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Abstract

We study Button's short needle problem on the 2-dimensional sphere.

We throw a short needle on a grid of circles of latitudes, and find the

probability ps that it intersects at least one circle. We prove that this

probability ps is strictly smaller than the probability pe of the classi-

cal Buffon's short needle problem in the 2-dimensional Euclidean plane.

Moreover we give an asymptotic expansion of the probability ps as the
●

number of grids n tends large. This expansion roughly tells that ps can

be approximated by pe fairly well even if n is relatively small.

17

1 Introduction

In a memoir submitted to the Academie des Sciences in 1733, Button gave birth

to the鮎Id of geometric probability. In that paper (not to be published until

1777) he introduced the classical problem, which bears his name, of丘nding the

probability that a needle thrown at random on a grid of evenly spaced parallel

lines will touch a line.

Bu鮎n's original needle problem has aourished in many directions. The

needle has been lengthen and bent (Kendall and Moran(1963)5 Ramaley(1969),

Diaconis(1976), Santalo(1976)); intersection probabilities for much more gen-

eral families of "needles" and "grids" have been described (Solomon(1978)); the

needles have been thrown in higher than 2 dimensional Euclidean spaces (San-

talo(1976)); the grids has been modified to improve statistics which estimate

打(Schuster(1974), Perlman and Wichura (1975)) and inverse problems to the

original one have been studied (Detemple and Robertson (1980), Robertson and

Siegel (1986)).

In spite of such flourish of studies on Buffon's problem, the present author

has seldom seen needles thrown in non-Euclidean planes, in particular, on the

sphere. Only one exception that the present author has found is Peter and
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Tanasi (1984). Thus it seems that there remain some unsolved problems about

the needle on the sphere, and in this paper we study one such problem on the

2-dimensional sphere.

Before we study a needle on the sphere, we need to decide on what kind of

grid a needle is thrown, because no grid of parallel lines exist on the sphere.

Peter and Tanasi (1984) investigated a needle thrown on a grid of circles of

longitudes. In contrast to their study, in this paper, we throw a needle on a grid
●

of circles of latitudes.

Now we give a precise formulation of our problem. Let S be the sphere with
●

unit radius. Denoting by E(u) the circle of latitude u, we consider a family of

(2n+1)circles¥E(ui):i--n,...,-1,0,1,...,n}whereui-i打/(2n+l .

In other words, we consider a grid of (2γけ1) equidistant curves with a common

spherical distance Dn - 7r/(2(n + 1)) apart. Note that E(uo) denotes for the

equator of S. On this grid of equidistant curves, we throw a needle with length

L at random. Our problem is to find a probability ps(Dn,L) that the needle

intersects at least one of the equidistant curves.

In this paper in order to avoid some complexity that results from a needle

possibly i山ersecting more than one equidistant curves, we assume that our

needle is short enough. To be precise we assume that L ≦ Dn.

2　An expression for the Button's short needle

probability

To state an answer to the Bu鮎n s short needle problem on the sphere, we
introduce a function

(2.1)　Qiu,L) - arcsin I si sec u sinu�"arcsm

'LN

tan-tanutan u

Theorem 1 Assume thatL ≦ 'n? where n is a non-negative integer. Then

the Buffon's short needle probability ps(Dn, L) can be given by

芸¥q(O,l)+墓Q(iDn,L)¥.

In particular, letting n - 0 in Theorem 1 and noting that Q(0,L) - L/2,

we have the following corollary.
●
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Corollary The probability that a needle intersects the equator is equal to L/ir.
●

In order to prove Theorem 1, we represent the sphere S by the unit sphere

of the 3-dimensional Euclidean space whose center lies at the origin, i.e., X2 +
●     ●          ●

Y2 + Z2 - 1. We may assume that the equator E(uq) is represented by a great

circle X2 + Y2 - 1,Z - 0 in the XF-plane. Then E(u) can be represented by

a small circle which is an intersection of a plane Z - sinu with the unit sphere.

