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Abstract

Denote by [M C R™] the set of isotopy classes of embeddings of an n-manifold
M in Euclidean m-space. In this note, we shall study the set [(McR2—*] for k=2
and 3 in the case when M is an n-manifold satisfying the condition Hi(M ; 2)QR2Zz
=0 for i<k, and generalize some results in [15] and [19].

§ 1. Introduction

Throughout this nots, an #n-manifold and an embedding mean respectively a
closed connected differentiable manifold of dimension # and a differentiable embedding.
Let [McR™] denote the set of isotopy classes of embeddings of a manifold M in
Euclidean m-space R™. The set [M C R¥~*] has so far been studied (see [17]-(19]
and [15]), when M is an #-manifold and k=1, when M is a homologically (2—1)-
connected #-manifold (#22), and when M is a lens space L*~D/2(p) mod p and
1=<k<5. These results make us interested in [McR#-%] or [McR™ *] for an
n-manifold M satisfying the condition

» ﬁ,‘(M; 2YRZ,=0 for i<k.

In this note we shall study the set [Mc R?"~#] for an n-manifold M satisfying the
above condition (#) for k=2 and 3, and prove the following theorems :

Theorem A. Assume that M is an n-mani fold (n=8) satisfying the condition
Hy(M ; Z)RZ;=0. Then, when it is not empty, the set [MCR**~%] is given as
follows .
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(MC R 2]=H""\(M ; ZYRH""*(M ; Z) x (1 +¥)(H*"W(M ; Z)sH""Y(M ; Z))

H"3(M ; Zy) if n=0(4), w(M)=0,
or if n=2(4), w(M)=0,
H'Y " 3(M ; Z))x2Z, if n=2(4), wy(M)#0,

H"=3(M ; Zp) x H"2(M ; Z,) [SqPH" (M ; Z;)
if n=0(4), wo(M)=0,
H""3(M ; Z) x H" ¥ (M ; Z;) if n=1(4), ws(M)=0,
H"3(M ; Z)xH" XM ; Z3)XZ, if n=3(4), wy(M)#0
or if n=1(4), wa(M)#0, ws(M)=0,
H"™3(M ; Z) x H*"Y(M ; Z3) /(Sq?0:H" " 4(M ; Z)+5q'H"~3(M ; Z,))
x H*"%(M ; Z3) if n=1(4), wy(M)=0,
H""3(M ; Z) xH""%(M ; Z;) /Sq0,H" (M ; Z) x H""%(M ; Zy)
if n=3(4), w(M)=0.

From now on £ : MxM— Mx M is the map defined by #(x, y)=(y, %) and the
symbol * denotes the torsion product.

Corollary. If M is an odd torsion m-manifold, i.e. if M is an n-mani fold
such that H(M ; 2)R2Z,=0 for i<n (cf. [9]), then

[MCR"-3]=H""\(M ; Z)QH""(M ; Z) X (1+¥)(H""1\(M ; Z)sH""\(M ; Z))

{ 0 n=0(2),
X
H*3(M ; Z) n=1(2).

Theorem B. Assume that M is an n-manifold (n=10) satis fying the con-
dition H((M ; ZYRZ,=0 for i<3 and that the first Pontrjagin class mod 3
Py(M) of M vanishes if n is even. Then, when it is not empty, the set
[McCR"=3] is given by

[MCR=3]=H""\(M ; Z)QH""3(M ; Z) x H*~Y(M ; Z)+H""¥(M ; Z)
X (1) (H"~AM ; ZYQH""%(M ; Z))
H*4(M ; Z) xH" "3 (M ; Z) /SCH"S(M ; Z3)  if n=1(4),
H"4(M ; Zp) if n=3(4),
H"4(M ; Z) xH*"3(M ; Zp) x H""Y(M ; Zg)
[H”'acM; Z)/(SqPooH" ~5(M ; Z)+Sqt H"4(M ; Z))
X

X

if n=2(4,
H"=3(M ; Z,) /Sq2e,H*~5(M ; Z) if n=0(4).
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These are the generalization both of the Main Theorem for 2=2 and 3 in [19]
and Theorem 4(2)—(3) in [15].

