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Abstract

We give some remarks of the class of definable subsets of N* in some formal
language. In [1] we studied a characterization, multiple eventually periodic, of the
definable subset in fragments of the first order arithmetic which contains the equiva-
lence relation, the order relation, the modular relation and the successor function. In
[4] Péladeau gives a nice characterization, semi-base-simple, of the class of definable
subsets in the first order logic extended the modulo quantifier with the order relation.

We see some relations between Péladeau’s and our characterizations in this paper.
Key words: Semi-base-simple, Multiple eventually periodic.
1. Preliminaries

1.1. Basic notion and notation

The set of non negative integers is denoted by N. We denote the number zero, the successor
function, the addition function, the ordeér relation, and the binary relation of congruence
modulo ¢(1<¢q) by 0, s, +, <, and =, respectively. For a positive integer k, the Cartesian
product N* is defined inductively as follows; N'=N, N¥1=NFkX N,

A monoid M is a set equipped with an associative binary operation (or product) and an
identity element. For any subset S of a monoid M with product #, the submonoid generated
by S is denoted by S* Let k& be a positive infeger. N* is a monoid with componentwise
addition, also write +, as binary operation and 0 vector as identity element. Since the product
of N*is +, S* is also denoted by S® for SCN* For SCN* and VCN¥,

S+V=Ax| 3s 3v(sESAvEVAL=s+0)}.

When S or V is a certain element of N¥, we abuse of above notation. For example, for u€ N*

*  Department of Mathematics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto,
Kagoshima 890, Japan.
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and VCN¥,

utV®  (={u}+V®),
and for u, vENY,

ut+v®  (={u)+{v}®),
and so on.

1.2. Formal language with quantifier
In [4], formal language with quantifier is called theory. To be familiar with [4], we will use
‘theory’ in this sence.

The first order modular theory of <, which we denote by Thiimes[<], is the set of
formulas obtained from

* variables xi, x5 3

* the less-than predicate <;

¢ Boolean connectives A, V, T

* quantifiers 3, and 3} for 1<q, 0<p<q.

The variables are interpreted as natural numbers. The binary predicate < has its usual
meaning. The formula 35 x¢ (x) is true iff the number # of natural numbers i, such that ¢ is

ture when we replace x by i, is congruent to p modulo ¢. Th,[<] is that 3 take off the
Thismoa <], and Thy,q is that restriction of first order take off the Thitmea[<]. The first
order theory of s and =, denoted Th;[s,=], is the set of formulas obtained from the above
definition of Th,[<] in which, instead of using the predicate <, we use the function s and the
predicate =.

The definitions above are in [4]. The definition of Th,. is felt inclear. We will state later,
do not know whether it is a reason for or not, there exists a state in [4] be not understood.
Remark that Thismes [<] must be sub-theory of Thueq[ <] since Thn.a[<] is given by taken
off the restriction from Thiimea[<].

We introduce other ‘theory’ more natural by usual way. The first order language LR,
Ry s fio for vt €1, o ot0] S the set of formulas obtained from

* variables x;, x; ‘-

* predicates Ry, Ry, -

» functions f, fo 7

e constant’s ¢, ¢z

* Boolean conectives A, —;

e quantifier V.

The variables are interpreted as natural numbers. Predicates, functions, and constants are
interpreted as usual meaning.
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We only deal with sub-language of L[=, <, =, =,, ***; 5; 0]. For a natural number #, the

numeral 7 is defined by 0=0, n+1=s(7). For a natural number # and a variable v, v+# is

defined by v+0=v, v+ (n+1)=s(v+n). The 7 of +n in this case is also called numeral.

1.3. Formal language without quantifier

Let 7., be the congruence on N defined by i7,, k iff i<t implies i=7, and <7 implies t<j and
1=4. The language of congruence arithmetic, denote as LCAiimo is the set of formulas
obtained from

* variables x;, Xz, °*°;

e unary predicate C,:, for 0<¢t, 1<q and 0<n<i+g;

* binary predicate D,,;, for 0<¢ 1<g and 0<n<t+gq;

* logical connerctives A, V, 7.

