-*(Af ; Za))

+ K«*+2(8)*2) Ix<zHn-k-\M ; Zj)} (s//»-*-2(Af ; Za))

+ [{M*®30 | x, y<=H»-KM ; Za), **j>}],

where the term in the square brackets [ ] is present only when k—2.

(v) there are equalities

p(iuk<g)X^=p(Ua<g)x))=p0(iM(g)x)€=H2n-*(M* ; Zj) for *etf»-*(A/ ; Zj)

and an isomorphism

X: Hn-\M ; Zj) -Z>tf2"-*(A/ ; Zj) (X(*) =|oa(A/(g)*)).

Further we have the following theorem, postponing its proof till § 5 :
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Theorem 3.2. Let k^2 and assume that Mis an n-manifold satisfying the

condition Hi(M; Z)<g)Zz= 0 for i<k. Then

(i) for i=2, k^3or i=l,

//2"-*-f(Af* ; Z)

=/>*-i?*(l+(-l)*/*)

S H»-\M; Z)<g)#"-*-'+'(Af; Z)

E H»-J(M; Z)*H"-*-,+1+-'(A/ ; Z)
^ igyg[(*+»-D/2]

+ r *(l+(-l)*/*)(/P,(Af; Z)®HM-*-'(Af ; Z))

{$2P(uk®x2) | ^e//"-*-1^ ; Z2)>

{/32K«*-2®*2) | xeH»-*(M; Z2)}

{frK**-3®*2) Ix<=H»~k(M; Z2)}

+ {j§2/>(«*+1®*2) Ix^Hn~k-\M ; Za)}

I {^(a*-1®*2) Ix<=H»-k-\M ; Za)}

ifn-k is even,

ifn-k is odd,

if i=\, n-k is even,

if i=l, n-k is odd,

if i=2, n-k is even,

if i=2, n-k is odd ;

+ <

(ii) jo2f/2»-*-2(Af*; Z)

= {p(uk~2®x2) | *e=H"-*(Af; Zj)} + {p(uk+2®x2) | x^Hn'k-\M; Za)}

+ [{M*®:y) I*, y^Hn~\M; Za), *=5fcy}] »/ n-& is even,

= {p(.uk®x2) | *eflw-*-1(ilf; Z2)} + {/o«r(Af(g)/)2x) | x^Hn~k-\M ; Z)}

+ [{M*®J0 I a;, ^e#n-2(Af; Z2), x&y}] if n-k is odd ;

where Z=Z or Z[v~\ according as k is even or odd, and the terms in the square

brackets appear only when k=2.

Let q be an odd prime. If we consider the cohomology spectral sequence (cf. [7])

for a fibration M2—JAf->500x^2(Af2—AM)-*P°°, which is homotopically equivalent

to M2 —AM >M* >P°°, then it follows that the map p induces an isomorphism

p* : /P'(Af* ; Z^HXIVP-AM; Z«)(-1>*'*( ={*eH'CM2-JAf; Zq) | (-1)****=*})

where Zq=Zq or Z9[»] according as k is even or odd. By the Kiinneth formula, we
get
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if2«-'(M2; z,) =(i+(-i)*/*)( s //«->'(Af; z<,)(g)tf»-'+>'(M; z,))
0£i£[i/2]

+(l-(-l)*/*)( S """''(M; zq-)®H"-i+J(M; z«)).
0£S£Cf/2]

Here (l + (-l)*/*)-image is (-l)***-invariant, and by (2.5), $iH*-\M; Z,)

ci/2B-,'(iW2; Z^^-"*'*. This, together with (2.4)and (2.6), leads to a commutative
diagram of isomorphisms

t*(H2«-«-(iW2 . z^/W-'CM; Z,))'-"*'* —^^-'(M2-JAf; ztft-"*'*

^ ^ 7* /*«
\ / ~

(l+(-l)***)( S //"-'(Af; z,)(g)tf*-',+'(Af; z,))

!0 if »-& is even,

(l+(-l)^*)(H»(M; Z9)®H»-f(Af; Z9)) if w-£ is odd,

and hence the following lemma holds :

Lemma 3.3. For any odd prime q,

H2w-'*(Af*;Z9) =

^-^(l+C-D^C S fl»^(Af; 2£®ff«-'+>(Af; z,))
igy^ti/2]

( p*~H*

if n-k is even,

i*d + (-i)*;*)(HM(Af; Zq-)®Hn-\M ; Z9)) i/ »-& is o<ta,

w&ere Z9 = Z9 or Z9[v] according as k is even or odd.