Let O denote the intersection point of the equator E(uo) with the ZX-plane,

and U the intersection point of E{u) with the same plane. Now we introduce a

function

(2.2)　　　　　f(x, u) - arccos
cosLsinx - sinu

sinLcosx

which is well-defined ifu - L < x < u+L.

Lemma 2.1　Suppose that one of the endpoints of a needle drops at P which

lies on the ZX-plane and has the latitude x, and the other endpoint drops at

Q on the equidistant curve E(u). Assume thatu-L < x < u+L. Then, the

angle OPQ which we denote by 9 is given by fix).

Proof.　Denote the longitude of Q by ¢. Then the Cartesian coordinates of

比ree points P, Q, and U are given by
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respectively. Accordingly, if we denote the spherical distance UQ by y, we have

〈

COsL - COSXCOSUCOS¢+sinxsmu

cosy-cos2ucos¢+sin u

Then, eliminating ¢ from these expressions, we get

2.3　　　　　　　cosy -
cosu(cosL - sinxsinu)

cos :r
+sin u

Now, using the cosine formula of spherical geometry, we have
●

(2.4)　　　cosy - cos(:r - u)cosL+sin(x - u)sinLcos9

Prom (2.3) and (2.4) we can deduce the desired expression (2.2). Thus the proof

of the lemma is completed.

As we see later, in order to compute the probability ps, we need to evaluate

an inde丘nite integral

2.5 F(x,u) - f(xjU)cosx dx
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Lemma 2.2

F(x,u) -　sinx�"/(x,u)+sinu-arcsin

cosL - sinxsinu
- arccos

COSXCOSU

smx - cosLsinu

sinLcosu

By differentiation -e can easily check that £F(x, u) - f(x, u) cosx.

Now we prove Theorem 1.

'of Theorem 1. Without loss of generality, we may assume that one of the

endpoints of a needle, P, drops on the northern hemisphere. Then the latitude
●

∬ of P is distributed according to the probability density cos諾. Consequently,

using Lemma 2.1, we have
●

･n?L)-墓pUi+L

Jui

Since,byLemma2.2,

2.6)　F(u+L,u)

f{x,ui)

汀

n

cosx dx+∑
i=¥

cosx dx

盲sinu and F(u-L,u)一打sin(u-L)一芸smu

7T

wecanseethat

rUi+Lp
/f(x,ui)cosxdx-I

JuiJu∑(打-f(x,ui))cosxdx

Thuswe

2.7

ps(Dn,L)-三n

(F(L,0)-F(0,0))+2｣(F(tii+L,m)-F(ui,%*))

i=¥

Again,byLemma2.1,wehave●

2.8

TV
F(u,u)--sinu+2sinu�"arcsin

1-cosL

arccos (cosL - (1 -cosL)tan u)

Therefore, substitution of (2.6) and (2.8) into (2.7) establishes the theorem.
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3　Comparison of the probabilityps with the Bur-

fon needle probability in the Euclidean plane
●

In this section we will compare ps(Dn, L) with the classical Buffon needle prob-

ability in the Euclidean plane,
●

pE(Dn,L) -
2L
ー~'一一~二二

irDn

WestartourinvestigationfromtheEuler-Maclaurinformula.Letusput

(3.1)Jn-Jn(L)-f

JonD-t¥

Q(u,L)du+^-Q(nDn,L)

Lemma 3.1

Dn ^Q(O,L)+妄Q(iDn,L) <Jn(L)
proof. The Euler-Maclaurin formula asserts that there exists a number 6 such

thatO<β<1and

去Q(O,L)+妄Q(iDn,L)-去Jn(L)+Rl
where, β　denoting the lst Bernoullian number,

R1-号n-1慧((i+O)Dn,L)
2=O

Therefore the next Lemma 3.2 immediately establishes the prese山Iemma.

Lemma 3.2　The function Q(u,L) is a strictly decreasing and concave func-

tionofu.

Proof. By an elementary calculus we have

(3.2)　芸(ix,L) - -cosu - arcsin f tan喜tanu I

and

(3.3)慧(u,L)-sinu-arcsinltan喜tanul-
sin喜

cos2 |r - sin2 u
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Prom (3.2) it immediately follows that Q is a strictly decreasing function of u.