The predicate C,,,(x) is true iff xy,,# and the predicate D, ,,(x, y) is true iff y<x and Cp,:,
(x—y—1). We use LCA, and LCA,.4 to denote the restrictions of LCA;4mos When ¢ is fixed to
1 and ¢ is fixed to 0, respectively.

The definitions above are in [4]. These are very technical. Remark that LCA,... is sub-
language of LCA;4moa.

We will give some quantifier free language more natural by usual way. The quantifier
free first order language QFLIR,, R, ***; fi, f2, % ¢, ¢2, *-*] is the set of formulas obtained
from

* variables x;, x;,

* predicates R;, R, *--;

* functions f, fo

* constants ¢, ¢ ***;

* logical conectives A, .

The variables are interpreted as natural numbers. Predicates, functions, and constants are
interpreted as usual meaning.

We only deal with sub-language of QFL[=, <, =, =,, *-; 5; 0]. A logical operator which
is not in language is ususal abbreviation. For example, in QFL[=; s; 0],  — ¢ means —
(A7), and so on.

2. Definable sets and quantifier elimination

Let L be a formal language, or ‘theory’, and k a positive integer. A vector vEN¥ is said to
satisfy a formula ¢ (xy, ***, x), where the x; are free variables, if ¢ (v, **+, v,) is true, where v;
is the i-th component of vector v. So, a subset SEN* is said to definable in L if there exists a
formula ¢ in L with k free variables such that

S={veN*|v satisfies ¢}.
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We will confuse a formal language L with the class of definable subsets in L. The
following is well known (see [1], [3]).

Theorem 2.1 (Quantifier elimination)
1. LI=; s; 0] =QFLI[=; s; 0].
2. L[=, <; s 0] =QFL[=, <; s; 0l.
3. L=, =), =, =+ 501 =QFL[=, =,, =, -+ 55 0.
4. L=, <, =, =y, 5 5 01 =QFL[=, <, =, =, 1 5; Ol
Péladeau state the following theorem.

N

Theorem 2.2 (Theorem 2.2 in [4])

1. Thismea [<]1=LCAs+mou.

2. Th [<]1=LCA..

3. Thuea [<1=LCAmou.

From this theorem, we get Thiymoa | <] =Thuea | <] and LCA:14moa=LCApnos since Thiymoa
[<] is sub-theory of Thu.:[<] and LCA,..[<] is sub-language of LCA;imos. Unfortunately,
this contradicts to Theorem 4.2 in [4]. We will not reffer to Thues[ <] from now on. We will
see other properties.

Theorem 2.3 1. Thils, =] =QFL[=; s; 0].

2. LCA11moa=QFL[=, <, =, =,, =7 s, 0].

3. LCA,=QFL[=, <; s 0.
Proof 1. It is suffices to show that x=1# is definable in Th,[s, =] for any natural number #.
This can be carry out by the following way,

. x:(_) > "lﬂy (x:s(y))’

o z=1 < 73y (x=s5(s(y))) Nx#0,

« z=2 < 73y (z=5(s(s(y)))) Ax#0Az#1,
and so on. 3. LCA,CQFL[=, <; s; 0] is easy. We show that QFL[=, <; s; 01CLCA,. It is
suffices to show that a definable subset by an atomic formula in QFL[=, <; s; 0] is definable
in LCA,. This can be seen by the following;

» x=y < T Dooi(x, y)V T Dooi(y, x),

o =7 © Cun+11(2),

x=0A"2=0 if m#n,

o { 0
[ ] m:n «~> _ _
x=0V x=0 if m=mn,
o z=yt+n (n#0) & Dyrni(z ¥),

o y<zx < Doo.(x, y),

=0V -+ Vo=n—1 if n#0,
z=0A"2=0 if n=0,
o i<y <« T (x<nVz=n),

ox<ﬁ<—+{
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o y+tn<z < Dy (z,y),
o {x=(_)/\“1x=(_) if m#n,

s m<n < _ _
x=0V x=0 if m=mn,

. y<x+—n (n#0) < y=xVy=x+1V --- Vy=x+ (n—1)Vy<z
2. is similar. [

LCAs can not be reduced to a usual first order language of fragment of arithmetic. In
this sence, LCA,.0q is not simple. We introduce the restricted order relation <* which is usual
order relation with the following restriction;

both left and right arguments are only variables,
and is interpreted as usual order. For example, x; <*z, is allowd formula but neither

2:<*s5(0) nor s(x,) <*x.