This note is, in a sense, a sequel to the papers [15] and [17]—[19]. Hence the
defintitions and notations used here are exactly the same as those explained in [18]-
[19].

The remainder of this note is organized as follows : In § 2, we give some definitions
and notations, and restate Haefliger’s theorem [3, Théoréme 1/]by using the homotopy
set of liftings and the reduced symmetric product M* of M. In §3, we state the
cohomology of M*, postponing the proof of the integral case till §5. The proofs of
Theorems 4 and B are given in §4.

§ 2. Preliminaries

We study the set [MCR?~*] along the lines of Haefliger [3]1—[4]. The cyclic
group Z, of order 2 acts on the product X? of X via the map ¢ above. The diagonal
4X in X2 is the fixed point set of this action. The quotient spaces

X*=(X—4X)/Z; and AX=X*/Z,

are defined.  The former is called the reduced symmetric product of M.  Here the
projection p : X2—A4X—X* is a double covering, whose classifying map we denote by

& X*—»P%,

Haefliger's theorem [3, Théoréme 1/] can be restated as follows (cf. [18, Theorem
1.1 :

Theorem 2.1 (Haefliger), If 2m>3(n+ 1), then for an n-manifold M, there
is a bijection

[McR™]=[M*, P"71 ;&1

Here the right hand side of this equality is the homotopy set of liftings of
£ M*P™ to (§° X z,S" D =pm-l,

To compute [MCR?~#]=[M*, P #~1;£] we may use Proposition 4in [1] or
Proposition on p.414 of [14] if =2, and Proposition 1.1 in [15] if k=3.

we give some notations which will be used later.

Z,<a> denotes the cyclic group of order  generated by ¢ (S, Z,=2).

The non-trivial elements #SH!(P™ ; Z,) and veHY(X*; Z;) denote the first
Stiefel-Whitney classes of the double coverings S*—P> and X?—4X—X*, respectively.
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The relation &*u=v holds.
For xeHY(M ; Z;), Z,[x] (r< o) denotes the sheaf of coefficients over X, locally
isomorphic to Z,, twisted by x, and Z, denotes either Z, or Z,[x]. Let
pr: H(X; Z[x)—HI(X ; Z[x])  (s=0(r) or s=00)
and
B HY(X; Z[x])—HI(X : Z[x]) (r<oo)
denote the reduction mod 7 and Bockstein operator, respectively, twisted by x. Then
oy and By for x=0 are the ordinary p, and B,, respectively. pr and B, denote either
pr and B, or the ordinary p, and §,, respectively. By [2] and [11], we have
Sqt if Z=2,

2.2 Pofy = { Sqi+x it Z= 2],

For an orientable #z-manifold M, there is a short exact sequence

Tk

; é >
2.3)  0—H(M ; Z)——Hi+**(M? ; Z)—>H* "(M? —4M ; Z)— 0 (rS ),
where 7 : M2— AM—M? is the natural inclusion,
2.4 $1(x) =U(1Qx) for xeH!(M ; Z,),

and UeH"(M?;Z) is called the Thom class or the diagonal cohomology class of

M [8, §11]. Further there are the following relations (cf. [12, p.305] and (8,
Theorem 11.11]) :

2.5 ¥¢1(x) =(—1)"¢1(%) for xeHY(M ; Z,)
and
(2.6) U=+(QQ®M+ (—1)*MK1)

mod X H/(M;Z)QH"I(M;Z)+ ¥ HI(M;Z*H*"*'"/(M, Z)
1Sjsn—1 15jSn-2

where

H™(M ; Z)=Z,<M> (rSeo).
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§ 3. The cohomology of M*

Throughout this section we assume that M is an #-manifold satisfying the condition
©) HiM ; 2)RZy=0  fori<k (k22).

It is equivalent to the condition H" (M ; Z;)=0 for 0<i <k.

Under this condition we should like to determine the cohomology of M*. The
notations used here are the same as those explained in [18]—[19] (most of them are
the same as those in [13, §21). Let

o=1+ 1% I H¥ (M | Zp)—>H*(M? ; Z).