Corollary 3.4. There is an isomorphism

j*-ip* : //2«-i^* ; z3)s 0 f/ »-* *s even,

s{(l+(-l)*/*)(Af®*) | seH^CAf; Z3)} */ »-£ is odd.

§ 4. Proofs of Theorems A and B

We prove only Theorem B and not Theorem A because the proof of the latter is
similar to, and moreover rather simpler than, that of the former.

Assume that M is an tt-manifold («^10) satisfying the condition

(*) Hi(M; Z)®Z2= 0 for t<3,
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and that it is embedded in Euclidean (2»—3)—space. By Theorem 2.1, Lemma 3.1

and [15, Proposition 1.1], we have a filtration

[Afci?2M-3] = [Af*, P2""4 ; ^]=F0=>F1DF23F3D 0

such that

F0/Fx=lfn-\M* ; Z[*]), F2/F3= 0 ,

F1/F2=Coker 6, ^3=0,

where

6 : ifi«-\M* ; Z[»])—>rfn~\M* ; Zz)xfl2'1"^* ; %[?]),

0=((5g2+(2M-3)f2)i32, £>%).
Hence we have

(4.1) [Afci?2""3]=H2n"4(Af* ; ZO]) xCoker 0

We first consider Coker 6. If n isodd, then by Corollary 3.4, lfin~\M* ; Z3[t>])

=0and hence Coker e=H2n~\M* ;Z^)/(Sq^(^n~Zyfl)p2lfin-\M* ;Z[t;]), which
is obtained in exactly the same way as in [19, (4.6)], i.e.

(4.2)

(4.3)

«=3(4),
Coker ©s

Hn~\M; Zi)/SqWn-\M; Z2) »=1 (4).

If n is even, there is a commutative diagram

f/2M-5(jtf*: Z[vj)-

J*-ip*

[ % //"->"(M;Z)®//"-5+>'(Af \Z)\

+

S Hn-\M ; Z)*Hn~A+J{M; Z)
i^y^2

->^»-i(Af* ; Z3[t;])(~H»-KM ; Z3))

/*-!/>=<

(1-**)

(l-**)(tf«(M; Za)(g)//»-i(M; Z3)),

where by Corollary 3.4, i*~xp* in the right hand side is an isomorphism, and by

(5.8)—(5.9) below, the one in the left is an epimorphism. To study rxPz, recall

Yo's operation Q1 [20, p. 1481 and p. 1485],

such that

Qi: H\M; Z3)—>jfif+4(Af; Z3)

Q^Ofor/^n-5 and Q?x+plx=W\(M)x,
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where W\(M) is the first Wu class mod 3, which is equal to Pi(-M), the first
Pontrjagin class mod 3 of M [8, £.229]. Hence

Plx= 0 for x^H\M; Z3), i>n-5,

because of the assumption Pi(A/)=0. Using this relation, the diagram (4.3) and the
relations (6.1) below, we get ^,1j53H2n-5(M* ; Z[y])=0, and so

(4.4) Coker0SH2»-3(M* ; Zt)/SfMfi*'KM* '. Z[vJ)xH»'KM ; Z3) «=0(2),

The group Sq^H2"'5^* ; Z [*/]) for even n is obtained in exactly the same way
as in [19, (4.10)] and is given as follows :

(Sq2p2Hn~5CM; Z) ws0 (4),
(4.5) S?W""5(^*;Z[»])£
Q * WftH*-B(Af; Z)+S#«»-<(A#; Zi) n=2 (4).

Thus Coker© is determined by (4.2) and (4.4)-(4.5).