Theorem 2.4 LCA,.=QFL[<* =, =, - s 0].
Proof It is suffices to show that a definable subset by an atomic formula in QFL[<?¥

1
I

1
-«» s; 0] is definable in LCA,..s. This can be seen by the following;
o y<*z < Dyoi(z y),
o =17 < Cuoq(2),
e 2=y < Dooi(x, y)V 1 Dooi(x, y),
* IT=,y (1<CI) « (_‘Do,o,q(l', y)/\ “ AT Dy z04 (z, .7/))\/ (7 Do, (y, )N 0 AT
Dy204(y, x)),

« z=,4Ftn (1#0) < Dy100(2, ¥) V Dyr04(y, 2).
The converse is easy. []

3. Characterizations

3.1. Semi-base-simple
In [4], Péladeau gives nice characterizations of the definable subsets in LCA;j+mos, LCA; and
LCA,0a. We study his characterizations in this section.

Let k be a positive integer, and [k] means the set {1, ---, k}. A strict-ordering formula o
on the variables x;, *-*, x; is a formula of the form
oy €1 *°° Ck—1 Lok,

where o: [k] — [k] is a permutation, and each ¢; is either an = or a <. The rank of a
strict-order formula p, denoted as 7k (o), is the number of < plus one. The formula p
partitions the set [k] into disjoint subsets I1, ***, L such that vE€N* satisfies p iff 7, i’ €1,
implies v;=wv;, and i€, i’€ I, and j<j’ implies v; <v;.. Given a partitioning of [ k] into I,, *--,
I, we denote I} =UlL_; I for j€ [1]. Let E={e, *--, ¢} be the natural base of N*. If IC [k],
then e; denotes 2;cre. A subset of N*
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7k(p)

X=ut+ 2 (g 81})®,
j=1

where u€EN*, 0<g¢; is said to be bese-simple if u satisfies a strict-ordering formula o0 whose
associated partitioning of [k] is Iy, ***, L.

A finit disjoint union of base-simple sets is said to be semi-base-simple. The set of base-
simple subsets of N* is denoted by BS(N*) and the semi-base-simple subsets of N* by SBS
(N®). BS;(N*) is the set of base-simple subsets of N* where in the definition each ¢, {0, 1}.
BS,04 (N¥) is the set of base-simple subset of N* where in the definition each ¢;=>1, 0<u,;<q,
for each 1€, and 0<u;—uy—1<g; for each 1<j<rk(p), i€I; and ¢ € I;,_,. SBS;
(N*) (or SBS,,: (N*)) denotes the subsets of N* which are finit disjoint unions of sets in
BS;(N*) (or BSmea(N¥)), respectively.

We define SBS;- (N*) to be subsets of N* of the form X= U‘_; X;, with the union being
disjoint and such that the X,€BS;(N*) satisfy the following condition. Let

7k(p)

X;=v+ 2 (gre)®,
j=1

then for each permutation ¢: [7k(p)] — [7k(p)] such that ¢;=0 implies o(j) =j, there is
an s,€ [t] such that

k(o)

X,o=v+ 2 (gje),)®,
j=1

where I'l,;= U9, I, ¢:=0 implies #;=v; for each (€1, and for j>1, ¢;=0 implies
ui—uy=0v;—vy for each (€I; and '€ 1;_..

Lemma 3.1 (cf. Lemma 3.2 and Lemma 5.1 in [4]) Let XESBS(N¥).
1. XXNESBS(N*).
2. NXXESBS(N*),
3 Mz, g I YENA (24, o, 1) EX} ESBS(N*),

The above lemma also holds for SBS;(N*), SBSu.(N¥) and SBS;-(N¥).

Lemma 3.2 (cf. Lemma 3.4 and Lemma 5.3 in [4]) SBS(N*) is @ Boolean algebra with respect to
union, intersection and complementation. Also SBS,(N¥), SBSy.q (N¥) and SBSs_-(N¥).