Then Lemma 3.1 of and (4.1)—(4.2) of [19] are valid if the condition Hi(M ; Z)
=0 for i<k in [19] is replaced by (*).

Lemma 3.1 (cf. [19]). Assume that M is an n-manifold satisfying the
condition Hy(M ; ZYRZ,=0 for i<k. Then

(i) H'(M*;Zp)=0 for i>2n-k,

(i) H¥5(M*; Zp) = {po(MQx) | x€H""*(M ; Zp)} (= H"*(M ; Zp)),

(i) HZ=%-1(M* ; Zp)={p(u*"'®2%) | x€H" *(M ; Zp)} (= H*"¥(M ; Z3))
+{p(u*'®2%) | x&H UM ; Zp)} (= HPFI(M Z)),

(v) HZ=*=2(M*; Z))={p(¥*®2?) | x€H"*"Y(M ; Zp)} (=H"*"U(M ; Zp)
+{puF2®2%) | xeH* MM ; Z)} (= H"*(M; Z2))
+{p(ut+2@2%) | xEH " F"U(M ; Zp)} (SH" %X (M ; Zp))
+[{po(x®y) | x, yEH"¥(M ; Zp), x#3}],

where the term in the square brackets [ ] is present only when k=2,
(v) there are equalities

p(1* @) =p(U(1Qx)) =po(MRx) EH™™"*(M* ; Z,) for x&H""*(M ; Zp)
and an isomorphism

x D HP k(M 5 Zg) —SHPR(M 5 Z5)  (1(%) =po(MQ1)).

Further we have the following theorem, postponing its proof till §5:
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Theorem 3.2. Let k=2 and assume that M is an n-manifold satisfying the
condition H;(M ; Z)YRZ,= 0 for i<k. Then
(i) for i=2, k=3o0r i=1,

HZn—k—i(M* : Z)

L HYI(M; Z)QHRi(M ; Z)
1SFS(&+i/2)
=p*-17* 1+ (=DA% +

Hn—-j M; *Hn-la-t’+l+j M;
1§i§[(k§i—l)/2] ( Z) ( 2

0 if n-k is even,

+{P*'1?*(l+(—1)”t*)(H”(M; ZYRQH"~*—i(M ; Z)) if n-k is odd,
( { Bop(W*@1%) | xEH"*-Y(M ; Z5)} if i=1, n-k is even,
{Bap(u* 247 | x€H""H(M ; Z5)} if i=1, n-k is odd,

+{ {Bep(#*3@12%) | xeH"*(M ; Zp)}
+{Bap(u** 1@ | xeH " *"2(M ; Z)}  if i=2, n-k is even,
\{ Bop(u* @22 | xEH"*-Y(M ; Z;)} if i=2, n-k is odd ;

(i) pH~R"2(M*; Z)
={p(u*2@2%) | xeH" " *(M ; Z)} + {p(u**2R2%) | x€H* %~ M ; Z,)}
+[{oo(x®y) | 2, yeH""¥(M ; Z;), 2#y}] if n-k is even,
={p(u*@1?) | x€H"*" WM ; Zp)} + {po(MQp2%) | xSH""*~2(M ; Z)}
+{oo(x®) | 2, yEH"2(M ; Z5), x+#3}] if n-k is odd ;

where Z=Z or Z[v] according as k is even or odd, and the terms in the square
brackets appear only when k=2,

Let ¢ be an odd prime. If we consider the cohomology spectral sequence (cf. [7])
for a fibration MZ—AM->S>x zz(W—AM)—»P“, which is homotopically equivalent

to A/I"’—AM—p)M*i)P“, then it follows that the map p induces an isomorphism
p*: HI(M* ; Z)HI (M= AM ; Z) V%= xe HI(M— AM ; Z,) | (—1ht*x=x))

where Z,=Z, or Z,[v] according as % is even or odd. By the Kiinneth formula, we
get
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HU (M2 Zy=(1+ (DM T H" (M ; ZHQH" (M ; Zg))
0<j<lir2)

— (1) -GS n-itiopf
+(1-(-1 t*)(osélm]H (M ; ZHRH" (M ; Zy)).

