セル・オートマトン法を用いた地方都市解析モデル構築の試み
その1 複層化セル・オートマトンの提案と数理モデル

正会員 ○ 松永 安光 1), 同 友清 貴和 3), 同 本間 優雄 2)

数理モデル, 人口推計

1. はじめに

2010年をピークに日本の人口は減少に向かう。それと同時に、地方都市の人口減少による衰退は大きな問題を抱え、今後都市計画にとって大きな転換期に差し掛かっている。著者らは、持続可能な活性化した地方都市の都市計画を進めるに当たって、従来の経験的な手法から脱却した新たな都市における各種需要の正確な予測が、より重要になると考えている。

本研究はこれら都市の各種需要の予測を可能とする数理モデルの構築を目指している。しかし、都市を構成する要素・要因が多様であり、それらの関係や相互作用を規定するには一般的に問題を伴うことが多い。したがって、都市一つではなく、地方都市に限定し、その都市を構成する特徴的な要素・要因を抽出し、各種需要の予測に反映させる数理モデルを考えることにする。ここでは、各種需要に影響を与える要因として、人口変動を注目した。

人口変動は自然増減と社会増減により構成されており、各々推計する方法が既に確立されている。地方都市は予測が急激に進むほど、形態が複雑になるため、全体の挙動を把握するのは難しい。また、都市計画に利用するためには、人口の持つ多面的な情報を保持する必要があり、このことが更に問題を複雑にしている。

本報告では、上述の内容を踏まえ、地方都市に対する解析モデル構築の基本的な考え方をセル・オートマトン(CA)を用いて構成し、地方都市の把握を目的とした数理モデルを提案する。その1では数理モデルの概念を示し、基本的な考え方を述べる。その2では鹿児島市を取り上げた解析例を示す。

2. セル・オートマトンモデルの複層化

ある地方都市を図1 [A] に示すように代表させたセルによって擬似換える。代表セルは、学区あるいは行政区などを、その地域の人口を反映しうる分け方で定められるものである。これらのセルを取り出し[B], 互いにネットワーク(状態遷移関係)を持つと考えることができる。これらのセルとセル間を結んだネットワークを写像して、通常の二次元セル・オートマトンモデルに置き換える[D]。都市のモデルは、多様な要素・要因が考えられるため、様々な状態遷移関係を持つ二次元セル・オートマトンモデルを構築することができる。しかし、モデルのセルはモデルを飛び越えて相互に影響し合うと考えられる。そこで、[E] に示すような二次元セル・オートマトンモデルが様々な関係で複数構成され、その一つひとつがセルを通過して関係付けられるとする。これが複層化セル・オートマトンモデルである。従来は、セルを通過した関係も一つのネットワークと解釈し、二次元セル・オートマトンモデルで考察していた。ここで示すアイデアは、CA に層という新しい概念を取り入れることになる。これによりマイモデルのセルに多面的な情報の積層が可能になる。ただし、セル間の相互作用、セル内やセル間の層の相互作用を規定する状態遷移規則は解析対象

A Case Study for Analysis Model of Local Municipality by Means of Cellular Automata
Part 1 Proposal of Multi-Layered Cellular Automata Model and Mathematical Model

MATSUNAGA Yasumitsu, HONMA Toshio, TOMOKIYO Takakazu, TOYODA Seigrou
3. 数理モデルの考え方と構成

CAのモデルでは構成セル間の局所的相互作用を通じて、大局的な秩序や動態が生成されるボットアム的な機構と、構築された大局的な秩序や機会が逆に構成因子の振る舞いや相互作用に影響して変化させるというトップダウン的な機構をも有するシステムである（詳細は、文献1)-3参照のこと）。

このようなCAの特性を拡張させた第2で説明している複層化CAの概念を具体化させるため、代表セル内の状態変数Pを次のように定義する。

\[P_{i,k} = P_{i,k}(l) \]

\[P_{i,k} = \sum_{l=1}^{s} P_{i,k}(l) \]