On the other hand, the group H2rt~4(Af; Z[i;]) is given by Theorem 3.2.

Therefore by (4.1), the set [A/ci?2"-3] is determined and so Theorem B is
established.

§ 5. Proof of Theorem 3.2

Let k^2 and assume that M is an M-manifold satisfying the condition

(*) Hi(M ; Z)®Z2=0 for i <k.

Case I : n-k is even. If we consider the cohomology spectral sequence [7] for

frp—jM—>M*—>P°°, then it follows that the rank and the odd torsion subgroup of

rfn-k-i(M* . 2) are equal to and isomorphic to those of H2w"*~,"(M2-JAf; Z)(_1) *
hyp*. Since by (2.5), fiH"-*''^ ;Z)ctf2w-*"'(Af2 ;Z)4""*'* because n-k is
even, there is an isomorphism

j* . rfn-k-i(M* . Z)(-1)A'*M//"-*-'(M; Z)^rfn-k-KA<(1-AM ;Z)^*'*.
Here by (2.4) and (2.6), $\ is a split monomorphism. Hence the left hand side of
this equality is isomorphic by t* to the subgroup of H2n~k~\M2 ; Z),

(2 Hn-'(M ; Z)0Hn-h~i+\M; Z)
lSi£[<A+0/2] ,

S Hn~\M; Z)*H»-*-'+1+-'(Af; Z)
l£S£[(A+i-l)/2]
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which is an odd torsion group for *=2 (A^3) and *=1, under the condition (*)• This

showsthatfor i=2 (k>3) andi=l,p* ://2w-*"'(M* ; Z)-^tfn~k-\M2-AM: Z)(_1)*'*
is an epimorphism, whose kernel is a 2-primary component. This component is easily

calculated in the same way as in [19, § 5], i.e. by using (2.2), Lemma 3.1, the
Bockstein exact sequence and [19, Lemma 3.2], and is given as follows :

rfn-k-i(M* . z)s{&n>(«*®*2) | *e//"-*-i(Af; 3,)} mod odd torsion,

H2n-k~\M* ; ZJs={J8ao("*+1®*2) | x^Hn-k~\M; Z£)

+ {ft^"*"3®*2) I x<=Hn~k(M; Zj,)} mod odd torsion (fc^3),

P2H2n-k-\M* ; Z) = Kl(g)*2) I XG.Hn~\M ; Zg)}

+ {Piu*®*?) | x<=H»-\M ; Z2)}

+ {M*®:>0 I x, y<zHn-\M; Z^), x*y) (6=2).

Here there is a relation

P2P2P(ui<g)x2)=p(u>+1®x2) if 0", dim*)=(*+l, »-£-2), (*-3, »-£)•

The argument above establishes Theorem 3.2(i) and (ii) for n-k even.

Case II : n-k is odd. We make an argument similar to that used in [19, §5].

For the natural embedding j : PM-+M*, write j*v as v in H\PM ; Z2) and consider

the exact sequence in [19, (5.3)],

5 i* j*
(5.1) -»^H*-\PM; Z)—>H\A2M, AM; Z)—>irXM* ; Z)—>H%PM ; Z)->-.

The cohomology of PM has been given by Rigdon [10, §9] (cf. [19, Lemma 5.4]).

Lemma 5.2 (Rigdon). Assume that M is an n-manifold satisfying the

condition (*) above and that n-k is odd. Then

( i ) H2n~,l-\PM; Z) = {p2(v"-2x+v«-*-3S&**) I x^Hn~\M ; Z2)}

+Z2<p2(vn-k-2Af)> if k is even,

= {p2(Vn~2x) I *<=//"-*(Af; Z2)> 1/ k is odd ;

(ii) HZn-k-\PM; Z) = {j92(«;"-2x) | »eH«-*- J(Af; Z2)}, »'/ fc is even,

= {j82(t;n-2*+t;n-*-3V+1*) IseH"-*"1^; Z2)}

+Z2<&(t>n~*~3-M)> »/ k is odd.