Here (1+(—1)*#*)—image is (—1)*#*—invariant, and by (2.5), ¢:H" ‘(M ; Z,)

CHZ-i(M? ; Z,)¢-V™*, This, together with (2.4) and (2.6), leads to a commutative
diagram of isomorphisms

Tk
CHER=iM 5 2,) J$uHP = (M 5 Zg) 0 s HinmiaP— A ; 2y ¢

\\5 =
13\~ n—j . n—i+j B
aA+(-D f"‘)(l QE[.- /2]H M ; ZHRH M;2))
+{0 if n-k is even,
A+ (DA HMM ; ZHRH" (M ; Zp)) if n-k is odd,

and hence the following lemma holds :

Lemma 3.3. For any odd prime q,

HI=i(M* ; Z) =
P QH (DR T HYI (M ZHRH (M ;) Zy))
155sli/2]
{ 0 if n-k is even,
PR+ (— )RR HM(M ; ZORH" (M ; Zp)) if nk is odd,
where Z, = Z,; or Z,[v] according as k is even or odd.

Corollary 3.4. There is an isomorphism

TH-1p%  HEPI(M* ; Z9) = 0 if n-k is even,
= {(1+(—1)**)(MRx) | x€H"Y(M ; Zg)} if n-k is odd.

§ 4. Proofs of Theorems A and B

We prove only Theorem B and not Theorem A because the proof of the latter is
similar to, and moreover rather simpler than, that of the former.
Assume that M is an z#-manifold (2=10) satisfying the condition

(*) : H(M ; 2)@Z=0 for i<3,
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and that it is embedded in Euclidean (2#n—3)—space. By Theorem 2.1, Lemma 3.1
and [15, Proposition 1.1], we have a filtration
[MCR™-3]=[M*, P4, ¢]l=FyDFDF;DF3> 0
such that
Fo/Fy=H™""4(M* ; Z[v]), F/F3=0,
Fy/F;=Coker 6, F3=0,

where
6 : H#=S(M* ; Z[v])—>H™~3(M* ; Zp) x H**~Y(M* ; Zg[v]),
o=(Sg+(2"; 3w, Pir.
Hence we have
4.1 [(McRE=3]=H2-4(M* : Z[v]) x Coker &

We first consider Coker 6. If 7 is odd, then by Corollary 3.4, H?*~1(M* ; Zg[v])
=0 and hence Coker 6 = Hn~3(M* : Zz)/(Sq2+(2”2_3)02)252H’~’"‘5(M* : Z[v]), which
is obtained in exactly the same way as in [19, (4.6)], i.e.

0 n=3(4),
4.2) Coker 6=
H"™3(M ; Zy) /Sq?H" ~5(M ; Z) n=1(4).

If n is even, there is a commutative diagram

pnscats s ziol—— PP st zio)y i 20)

;"*—lp*
4.3) : ; ;
% H'H(M; Z)QHH(M ; Z) = | et
=752
1-t% + 1 ]
3 H"I(M; Z)+H"*I(M ; Z) —»(qs—t*)df”(M; ZHQH""1(M ; Z3)),

1=5=2

where by Corollary 3.4, 7*1p* in the right hand side is an isomorphism, and by
(5.8)—(5.9) below, the one in the left is an epimorphism. To study ?%, recall
Yo's operation Q! [20, p.1481 and p.1485],

Q' : H(M ; Zg)—>H!*%(M ; Z3)
such that

@'=0 for izn—5 and Qz+D=WiM)x,
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where Wi(M) is the first Wu class mod 3, which is equal to Py(M), the first
Pontrjagin class mod 3 of M [8, $.229]. Hence

