<table>
<thead>
<tr>
<th>著者</th>
<th>大島武則, 倉田照男</th>
</tr>
</thead>
<tbody>
<tr>
<td>原文</td>
<td>鹿児島大学理学部紀要 Ⅹ 数学・物理学・化学</td>
</tr>
<tr>
<td>巻号</td>
<td>21</td>
</tr>
<tr>
<td>号</td>
<td>2</td>
</tr>
<tr>
<td>発行元</td>
<td>鹿児島大学</td>
</tr>
<tr>
<td>別言語のタイトル</td>
<td>ハコネウツギの根の樹皮から得た樹脂の葉の成分について</td>
</tr>
<tr>
<td></td>
<td>発表</td>
</tr>
</tbody>
</table>
On the Constituents of the Leaves of Weigela coraeensis

IWAGAWA Tetsuo, HASE Tsunao

<table>
<thead>
<tr>
<th>篇名</th>
<th>鹿児島大学理学部紀要 第數学・物理學・化学</th>
<th>鹿児島大学理学部紀要 第數学・物理學・化学</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>IWAGAWA Tetsuo, HASE Tsunao</td>
<td>IWAGAWA Tetsuo, HASE Tsunao</td>
</tr>
<tr>
<td>別言語のタイトル</td>
<td>ハコネウツギの葉の成分について</td>
<td>ハコネウツギの葉の成分について</td>
</tr>
</tbody>
</table>

URL: http://hdl.handle.net/10232/00010056
ON THE CONSTITUENTS OF THE LEAVES OF
WEIGELA CORAEENSIS

Tetsuo IWAGAWA and Tsunao HASE*

(Received Sep. 10, 1988)

Abstract

From the leaves of Weigela coraeensis ursolic acid, β-sitosteryl β-D-glucoside, scopolin, secologanin dimethyl acetal and hyperin (quercetin-3-O-β-D-galactoside) have been isolated.

Introduction

Weigela coraeensis (Japanese name: hakoneutsugi) is an ornamental shrub and grows in the temperate zone of Japan. Although the family Caprifoliaceae is known as a rich source of iridoid glycosides[1], there seems to be no report on the constituents of Weigela species. We have now examined the methanolic extract of the leaves of W. coraeensis. Five compounds 1, 2, 3, 4 and 5 have been isolated according to the isolation procedure shown Fig. 1.

Results and Discussion

Compound (1) was crystallized as prisms, mp 251-252° with a molecular formula C_{30}H_{48}O_{3} · 1/4H_{2}O. It gave a positive Liebermann-Burchard's reaction. The IR spectrum showed absorption bands for a hydroxyl group at 3400 cm⁻¹ and a carboxyl group at 1690 cm⁻¹. The ¹H NMR spectrum indicated signals of a proton attached to a carbon bearing hydroxyl group at δ 3.46 (1H, t-like, J=8 Hz) and an olefinic proton at δ 5.50 (1H, m) besides those of typical triterpenoids at δ 0.8-2.4 (m). The characteristic fragmentations of the mass spectrum at m/z 456 [M]⁺, 248, 203, 189 and 133, arising from a retro-Diels-Alder cleavage, suggested that compound 1 was either ursolic acid or oleanolic acid. The IR and ¹H NMR spectra

* Department of Chemistry, Faculty of Science, Kagoshima University, Kagoshima, 890 Japan.
Fresh leaves of *W. coraeensis* (1 kg) extd. with MeOH (16 ℓ, x 2) concd. added H₂O extd. with Et₂O

Et₂O extract (16.5 g) Si gel chromatog.

1 (554 mg)

Aq. soln extd. with EtOAc

2 (59 mg)

EtOAc extract (10 g) Si gel chromatog.

3 (677 mg) 4 (107 mg) 5 (10 mg)

Fig. 1. Isolation procedure of the compounds

were identical with those of ursolic acid.

Compound (2) was isolated as a white mass, mp 263-264° with a molecular formula C₃₅H₆₀O₆·2/3H₂O. The IR spectrum showed a strong hydroxyl absorption at 3400 cm⁻¹. The ¹H NMR spectrum showed a typical phytosterol skeleton at δ 0.55-2.36. On acetylation with acetic anhydride and pyridine, compound 2 gave needles (6), mp 171-172° with a molecular formula C₄₃H₆₀O₁₉. The ¹H NMR spectrum of the acetate indicated the presence of four acetoxyl groups at δ 1.98-2.06 (3H x 4, s). The above results suggested that compound 2 was β-sitosteryl β-D-glucoside. The spectral and physical data of 2 were in agreement with those of β-sitosteryl β-D-glucoside.