The cohomology of (A2M, AM) has been investigated by Larmore [ 5 ]. There

are elements

AxelTCA^M, AM; ZPW) for *<=Hr(M; Zp) CP^oo),

A(x, y)eHr+s(A2M, AM; Zp[vJ) for x<=H\M; Zp), yelP^M ; Zp) (p^oo),
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satisfying the conditions

jt*Ax=x®l-l0x,
(5.3)

x*A(x, y)=x<g)y-(-l)rsy®xt

where %\ (A/2, AM)-+(A2M, AM) is the natural projection. Let

f AxAy if Zp=ZPt
<5-4> A(x,y)=\

l4(*. JO XZp=Zp[vl,

and assume that the integral cohomology groups of M are of the form

Hn(M;Z)=Z<M> (prM=M),

Hm(M;Z) = £ Zr{m,i)<Xm.i> (direct sum) for m<n,
l^r(ro)

Xm, i=Prim.Mm.i (Jm. i^Hm~\M \ Zr{mA)) for a(w) <*£r(»0 ,

where the order r(m, i) is infinite for l^t^a(m) and a power of a prime for
a(m) < i ^ r(»0, and if a(m) < i <j ^ y(w), then either (r(w, i), r(w, j)) = 1
or r(*w, 0 | r(m, j) holds. Then using these notations we have

Lemma 5.5 (Larmore*>). Assume that M is an n-manifold satisfying the

condition (*) above and that n-k is odd. Then

( i ) H2n-kCA2M, AM ; Z) has Z2<i52(t;w"*"1/1A0> «« « d*r«tf summand if k
is even,

(ii) t/*=2 (&^3) or i=\, then

H2»-f-\A2M, AM;Z)=eZ2+ S Z<A(M, xn-k-U)>
igy^«(«-*-«)

+ £ £ ,Zr<BrA(j„-j,x, prX„-k-i+j,^»

+ £ £ ,Zr<BrA(y„-j,x, pryn-k-i+i+j,M)>

wfcere r=r(n—j, X), xn^=M and

[ZzKfriV-f-t-^AM^ if k=0C2), i=l or A?=l(2), t=2,
[0 otherwise,

f ct(n-j)<X^r(n-j), l^fi^rCn-k-i+j))

I r(n-i, X)<r(n-k-t+i, fi) J,

*) The author has proved this lemma using results on pp.908-915 in [5]. He thinks that
the expresions "r is a power of 2 or" in I(iv) and II(v) of [5, Theorem 20] should be
omitted.
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{(X, ft) | r(n-j, Z)=r(n-k-i+j, //)}

r(n—j, X)=r(n—j, ft), and X<ft or

X^ft according as j=0 (4) or 2 (4)
Q, ft)

i<*

l£j<(k+i)/2,

J=(k+i)/2,

(k+i)/2<j,

Bj=lu, AO
a(n-k-i+j+l) <ft£r(n-k-i+j+l),

a(n-j)<X^rCn-j), r(n-j, X)<r(n

{(X, ft) | r(n-j, X)=r(n-k-i+j+l, ft)}

r(n—j, X)=r(n—j, ft), and X^ftor

X<ft according as j=\ (4) or 3 (4)

1-k-i+j+l,fi)),

BJ=\{«> i«)

Using this lemma, the two relations

5(v*x) =vi+1Ax for *etf*(M; Z*),

j*p(ur®x2)= £ v'+'-'Sqtx for x<=Hs(M ; Zjj) ,

contained in [16, Lemma 1.5] and [13, §2], the exact sequence (5.2) and the

relations (5.4)—(5.5) above, and (6.1)—(6.2) below, we have the following two

lemmas:

Lemma 5.6. Let k^2 and assume that M is an n-manifold satisfying the

condition (*) above and n-k is odd. Then for *=2(&^3) and i=l,

rfn-k-if-M* ',Z) = {p2p(uk+i-3®x2) | *e//"-'w+1(Af; Zz)}

+i*H2n-k-i(A2M, AM;Z)

and i*(eZ2)=0.