In order to show the concavity of Q, we put a - cot^ and t - tantx. Then

can be written as

1+t*
- arcsm -t節　U`Vu```a '

which we denote by gi(t). Obviously the function gi(t) is well-defined for 0 <
t<a.

S ince

A(t) -
t*+2t2-a2

t2(a2 - t2W2

the function g¥ has its minimum at t - ¥JJ斉‡了二1 and its minimum is equal
to

(α +I)1/4

J訂了7 - 1

●

- arcsm

Now, letting b - 樗≡ -e can
a Ji二~辞

1-262

rewrite the minimum of g¥ as

- arcsin b

which we denote by #2(&)- The function g2(b) is defined for 0 < 6 <ノこす=了.

Since g2(b) -

46V l二~辞

(1 - 262)2
, p2 is strictly increasing. Accordingly we see that

92¥y)>52(0)-0.Thereforetheminimumofg¥ispositive,whichimplies

thatQisaconcavefunctionofu.

NowwestudyanupperestimateforJn(L).Letusintroduceafunction

･3.4)3(t)-/

J｡q(u,t)du+箸q(nDn,t),

where

3.5

Furthermore we put

3.6

Lemma 3.3

q(u,t) - 1-t siiru

t(L) - sec2

L

Jn(L) <盲
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Proof. We can easily check that

aQ

Hence

To say in other words,
●

1

盲qiuML)).

-^uL) - ¥ j(t(L)).

j(t(w)) dw.

sin u

1-tsin u

<0,

23

we can see that j(t) is a decreasing function of t. Moreover, we have

Dn Dn

j(l) -sinnDn+TcosnDn =cosDn+TsmDn < 1

Consequently, from t(L) > 1, we can deduce j(t(L)) < 1. Therefore, by (3.7),

we obtain Jn(L) < L/2, which completes the proof.

Combining Lemma 3.1 and Lemma 3.3, we obtain the following theorem.

Theorem 2　Assume that L ≦ Dn. Then, for all non-negative integern,

ps(Dn,L) <pE(Dn,L) -
2L

*Dr.

4　Asymptotic behaviour of the probability ps

In this section we study an asymptotic behaviour of the Bu鮎n needle proba-

bility as n tends to the infinity. Our starting point is again the Euler-Maclaurm
●

formula, which asserts that

4.1

where

4.2

n

去Q(O,L) + ∑Q(iDn,L)
i=l

1　　　月1

･T--Jn+了
蝣LJ n

Dn|dQ-

du(nDn,L)一芸'
(O,L)¥+Kn

/nDn Q(u,L) du+ ^ Q(nDn,L)
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and

･4.3)KH-一鋸榊)ng慧((i+t)Dn,L)dt

(IntheaboveB¥standsforthe1-stBernoulliannumber,and¢4the4-thBernul-

lianpolynomial.)

FirstwestudyanasymptoticbehaviourofJn.Inthisstudyweneedto

evaluatede丘niteintegrals

pnD-

(4.4)Cm-Itan2mucosudu

Jo

form>0.Furthermore,inthisstudy,weneedtousefunctions

,〝､ー′__､昌(2m-3)!!xm-¥

(4.5)　　　　　g(x) - ∑
m=2

and

4.6 G(x) -

ml m-1

Lx yxg(x)dx.

In the following Lemma 4.1 and Lemma 4.2, we prepare certain preliminary
●

results for these quantities (4.4), (4.5), and (4.6).

Lemma 4.1

Co -cosDn , C¥ - -cosDn+logcotDn

and form > 2,

4.7 Cm-
COS2ra-lDn　2m-I

__        _          _ _      I

2m-2　sin2m-2Dn　2m-2
am-

Proof.　We can easily compute Co and C¥. For m ≧ 2, changing variable as

x - sinu, we have

rサsinnDn

JO

∬2m

(1-x2)2¥m
dx

Then integration by parts leads to the desired recurrence relation (4.7).