Dig—0 for xeH(M; Z5), i>n—5,
because of the assumption Pj(M)=0. Using this relation, the diagram (4.3) and the
relations (6.1) below, we get @%,H“*(M* 1 Z[v]) =0, and so
(4.4) Coker @=HM 3(M* ; ) /Sq?poH" - 5(M* ; Z[v]) xH*"}(M ; Zs) n=0(2),
The group Sq°F.H?" S(M*; Z [v]) for even 7 is obtained in exactly the same way

as in [19, (4.10)] and is given as follows :

Sq*peH™5(M ; Z) n=0(4),
(4.5) SqBHS(M* ; Z[v]) =
SqPeH"5(M ; Z)+Sq'H""4(M ; 23) n=2(4).
Thus Coker © is determined by (4.2) and (4.4)—(4.5).
On the other hand, the group H?"~4(M; Z[v]) is given by Theorem 3.2.
Therefore by (4.1), the set [McR*3] is determined and so Theorem B is
established.

§5. Proof of Theorem 3.2

Let £=2 and assume that M is an #-manifold satisfying the condition

(» Hy(M ; DRZ=0 for i<k.
Case I : n-k is even. If we consider the cohomology spectral sequence [7] for

MZ—AM-€—>M*—€—>P°°, then it follows that the rank and the odd torsion subgroup of
HEn-k=i¢(M* ; Z) are equal to and isomorphic to those of H—R=i(M2— AM ; Z)('”k‘*
by p*. Since by (2.5), ¢:H" *-i(M; Z)CH™-k-i(M? Z)('”k'* because #n-% is
even, there is an isomorphism

'i'* : I{Zn—k—i(MZ : Z)(-l)kl*/¢!Hn—k—i(M; Z)st”"“"(Mz—AM; Z)(~1)kt*.
Here by (2.4) and (2.6), ¢ is a split monomorphism.  Hence the left hand side of

this equality is isomorphic by #* to the subgroup of H**~#~{(M?; Z),

% HYHM ZYQHMRH(M ; Z)
1sjislh+i)/2]
A+ (—1)*t%) . + .
Hn? -](M : Z)*H”_k_‘+l+J(M : Z)
1si<l(k+i-1)/2]
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which is an odd torsion group for i=2 (£=3) and i=1, under the condition (*). This
shows that for i=2 (k=3) andi=1,p* : H2*-k=i(M* ; Z)—>sHn—k=i( 0P gM : Z)-D e
is an epimorphism, whose kernel is a 2-primary component. This component is easily
calculated in the same way as in [19, § 5], i.e. by using (2.2), Lemma 3.1, the
Bockstein exact sequence and [19, Lemma 3.2], and is given as follows :
H k=1 M* 5 Z) = {Bop(*®x2) | xeH"*~1(M ; Z»)} mod odd torsion,
Hin-R=2(M* ; Z)= (Bop(u* @) | x€HP-R~2(M ; Z,))
+ {Bap(#*3®22%) | x€H"*(M ; Z;)} mod odd torsion (£=3),
PHMR2(M* | 2) = {p(1Q#2) | x€H""X(M ; Z;)}
+{p('®2%) | xeH" (M ; Z;)}
+{po(xQy) | x, yEH" (M ; Zp), x#y} (k=2).
Here there is a relation
P2Pop(WRxY) =p(W/ H1R2%) if (§, dimx)=(k+1, n—k—2), (-3, n—k).
The argument above establishes Theorem 3.2(i) and (ii) for #-k even.

Case II : n-k is odd. We make an argument similar to that used in [19, §51.
For the natural embedding j: PM—M*, write j*v as v in HI(PM ; Z;) and consider
the exact sequence in [19, (5.3)],

P j* j*
G.1) oH"YPM ; Z)—HI(AM, AM ; Z)t—>H"(M* : Z)J—>H"(PM A

The cohomology of PM has been given by Rigdon [10, §9] (cf. [19, Lemma 5.41).

Lemma 5.2 (Rigdon). Assume that M is an n-manifold satisfying the
condition (x) above and that n-k is odd. Then

(i) HER-1(PM ; Z)= {Ba(o" x-+0"~4=25ghx) | xeHM*(M ; Z;)}

+Zp<Ba(v™ H2M)> if k is even,

={Bo(v" %) | x€H" *(M ; Zp)} if kis odd ;

(ii) H»F-2(PM: Z)={Ba(v" %) | xcH" *-Y(M ; Z)}, if k is even,
={Bo(v"2x+v" R 35g*+1x) | xe HPRTI(M | Zp)}

+Zy<Ba (v *3M)> if k is odd.