The class of definable subsets of N* in LCAj4mos is denoted by LCA;imea (N¥). LCA;
(N*) and LCAmoa (N*) are similar.
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Theorem 3.3 (Theorem 3.3 and Theorem 5.2 in [4])
1. LCA1+moa(N*) =SBS(N*).
2. LCA,(N*¥)=SBS,(N").
3. LCApoa (N*) =SBSpoa (NF).
4. Thls, =1 =SBS;-(N").

3.2. Multiple eventually periodic
In this section, we study multiple eventually periodic introduced in [1].

Let S be a subset of N¥*!. For a positive integer ; (<k-+1) and a natural number #», the
subset Sji-n of N* is

{(x1, =, Zj1, Tisr, " Tasr) 1 (x1, **, Zj1, M, Zjar, =, Tiwr) E ST

We denote n<uz; for all i=1, -+, k by n<(xy, ***, 2), and x;=,y; for all i=1, -+, k by (x, **-,
i) =,y o, Yi)-

For a subset S of N* and positive integers b and ¢, ‘S is MEP[b, g1 (N*)’ which is read
that S is multiple eventually periodic with bound b and period q is defined inductively on k as
follows;

1. k=1:2€S < x+qeS if b<ux.

2. k>1:

@ (xy, =+, W ES < (;tgq, =, ;+q)ES if b< (x4, ***, T0),
(b)  Sjth=n is MEP[b+n, q] (N*") for any natural number » and any positive integer
j (Zk).

Under the same situation, MEP~[b, q] (N*) is also defined as follows;

1l k=1:2€S < x+q€S if b<u.

2. k>1:

@ i (x, =, 2D €S < (;+q =, otq) €S if b< (a1, ***, T0).
i (zy, =, 2D ES « (y1, = y) €S If b<(x1, -, ), b<(yy, ", Wi,
(zy, = ) =,(ys, =, ye), b<|zi—x;| and 6<|yi—y; | for 1<i#;<k.
(b)  Sjihen is MEP [b+mn, q]l (N*') for any natural number # and any positive
integer j (k).

In MEP~ the superscript ‘—’ means ‘without the order relation’. For SCN¥, if there exist
b and ¢ such that S is MEP[b, q] (N¥), then we say that S is in MEP<ima(N*). MEP 4
(N¥), MEP.(N*) and MEP(N¥) are similar. More precisely,

¢ MEP (N9 ={S|SCN*AN3b3q (S is MEP[b, ql (N")}.

¢ MEP,, (N ={S|SCN*A3b3q (Sis MEP~[b, q1 (N¥)}.

e MEP.(N¥)={S|SCNtA3b (S is MEP[b, 11(N¥)}.

o MEP(N®={S|SCNA3b (Sis MEP [b 11(N*)}.
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Lemma 3.4 Let XEMEP. s (N¥).
1. XXNEMEP_ o (N¥),
2. NXXEMEP_ pos (N¥Y).,

3. {(xy, =y, -, »’Uk)‘ YENN (2, 1) EX} EMEP 4 yos (NFHY),
The above lemma also holds for MEP,.s(N¥), MEP.(N*) and MEP(N¥).

Lemma 3.5 MEP. 1m0 (N*) is a Boolean algebra with respect to union, intersection and comple-
mentation. Also MEP,,;(N¥), MEP.(N*) and MEP(N¥).
Proof The proof is strightforword but tedious work. []

The class of definable subsets of N*in L[=, <, =, =,, **; s; 0] is denoted by L[=, <,
=, =, 5 01(NH. L=, =, =5, 5 01(NH), LI=, <, =, =, 5,01 (N®) and L[=; s;
0] (N*) are similar.

Theorem 3.6 (cf. [1], [2], [5])

1. QFL[=, <, =, =, 4 5 01 (N =MEP 4 pos (N5).

2. QFL[=, =, =, 4 5 01(N*) =MEPy4 (N¥).

3. QFL[=, <; s; 01(N*)=MEP.(N").

4. QFL[=; s; 0] (N¥)=MEP(N").
Proof For any formula, a bound b is the maximum of all numerals occuring in the formula, and
a period ¢ is the least common multiple of all #s occuring of the form =; in the formula. The
converse is by induction on k. [