Lemma 4.2

g(x)-去+log2- 一三log
1-VI-x 1+何　1

三log諾,
2A〉 1-VI-x∬
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G(x) - -2y/x+芸¥fxy/¥-X+言arcs-諺+
1呈　l+Vl-x

一言∬亨log 1 - Jr二言 喜X2 logx

2g0
16+5

9
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Proof.　This lemma can be proved by an elementary calculus. Thus we omit

the proof.

Lemma 4.3　Assume thate<喜Dま. Then

j(l+c) - cosDn+-elcosDn-logcot-y-j

1 D三

一百ecosDn g(e cot2Dn) +丁
l-ecot2Dn+O (卯g孟)

Proof.　Recall the definition (3.4) in the previous section of the function j.

Expanding q(u, 1 + e) defined by (3.5) into a Maclaurin series, we have

q(u,1+e) -cosu 1-etan2u=cosu

i
1+皇

m=1 (ゑ)仁牀tan2u)

Notethatetan2u<喜becausee<喜Dまandu≦nDn.Consequentlythe

infiniteseriesintheaboveconvergesuniformlyinu,andweget●

rnDnoo
/q(u,1+e)du-Co+^

�"'｡m=lゑ(-era

UsingLemma4.1,wehave

) I-c8"ォCm-- ∑
m=2

●●

∑
m=2

+∑
m=2

(2m-3)!! _m
亡

(2m-3)!!

節
em‰

COS2m-l Dn

)mml L　2m-2 sin2w-2Dn

芦(2m-3)!!_　2m-1
亡

m!　　　2m-2
Cm-1

which we write as (-Si + S^)-

Now we evaluate 5i and 62- Using Lemma 4.2, we can express

4.8 . Si--e cosDng
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On the other hand, since from (4.7) it follows that

Cm-1 -
COS2ra-3Dn　2m-3

■lllllllllllll■■1-

2m-4 sm2m-4Dn　2m-4

for m ≧ 3, we have

n　ノ3_2ハ.昌(2m-3)!!
S2<孟ezd+∑

m=3

Hence

(4.9)

吊WMfil,臼

Cm-2 <
1　　　　　1

2m-4 sin2m-4Dn

2m-1

2m-2 2m-4 sin2�"-4Dn

S2-O fljlog孟) ･
Therefore, using (4.8) and (4.9), and noting that

Un

T q(nDn,1+e) - 1 -牀COt2Dn

wehavecompletedtheproofofthelemma.

Nowwede丘neafunction

w
e(w)-tan-

2

andshowthefollowinglemmawhichgivesestimatesforvariousintegralscon-●●

cerninge(w).

Lemma4.4

･a)J｡e(w)dw-芸+O(L5)

(b)¥e(w)g(e(w)cot2Dn)dw-tan3DnG(--cot2Dn¥+O(L5)

1 -e(w)cot2Dn dw

- tanDn arcsm

(C)

2COt-")+2

Proof.Sincee(w)-w2/4+O(w4),wecaneasilysee(a).

Nowweput

Mo-謁¥g(x)¥andMi-max¥g(x)¥

2｡<x<l/2
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Then, noting that e(w)cot2 Dn ≦ 1/2 for O ≦ W ≦ L, and using the mean value

theorem, we have

ffw2(
Ie(w)g(e(w)cot2Dn)dw-/--gI

^｡J｡4¥等cot2Dndw

IW2T^¥
9¥-7-co*Dnlaw

g (e{w)cot2Dn) -g (^cot2Dnj

cot Dn dw

Accordingly, changing variable as x -誓cot2 Dn, we get (b).
Finally, in a similar way to that for the derivation of (b), we can show (c). Thus

the proof of the lemma is completed.

Combining Lemma 4.3 and Lemma 4.4, we obtain an asymptotic behaviour

of Jn as follows

Proposition 4.5　Assume thatb - L/(2Dn) be a constant. Then, asn tends

to the infinity.