The cohomology of (A2M, AM) has been investigated by Larmore [5].  There
are elements

AxeH"(A2M, AM ; Z,[v]) for x&H"(M ;Zp) (pSo0),
4(x, YEH™S(A2M, 4M ; Zyv]) for x€H"(M ; Zp), yeH (M ; Zp) (p= ),
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satisfying the conditions
*x=2Q1 -1R®x,
=*4(x, ) =2Qy—(—1)"yX*,
where « : (M2, AM)—(A2M, AM) is the natural projection. Let

6.3

AxAy if Zy=2,,
4=, » if Zy=2Zy[v],

and assume that the integral cohomology groups of M are of the form

6.9 A=, ¥ ={

HYM ; Z)=Z<M> (pM=M),
H™"M:Z)= 3 Zymiy<tmi> (direct sum) for m<n,
1SiST(m)

X, i=Prim, D¥m. i (ym,t'EHm_l(M; Zym.py) for a(m)<i<r(m),

where the order »(m, ) is infinite for 1Si<a(m) and a power of a prime for
a(m) <i < r(@m), and if a(m) <i<j < y(m), then either (r(m, i), r(m, H)=1
or r(m, i) | r(m, j) holds. Then using these notations we have

Lemma 5.5 (Larmore®). Assume that M is an n-manifold satisfying the
condition (») above and that n-k is odd. Then
(i) H#R(APM, AM ; Z) has Zy<Bo(v" *"\AM)> as a direct summand if k
is even,
(ii) if i=2 (k=3) or i=1, then
H2=k=i( M, AM ; Z)=¢eZ,+ pX Z<AM, Xp—p-i >
1SiSa(n—Fk-1)

+ X )X Zr<Brd(Yn~j.1, Prin-p—i+jw)>
1Sjsk+i (1.#)€AjUAj

z Z ,Zr<5r/_l<yn—j.), pryn—k—i+l+j.ﬂ)>
1=j<k+i (1.)EBUB;

where r=r(n—j, 1), X, o=M and

{Zg<52(v”‘k""1/1M)> if k=0(2), i=1 or k=1(2), i=2,
edn=
otherwise,
a(n—j)<A=y(n—j), 1SpsSry(n—k—i+j)
45 = {(2, ©) . . }
r(in—j, D<r(n—k—i+j, ) ,

*) The author has proved this lemma using results on pp.908-915 in [5]. He thinks that
the expresions ”r is a power of 2 o' in I(iv) and II(v) of [5, Theorem 20] should be
omitted.
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, J r(in—j, D=r(n—j, p), and A<p or
4; =114 ) . } ji=k+0)/2,
l A<p according as j=0(4) or 2 (4)
é , k+1)/2<5,
an—k—i+j+D)<pSy(n—k—i+j+1),
B; = {(2, #) . . . . }
a(n—j)<2sr(n—j), r(n—j, D<r(n—k—i+j+1, 1) J,
AQ@, ) Vr(n—j, H=r(n—k—i+j+1, p} 1Sj<(k+i-1)/2,
, J r(n—j, D=r(n—j, p), and 2Spor
B = {(z, 0 T } j=G+i-1/2,
l A<y according as j=1(4) or 3 (4)
¢ k+i-1)/2<j

Using this lemma, the two relations
§(vix) =v 1 4x for er*(M 12y,

PR =3 v'HiS¢'x  for xeH (M ; Z),
1Stss

contained in [16, Lemma 1.5] and [13, §2], the exact sequence (5.2) and the
relations (5.4)—(5.5) above, and (6.1)—(6.2) below, we have the following two
lemmas :

Lemma 5.6. Lel k=2 and assume that M is an n-manifold satisfying the
condition (¥) above and n-k is odd. Then for i=2 (k=3) and i=1,

Hz”"""(M* 1 2) ={ﬁ2p(u"+"'3®x2) [ ern-k—iH(M P Zo)}
+IMHEREIEM, AM ) Z)
and i*(eZ)=0.