4. Conclusion

SBS is the union of SBS(N*) by k. SBSi, SBSys, SBSs-, MEP s, MEP .4, MEP. and
MEP are similar. The following equations are immediate consequences from previous
theorems.
1. SBS=LCAsmoa=Thismea [I=L[=, <, =, =, 4 5, 01 =QFL[=, <, =, =,, =1} 55 0]
=MEP_ i mos,
. SBS,=LCA,=Th,[<]=L[=, <; s5; 01=QFLI[=, <; s; 0]=MEP.,
Ll=, =, =, » s 01=QFL[=, =, =, +; 5; 01=MEP,4,
. SBSpoa=LCApu=QFL[<* =, =, - s 0],
. SBSs-=Th,[s, =]1=L[=; s; 0]1=QFL[=; s; 0]=MEP.
We see properness of inclusion to each class.

SO\

Lemma 4.1 (Theorem 4.2 in [4]) The following holds, and each inclusion is proper.
1. SBS,CSBS.
2. SBS,.,s< SBS.



A Note on Definable Subsets of N* 31

Lemma 4.2 (cf. Corollary 1 and 2 in [1])) The following holds, and each inclusion is proper.

1. MEPCMEP . CMEPppq.

2. MEPCMEP ;s ©MEP_moa.
Proof All inclusion are clear by the definition. Assume that Odd={x|zx=,1} of N' is in
MEP., or in MEP. By the definition of MEP., or of MEP, there exists a bound b such that
x€0dd < x+1€0dd for b<z. This is a contradiction. That is to say, Odd is in neither
MEP. nor MEP. Hence MEP is a proper subset of MEP,,,s, and MEP. is a proper subset of
MEP_, 04. Next, we assume that the subset Ord={(x, y)| x<y} of N2 is in MEPu.q, or in
MEP. By the definition of MEP,.q, or of MEP, there exist a bound b and a period ¢ such that
(x, y) €0rd < (u, v) €0rd for b<(z, y), (u, v) and (z, y) =, (u, v) and b<|z—y|, |u—v|.
Especially, (2 (b+1)-q, (b+1)-¢q) €O0rd. This is a contradiction. That is to say, Ord is in
neither MEP,,,; nor MEP. Hence MEP is a proper subset of MEP., and MEP,,,,; is a proper
subset of MEP i mos. []

Lemma 4.3 MEP., SBS,,,; and MEP,,,, are incomparable under inclusion. Also SBSy.a and
MEP.

Proof We consider QFL[<*,
definable in this language. Then this language becomes to QFL[=, <, =,, =,, **; s; 0] since

I

L =2 4 s 0]. Assume that the equivalence relation = is

the no restricted order < is definable in this by the following way;

y+tn<z < y<*x/\y¢x/\y?i¢x/\ /\y?ﬁ#z,
y<x+_n (n#0) < y<*x\/y=x\/y=x+—1\/ - Vy=zx+n—1),

and so on. But this contradicts the theorem 4.1. Thus the equivalence relation = is not
definable in QFL[<* =, =, -+ s; 0]. Hence SBS,,. includes neither MEP. nor MEP ..
And futher, this also does not include MEP. By the proof of the previous lemma, MEP.
includes neither SBS,,,; nor MEP,,, since Odd is not in MEP., and MEP,,,, includes neither
SBSyos nor MEP. since Ord is not in MEP.4, and since Odd is not in MEP then MEP does
not include SBS,... [

We get the following figure. S — S’ means that S is a proper subset of S". Any arrow
can not be added in the figure by previous lemmata.

SBSleEP<

SBS;-=MEP MEP 4 SBS=MEP_ imou

SBSmod

We know neither SBS-type characterization for QFL[=, =,, =,, ***; s; 0] nor MEP-type
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characterization for QFL[<* =, =, ---; 5; 0]. We do not know the first order theory, or the
first order language with quantifier, corresponding to QFL[<*, =, =, '+, s; 0]. SBS-type
characterization is useful to getting a positive result, that is, to show that a subset is definable

in. MEP-type characterization is useful to getting a negative result, that is, to show that a
subset is not definable in. An importance is that we get both SBS- and MEP-type character-
izations for Rec(N*) and for Rat(N*) (cf. [4)).

(1
[ 2]
[ 3]

[ 4]
[ 5]
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