Compound (3) was an amorphous powder with a molecular formula C₁₉H₃₀O₁₁. Acid hydrolysis yielded D-glucose and a brown polymerized product like other iridoids. The UV absorption maximum at 234 nm (ε 8080) and the IR absorption bands at 1700 and 1625 cm⁻¹ were characteristic of a conjugated enol-ether system. The ¹H NMR spectrum showed signals due to a C-3 proton at δ 7.60 (s), vinylic protons at δ 5.00-5.40 (3H, m) and carbomethoxyl protons at δ 3.55 (3H, s) together with those of an anomeric proton at δ 5.27 (d, J = 8 Hz). The above results suggested that compound 3 was a secoiridoid glucoside. This was confirmed by a
peak at m/z 165 in the mass spectrum characteristic of secoiridoid glycosides[2]. In the 1H NMR spectrum, two singlets due to methoxyl protons at δ 3.26 (3H x 2) and signals assignable to a -CHCH₂CH- moiety at δ 1.79 (1H, ddd, J = 6, 9 and 15 Hz), 2.39 (1H, ddd, J = 7, 7 and 15 Hz) and 4.62 (1H, dd, J = 6 and 7 Hz) were observed. Acetylation of 3 with acetic anhydride and pyridine afforded a tetra-acetate (7) with a molecular formula C₂₇H₃₈O₁₅. Compound 3 was therefore assumed to be secologanin dimethyl acetal on the basis of the data described above. The physical and chemical properties of 3 were identical with those of an authentic sample[3]. Compound 3 would be formed during extraction process.

Compound (4) was needles, mp 216-220° with a molecular formula C₁₆H₁₈O₅ • 1 1/3H₂O. Absorption bands at 1725, 1700, 1615 and 1565 and 1505 cm⁻¹ in the IR spectrum suggested that compound 4 was a coumarin. Additional evidence for the presence of this carbon skeleton came from the 1H NMR spectrum. The signals corresponding to C-3 and C-4 protons appeared as an AB system at δ 6.30 and 7.64 (J = 9.5 Hz). Two singlets at δ 7.01 and 7.43 (1H each) were attributable to C-8 and C-5 protons, respectively. The 1H NMR spectrum also showed the presence of a methoxyl group at δ 3.74 (3H, s) and an anomeric proton at δ 5.64 (1H, W ½ 12 Hz). Compound 4 was treated with acetic anhydride and pyridine to give a tetra-acetate (8), mp 169-169.8° with a molecular formula C₂₄H₂₆O₁₃. The above date suggested that compound 4 was scopolin. The spectral and physical data of 8 were identical with those of scopolin acetate[4].

Compound (5) was yellow crystals, mp 238-240° and had a molecular formula C₂₁H₂₀O₁₂ • H₂O. The UV spectrum had absorption maxima at 257 nm (ε 18000) and 359 nm (ε 15000). The IR spectrum showed absorption bands of a hydroxyl group at 3400 cm⁻¹, a conjugated carbonyl at 1655 cm⁻¹ and a phenyl group at 1605 and 1500 cm⁻¹. The above data suggested that compound 5 was a flavonoid glycoside. An AB system at δ 6.72 (1H, J = 2 Hz) and 6.77 (1H, J = 2 Hz) in the 1H NMR spectrum were due to C-6 and C-8 protons, respectively. Signals at δ 7.38 (1H, d, J = 8 Hz), 8.22 (1H, dd, J = 2 and 8 Hz) and 8.58 (1H, d, J = 2 Hz) were characteristic for a 3,4-disubstituted B ring. Acetylation of 5 with acetic anhydride and pyridine yielded (9) an octa-acetate with a molecular formula C₃₇H₃₈O₂₀. The 1H NMR spectrum of the latter showed the presence of four alcoholic acetoxy groups at δ 1.86-2.11 (3H x 4, s) and four phenolic acetoxy groups at δ 2.28-2.41 (3H x 4, s). Hydrolysis of 5 with 2N HCl afforded D-galactose and quercetin (10), mp >300°, whose IR spectrum were identical with that of an authentic sample. The UV spectrum of 5 in methanol and methanol-sodium acetate were similar to those of rutin[5], which indicated that the glycosidic linkage in 5 was located at 3-position. Therefore compound 5 should be hyperin (quercetin-3-O-β-D-galactoside).
Tetsuo IwAGAWA and Tsunao HASE