Lemma 5.7. Let xG.H*(M;Zr) and y^H*(M; Z5) be of order r and s,

respectively, with dimx+dim.y>». Then the following three relations hold :

(i) w*4(*, JV) = (-l)*+1(l + (-l)*'*)(*®:>0 ifr=s£oo,

(ii) **prA(x, pry) = (.-l)k+1(.l+<i-l')*t*XPrX®y) ifr<s=oo,

Ciii) **PrA(.x, pry) =(-l)k+1+,iimxQ.+<:-l)kt*XPrx*psy) ifr\s, s<co.

The above relations lead to an isomorphism
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'*** : H2n-k-\A2M, AM ;Z)/eZ2—^->H2n-k-KM2 \ Z) (-Dft<*

C58) / 2 ««-'(Af;Z)(8>H»-*-|+^Af;Z)
V " /0£/£[<A+f)/2]

(l+(-l)*'*)l H-i(j|tf; Z)*H«-*-/+1+^(M ;Z)
MS*£[(A+f-l>/2]

where i' : A*2 c (M2, JAQ is the natural inclusion ; while by the relations (2.3)
(2.6), the map i induces an isomorphism

I* . H2n-k-x(j^.. Z)(-1)^*^>H2w"*_,'(A/2-JAf ;Z)<_1)*'*.
Therefore we have a commutative diagram of isomorphisms

rf*-*-*(A*Mt AM ; Z)/eZ2—>Imi*(c//2rt-*-,'(Af* ; Z))

(5.9) s {/*„* =

lf.n-k-i^ . z)(-i)*/*—>H2n-k-i(M2-AM ; Z)(_1) <*.

Theorem 3.2(i) for «-& odd follows from Lemma 5.6 and (5.8)-(5.9).
The proof of (ii) for n-k odd is given in the same way as in the case where M

is a homologically (&-l)-conneted «-manifold [19].

§ 6. Remarks on the torsion product

By the Kunneth formula, there is a split short exact sequence

0- £ HKX',Z)®H«(Y;Z)^H\XxY',Z)-+ £ H»(X\ Z)*W(Y ; Z)->0.
p+q=i p+q=i+l

Both for x&H\X\Z) and y^Hq(Y\Z) of finite order, we should like to express

their torsion product x*y&Hp*q~l(<XxY; Z) by using the tensor product and the
Bockstein operator.

Let r and 5 be the order of x and y, respectively, such that r\s, and let *'e

HP~\X ; Zr) and jf'Gfl*"1^ ; Zs) be the elements such that

firx' =x and fisy' =y.

Under these circumstances, we shall show the relations

(6.1) X*y = (-\)P-lPr(x'®Pry'), y*X=C-l)"-1f3rCPry,®X'),

(6.2) t*(x*y) = (-iy«-1y*x.
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Since (6.2) immediately follows from (6.1), we now prove (6.1). Let S*(X; G)
and S*(Y ',G) (G=Z, Zr or Zs) be the cochain groups of X and Y with coefficients

in G, and let 3 : £'( ; G)->-S/+1( ; G) be the coboundary operator and let [c] mean
the cohomology class of a cocycle c. For x' and .y' above, there are two cochains

x'^SP~\X\Z) and y^S^^QT ; Z) such that

0*']=*' and Cfcy']8^'.

Put

*=(l/r)3*' and y=0-/s)dy'.

Then

[*]=&.*/=*, LvIN&y' =y,

and

d((s/r)x')=sx dy'=sy.

By the definition of torsion product and its property, respectively, on p. 150and p. 170

of [6], we get

x*y=(-l)P-*ia/s)d(<:s/r)x'<g)y>)-]

=(-l)*"1[*(E)3'/ + (-l)/'"1(s/0*/®5|] ;

while

M^/®^/)=i8r(l>^/]®[^/])=i8rl>r(^(8)J/)]

= KX/rXrx®y' + C-l)*"1*7®*^)]

= \x®y + ( -l)*"1 (s/r)x'<gjyl

This show the first relation of (6.1). The second is obtained in a similar way.
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