Lemma 5.7. Let x€H*(M ;Z,) and yeH*(M ,Z,) be of order r and s,
respectively, with dim x+dim y>#. Then the following three relations hold .

(i) w4, N=(-DF1A+(-D*H Ry if r=sseo,
(i)  7F A, o) =(—D*1A+(-1)*%(B2Ry) if r<s=co,
GD 235, Ax, o) =(—DF MU (~DHN) Brspsy)  if 7ls, s<oo.

The above relations lead to an isomorphism
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PTA S HZ””""(AzM, AM; Z)/szz =——>H2”_k_i(M2 : z)(-l)kt*
il

GR)) Y HYI(M Z)QHPTR(M ; Z)
0sjsik+i)/2] +

14+ (—1)ke* . .
( ( ) ) H”_’(M; Z)*H"-k_“'!"'-’(M; Z)
1S5S [(B+i-1)/2]
where i/ : M2 c (M2, 4M) is the natural inclusion ; while by the relations (2.3)—
(2.6), the map 7 induces an isomorphism

T Ik MR s Zy(DRR_ T pn k=i M Zy(-kex,
Therefore we have a commutative diagram of isomorphisms

g %
HVR-i (M, AM ; Z) [sZ—Tm i* (CHI=i(M*  2))

.9

irep* = | p*

| T
I_I‘Zn—k—t’(A,IZ : Z)(-—l)kl*_t__)HZn—k—i(Me_AM : Z)(-l)kt*'

=

Theorem 3.2(i) for #-% odd follows from Lemma 5.6 and (5.8)—(5.9).
The proof of (ii) for #-k odd is given in the same way as in the case where M
is a homologically (%-1)-conneted #-manifold [19].

§ 6. Remarks on the torsion product

By the Kiinneth formula, there is a split short exact sequence

0~ X HY(X ; DYQHIY ; D)—H(XXY ; Z)—~ 3 HN(X; ZHIY ; )~ 0.
g=i p+g=i+l

Both for *€H?(X: Z) and yeHY(Y; Z) of finite order, we should like to express

their torsion product x+y&H?*?"1(XxY; Z) by using the tensor product and the
Bockstein operator.
Let 7 and s be the order of x and y, respectively, such that 7|s, and let 2’

HP"Y(X: Z,) and y' €HIY(Y ; Zs) be the elements such that
Brx’=x and  Bsy’'=y.
Under these circumstances, we shall show the relations
6.1) 2ey=(—DP18,(x'®pry’),  yrx=(—1)"18(0ry'®2"),
6.2 tH(axey) =(—1)P7"1ysz.
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Since (6.2) immediately follows from (6.1), we now prove (6.1). Let S*(X; G)
and S¥(Y :G) (G=Z, Z, or Z;) be the cochain groups of X and Y with coefficients
in G, and let 9 : §*( ; G)=S**1( ; G) be the coboundary operator and let [¢] mean
the cohomology class of a cocycle ¢. For x/ and y’ above, there are two cochains
FeSP-1(X; Z) and 7/ €57 1(Y ; Z) such that

Lomx’ J=x' and Losy’ 1=y’
Put

E=(1/r)ox’ and ¥=(1/5)35".
Then

[x]=8x'=x, 1=8sy’' =y,
and

o((s/NE)=5% 9y’ =573.

By the definition of torsion product and its property, respectively, on p.150 and p.170
of [6], we get

xxy=(—1)?71[(1/5)a((s/N*' ®¥")]
=(—DPERY + (1D 1(s/NF' RF] ;
while
Br(x’ @pry”) =Br([0:x" IR0y’ 1) =BrLor(Z' ®F’)]
=[A/N(rZQF + (1?72 ®s¥)]
=[ZQY’ +(~1)?"1(s/)Z’ Q7.

This show the first relation of (6.1). The second is obtained in a similar way.
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