1. [Chemical structure 1]

2. $R = \text{Glc}$

3. $R = \text{Glc}$

4. $R = \text{Glc}$

6. $R = \text{GlcAc}_4$

7. $R = \text{GluAc}_4$

8. $R = \text{GlcAc}_4$

9. $R = \text{Ac} \quad R' = \text{GlcAc}_4$

10. $R = R' = \text{H}$
Experimental

Extraction and Isolation. Plant material was collected in the campus of Kagoshima University and identified by Drs. S. Higashi and M. Abe. The fresh leaves of *W. coraeensis* (2 kg) were extracted with MeOH (16 ℥ x 2). After concentration of the combined MeOH solns, H₂O was added and the insoluble material was removed by filtration. The filtrate was extracted with Et₂O and then EtOAc. The Et₂O extract (16.5g) was chromatographed on a column of Si gel with CHCl₃-MeOH with increasing proportions of MeOH. Elution with CHCl₃ gave 1 (554mg). From the fractions eluted with CHCl₃-MeOH (9:1) 2 (39mg) was obtained. The EtOAc extract (10g) was subjected to CC on Si gel with CHCl₃-MeOH with increasing proportions of MeOH. Elution with CHCl₃-MeOH (92 : 8) afforded 3 (677mg). Compound 4 was obtained from the fractions eluted with CHCl₃-MeOH (9 : 1). The fractions eluted with CHCl₃-MeOH (17 : 3) gave 5 (10mg).

Ursolic acid 1. Prisms from EtOH-H₂O, mp 251-252° (lit. [6] mp 285-288°); IR ν₅₅₀ to cm⁻¹: 3400, 1690; ¹H NMR (100 MHz, C₅D₅N): δ 0.8-2.4 (m), 3.46 (1H, t-like, J = 8 Hz), 5.50 (1H, m); MS m/z: 456 [M]+, 248, 203, 189, 133. (Found: C, 78.05; H, 10.75%. Calc. for C₃₇H₅₈O₃: C, 78.12; H, 10.60%.)

β-Sitosteryl β-D-glucoside 2. A white mass from MeOH, mp 263-264° (lit. [7] mp 250-255°, 280-289°); IR ν₅₅₀ to cm⁻¹: 3400, 1070, 1020; ¹H NMR (100 MHz, C₅D₅N): δ 0.55-2.36 (m), 3.66-4.58 (m, sugar H), 5.06 (1H, d, J = 8 Hz, H-1'), ca 5.6 (m). (Found: C, 71.35; H, 10.37%. Calc. for C₃₅H₆₁O₂: 2/3 H₂O: C, 71.39; H, 10.50%). Acetylation of 2 (19mg) with Ac₂O and pyridine gave 6 (13mg), needles from EtOH, mp 171-172° (lit. [7] mp 168-169°): IR ν₅₅₀ to cm⁻¹: 1750, 1220; ¹H NMR (100 MHz, CDCl₃): δ 1.98, 2.00, 2.03, 2.06 (3H each, s). (Found: C, 69.05; H, 9.11%. Calc. for C₄₅H₆₃O₁₁: C, 69.32; H, 9.20%).

Secologanin dimethyl acetal 3. An amorphous powder, [α]D-58.8° (MeOH; c 0.2); UV λₘₐₓ MeOH: 234 (ε 8080); IR ν₅₅₀ to cm⁻¹: 3400, 1700, 1625; ¹H NMR (100 MHz CDCl₃): δ 1.79 (1H, ddd, J = 6, 9 and 15 Hz, H-6), 2.39 (1H, ddd, J = 7, 7 and 15 Hz, H-6), 2.83 (1H, ddd, J = 6, 6 and 8 Hz, H-9), 3.26 (3H x 2, s, OMe), 3.55 (3H, s, COOMe), 4.62 (1H, dd, J = 6 and 7 Hz, H-7), 5.00-5.40 (3H, m), 5.27 (1H, d, J = 8 Hz, H'-1), 5.79 (1H, d, J = 6 Hz, H-1), 7.60 (1H, d-like, J = 1 Hz, H-3); MS m/z: 403 [M-MeO]+, 372, 171, 165, 139, 75. (Found: m/z 403.1609. Calc. for C₁₉H₂₉O₁₁-MeO: m/z 403.1604.) Compound 3 (7 mg) was treated with 2N HCl to give D-glucose which was confirmed by co-paper chromatography (solvent system: EtOAc-pyridine-H₂O-HOAc, 5 : 5 : 3 : 1). Acetylation of 3 (20mg) with Ac₂O and pyridine yielded 7 (8mg), an amorphous powder; IR ν₅₅₀ to cm⁻¹: 1755, 1710, 1630, 1220; ¹H
On the Constituents of the Leaves of *Weigela coreaeensis*