Jn

L

育+

63

+育

DS(
1- I210g2

12　ー'　　　　12

b3 -圭b>/r^扉+ -arcsinb
l

(l+vT諏)+筈'蝣
IogDn¥+O勅g去)

Proof. Recall the relation (3.7) of the previous section, that is,

*-

Using Lemma 4.3, we have

Jn
L

盲cosDn+盲

1

j(l+e(w)) dw

cosDn-logcot昔I e(w)dw
e(w)g(e(w)cot Dn) dw

1 - e(w)cot2Dn dw

･O LD4nlog去)



28 鹿児島大学教育学部研究紀要　自然科学編　第51巻(2000)

Then,usingLemma4.4,weget
●

ML)喜r,L3(

cosDn+-Icoヲ'nlogcot箸)

+--sinDnItanDnarcsinI-cotDn1-¥-

4¥VZIZ

･o(卯g去)･

Hencefollowsthedesiredexpression.

･一芸cot2Dn

Now we study an asymptotic behaviour of Kn. By differentiation we can see

慧　　　　　k3(uト3&4(u) ,
where

fci(u)-sinu�"arcsinltan-tanu) ,　fc2(n)-

sln喜
●

COS2L-
2sinu

ks(u)-sec uk2{u) , and k^u)-岩音fc2(n)5.
Thus,putting

pin-

KnJ-/fa{t)X

J｡n-l
Ei=｡
forj-1,2,3,4,wehave●

kj({i+t)Dn) dt

Kn-一望(-KnA+Kno-Kns-3iTn4)

Our aim is to derive an asymptotic expression for D^�"Kn as n tends large.

As the following lemma shows, both Kn^¥ and Kn^ make only a negligible
●

contribution to An.

Lemma 4.6

JTn,i-O(D"1) and Kn,2-O(D"1)

Proof. It is easy to see that ki(u) ≦ kUnDn) - O(l) and k2(u) ≦ 1for

u ≦ nDn. Hence the conclusion follows immediately.
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In order to study asymptotic behaviours of Kn s and Kn 4, we will approxi-

mate the functions ks and kァby suitable functions. For this purpose we define

functions

fci(x) -

sln書
●

and ki(x)-

and show the following result.
●

Lemma 4.7
a For Dn≦x≦市where cisaconstant.

C

ki(x)-ki [x,喜)

エ
一
2

2
F
n
u

主
2

円
1
■
川
u

2
諾

(1 +0(Dn)) uniformly in x.

(b)Forx>読wherecisaconstant,

h{x)-0(｣>i/2)andkn(x)-0{DxJ2).

Proof.Sincetheproofof(b)iseasy,wewillproveonly(a).

Since,bythemeanvaluetheorem,thereexistsOlsuchthatsin-<91<

and

主
2

we have

ki(x) >

2
F
n
u

五
一
2

i
Z
L
は
川
u

sln書
●

x2-sin舌

x2-sin舌

kl二I三　1-

x2

(x2-eま)3/2 ラ

-抽-(喜-sin喜)

x2

(x2- (書)7′2

喜(喜　X
■lllll■lll■■■lll■■■■■■■■■■-■■ll

x*　書)2

∬2

On the other hand, since there exists 6X such that sinx < 9x < x and

we have

た(x) <

sin'x- (書)2

主
2

sin x- (喜)2

- (x-sinx)
一書ox

書ox
-k¥(x)+(x-sina?) ′　すVxA､…

(02 - (喜)蝣)蝣′2
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･ kl(x)+去x3･

抽･Jl+

sin ∬- (喜)y/2

Now it can be easily seen that when Dn ≦ x ≦ c/y/n, we have

去(書　X'
lllllllllllllllllllll-■■■■■

∬2- (喜)2
- OIDn)

喜∬4

∬2-(喜)2
- O(l)-O(Dn) - 0(Dn)

Hence

*i(aO -*i(aO- (l+0(Dn)).

Thus the assertion (a) has been proved.

In order to study asymptotic behaviours of Kn 3 and Kn 4, we introduce

integrals

hsU,b) -

and

hAj,b) -

Furthermore we put

(j+i-ty-62

U+l-t)2-b2

h{j,b) -h3(j,b)+孟h4(j,b).

Lemma 4.8　Let us put b-L/(2Dn). Then,

(a)

Kn,3 - Dl

dt.

皇h*(j,b). (I +O(Dn)) +O fal'2)
j-l

dt