ここで、I:ステップ、i:代表セル、k:層(s:k層の種類)である。

式(1)は状態数が1の関数であることと、iの離散数の定義を与える。式(2)に示すように各層には複数の状態数から存在し、その状態数群から層群を形成する。この数は任意の個数をとることが可能である。また、層を入れ子状にすることで、更なる拡張も可能です。例えば、年齢層別構成による層のモデルにおいて各層に男女の人口という状態数を定義することができる。

次に、次ステップへ移動するセルとセル間に働く規則やノ間の規則、すなわち状態遷移規則は次のように自律規則と近傍規則に分けて考える。

\[P_{i,k}(l+1) = \sum_{j \in \phi} \sum_{p,q \in K} \alpha_{i,q}(P_{i,k}(l), P_{j,k}(l), \beta_{i,p}(P_{i,k}(l))) \]

\[P_{i,k}(l+1) = \sum_{j \in \phi} \sum_{p,q \in K} \theta_{i,p}(P_{i,k}(l), P_{j,k}(l), \beta_{i,p}(P_{i,k}(l))) \]

ここで、\(\alpha_{i,q}: \)セルpq間の影響係数、\(\beta_{i,p}: \)セルpq間の関数、\(\phi: \)指定近傍、\(\beta_{i,p}: \)セルpq間影響係数、\(\theta_{i,p}: \)セルpq間関数である。

なお、状態数Pは互に定義の必要はなく、他の種類の代表に対応する状態数を採用しても式(1)～(4)は成立する。

4. 解析の方法

ここに示した複層化CAモデルを用いて、具体的な人口推計の方法の一例を示す。セルは近傍のセルあるいはフィールドのセル全体と自己のセルを比較し、状態遷移規則に従って値を取る。このセル＝地域(町など)、値＝人口、 Deadly取り扱い＝人口移動となる。手順は以下の通りとする。

① 人口変動モデルを構築する（状態遷移規則の設定）。
② 不規則な地図を格子状のセルにモデル化し、実際面積を算出する。
③ 地方都市の統計データから、モデル化したセルに対応する人口を作成する（層は統計データより構成・参照）。
④ 統計データからセルに初期値として地域別、年齢別、性別、人口、あるいは職業別か Flatten別（層）の人口、男女の死亡率、子供の年齢別出生率、セルの面積、セル層の距離を変える。
⑤ セル間・層の相互作用を規定する状態遷移則の計算パラメータを規定する（影響係数、関数の決定）。
⑥ 自然・社会増減による設定セルの人口分布・構造の変動を調べる。
⑦ 解析結果から規制及び含まれる計算パラメータの種類・値・組合せの挙動特性を把握する。
⑧ 解析結果と過去の統計データと照らし合わせ、再現性が高いパラメータを抽出する（人口変動の推移データと計算データとの一致度の算定）。
⑨ 計画イベントによる人口移動を⑧で調べて検査した再現性の高い計算パラメータを用いて将来予測する。
以上の手順により、都市を解析し、新たな計画内容による人口移動の予測を実施して、都市計画に反映させることになる。

5. おわりに

本報告では、複層化セル・オートマトンモデルを提案し、そのモデルを用いることで多層構造モデルを設定した。具体的な状態変数として都市を構成する人口に注目し、人口移動を取上げた解析手法を示した。統計データを用いることで、都市都市特有の傾向を計算に導入することができる特徴を有する。ここで示した計算手法が、地方都市を再現するモデルとなるか、実際の解釈例の過程はその2として示す。

参考文献

Prof. Dept. of Architecture & Architectural Eng., Kagoshima Univ., M. Arch
Assoc Prof., Dept. of Architecture & Architectural Eng., Kagoshima Univ., Dr. Eng
Prof. Dept. of Architecture & Architectural Eng., Kagoshima Univ., Dr. Eng
Free, M. Eng.