NMR (100 MHz, CDCl₃): δ 1.84, 1.95, 1.97, 2.04 (3H x 4, s). (Found: m/z 571.1994. Calc. for C₂₇H₃₈O₁₅-MeO: m/z 571.2025.)

Scopolin 4. Needles from MeOH, 216-220° (lit. [6] mp 218°); IR ν̇(ν̈max cm⁻¹): 3350, 1725, 1700, 1615, 1565, 1505; ¹H NMR (100 MHz, C₅D₅N): δ 3.74 (3H, s, OMe), 3.88-4.60 (6H, m, sugar H), 5.64 (1H, W½ 12 Hz, H-1'), 6.30 (1H, d, J = 9.5 Hz, H-3), 7.01 (1H, s, H-8), 7.43 (1H, s, H-5), 7.64 (1H, d, J = 9.5 Hz, H-4). (Found: C, 50.90; 5.07%. Calc. for C₁₆H₁₈O₉·1/₂H₂O: C, 50.79; H, 5.51%). Acetylation of 4 (42 mg) with Ac₂O and pyridine gave 8 (30 mg), prisms from EtOH, mp 169-169.8° (lit. [6] mp 166° or mp 184-185°); IR ν̇(ν̈max cm⁻¹): 1760-1740, 1620, 1570, 1510, 915, 890, 825; ¹H NMR (100 MHz, CDCl₃): δ 2.05, 2.06, 2.08, 2.14 (3H each, s); MS m/z: 522 [M]⁺. (Found: C, 55.22; H, 5.08%. Calc. for C₂₄H₂₆O₁₃: C, 55.17; H, 5.02%.)

Hyperin 5. Yellow crystals from MeOH, mp 238-240° (lit. [8] mp 238°; UV λ̈ max nm: 257 (ε 18000), 359 (ε 15000); λ̈ max MeOH nm: 269, 368; IR ν̇(ν̈max cm⁻¹): 3400, 1655, 1605, 1550, 1500; ¹H NMR (100 MHz, C₅D₅N): δ 4.18-4.98 (6H, m, sugar), 6.10 (1H, d, J = 8 Hz, H-1'), 6.72 and 6.77 (1H each, d, J = 2 Hz, H-6 and H-8), 7.38 (1H, d, J = 8 Hz, H-5), 8.22 (1H, dd, J = 2 and 8 Hz, H-6), 8.58 (1H, d, J = 2 Hz, H-2). (Found: C, 52.10; H, 4.44%. Calc. for C₂₁H₂₁O₁₂·H₂O: C, 52.47; H, 4.58%). Acetylation of 5 (21 mg) with Ac₂O and pyridine gave 9 (20 mg), an amorphous powder; IR ν̇(ν̈max cm⁻¹): 1775, 1750, 1210; ¹H NMR (100 MHz, CDCl₃): δ 1.86 and 1.96 (3H each, s), 2.11 (3H x 2, s), 2.28 (3H, s), 2.32 (3H x 2, s), 2.41 (3H, s). (Found: C, 55.56; H, 4.56%. Calc. for C₃₆H₃₆O₁₅: C, 55.50; H, 4.53%). To a soln of 5 (6.3 mg) in MeOH (1 ml), was added 2N HCl (0.5 ml) and the mixture was refluxed for 4 hr. The reaction mixture was recrystallized from MeOH to give quercetin 10 (0.8 mg), yellow needles, mp > 300°; IR ν̇(ν̈max cm⁻¹): 3350, 1660, 1620, 1560, 1520. The Aq. soln was neutralized with Amberlite IRA-45 (3g) to give a residue. Paper chromatography of the residue showed the presence of D-glucose (solvent system: EtOAc-pyridine-H₂O-HOAc, 5: 5: 3: 1).

Acknowledgements—We thank Drs. S. Higashi and M. Abe for identifying the plant. We are grateful to Dr. S. Eguchi for the microanalyses and Mrs. S. Kubota for measuring the mass spectra.

References

Tetsuo Iwagawa and Tsunao Hase