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Abstract

In the present paper we treat the Randers change of Finsler metrics to determine
the Randers spaces with rectilinear geodesics.

§0. Introduction.

In his paper [17] G. Randers modified the Riemannian metric under the necessity

of using a metric of asymmetrical properties and introduced the metric
(0.1) ds = (a;j(x) do’dal )12+ b(x) dat |

where a,; is a Riemannian metric tensor, and b; is a covariant vector. In spite of its
simplicity in form, the Finsler space with this metric enjoys interesting properties full
of suggestion, and was named the Randers space by R. S. Ingarden [11]; and has been
studied by many authors, from various standpoints in physical and mathematical
aspects, e.g., [4], [6], [7], [9], [10], [11], [12], [13], [14], [18], [20], [21] etc. (See the

concerned article in [16].)

The Randers space is thought to be the simplest possible asymmetrical modifica-
tion of the Riemannian space (§1). So, it seems to be important to investigate what
geometrical properties remain under the modification by some b;. As an example of
such a property, we consider the property that the space be with rectilinear geodesics (§2).
Generally we treat a change of Finsler metrics called the Randers change, which has been

defined by M. Matsumoto [14] as

(0.2) ds — ds = ds+by(x) da? ,
and obtain the condition that it hold the above property (§3). As the special case
that ds be Riemannian, we can determine the Randers spaces with rectilinear geodesics
(§4).
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To construct generally the geometry of the space with rectilinear geodesics belongs
to the fourth problem of D. Hilbert, who gave an interesting example [8], and since the
studies of P. Funk [5] and L. Berwald [1, 2, 3] the problem has also been an important
but difficult one in the Finsler geometry. (See [15], [19].) In the Riemannian spaces
such a space is nothing but a space of constant curvature. In the Finsler geometry,
however, it seems that the condition that the space be of constant curvature is too
strong. So, our research also aims at the problem to find a reasonable Finsler space
corresponding to a Riemannian space of constant curvature.

The authors wish to express their sincere gratitude to Prof. Dr. M. Matsumoto for
the invaluable suggestions and encouragement.

§1. Randers spaces.

Let (M, L) be an n-dimensional Finsler space, that is, an n-dimensional differentiable
manifold M with a fundamental function L(z, y) (y*=#°). At each point  of M we
consider the indicatrix I, defined as the hypersurface I,={y e M,|L(x, y)=1} of the
tangent space M, at . In case of a Riemannian space with L(z, y)=(a;;(x)y'yi)!/2,
each indicatrix I, is the quadratic hypersurface a;;(®)y’y/=1 with respect to the
coordinates y* of M, with the center y=0. Hence, a Finsler space, whose indicatrix
I, is a quadratic hypersurface with respect to y* at each point  of M, is thought to
be the simplest possible modification of a Riemannian space. If its center y is not

zero, the Finsler metric has an asymmetrical property L(z, —y)=L(z, y). Such Finsler
spaces are given by

Proposition 1.1. Let (M, L) be a Finsler space. If at each point x of M the in-
dicatriz 1, 1s a quadratic hypersurface with respect to the coordinates y* of M,, the funda-
mental function L(z, y) has the form

(1°1) L(x’ ?/) = a(a;, y)"'ﬂ(w’ y) ’

(L.2) L(z,y) = —oz,y)+B(=,Y) ,
or

(1.3) L(z, y) = oz, y)*/B(%, ) ,

where o(,y) = (a;@)y’y’)'?, B(z,y) = bix)y’ .
Proof. Let the indicatrix I, be given by
Pii(®) yiyi +2qi(®) y* +r(x) =0.
Since I‘=y’|L(z, y) has the unit length, it satisfies
Pij(@) Ui+ 2g(x) V +7(z) =0,
that is,

7(w) L(w,y)* +2q4x) y'L(z, y) + pi(x) y'y! =0,
from which we have
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L(w,y) = (—q:(®) y'£((¢:(z) g;(2)—r(x) pis(®) ) y*y?) %) () ,
or
L(z,y) = — pij(@) y'y’|29:x) y° ,
according as 7(x)=0 or 7(x)=0. These are reduced to the form (1.1), (1.2) or (1.3).

Let us assume in the above proposition that L(x, y) is positive valued, i.e., L(z, y)
>0 for any y=0. Then, L(z, y) should have the form (1.1), and the Finsler space is
just a Randers space. Thus we can understand that G. Randers attained the metric
(0.1) as the simplest possible asymmetrical modification of the Riemannian metric.

A Randers space (M, L) is by definition a Finsler space with a fundamental func-
tion L(x, y)=(a:;(®)y'y/)>+b,(x)y’, where a;; is a Riemannian metric tensor, and b;
is a covariant vector. (a;;) is positive definite, but it does not need to assume that L is
positive valued. We have easily

Proposition 1.2. In a Randers space (M, a+pB) (a=(a;y*y/)'2, f=by’), the fun-
damental function o s positive valued if and only if (a;;—bb;) @s positive definite at
each zeM. ‘

§2. Finsler spaces with rectilinear geodesics.
A geodesic in a Finsler space (M, L) is given by
(2.1) d%zt |ds®+2G(w, dxds) =0,
if we use the arc-length s as the parameter. G(z, y) is (2) p-homogeneous in %, and is
expressed as G*=y%,y/y*(2, by putting
y;.-k = g“’(ag,-h/awk+agk;,/axf—ag,-k/aw")/2 ,
where g;; = 0%(L?/2)/oy’dy’ is the fundamental tensor, and (¢*7)=(g;;)~*

A Finsler space (M, L) is called with rectilinear geodesics, if the manifold M is covered
by coordinate neighbourhoods in which the geodesics can be represented by (n—1) linear
equations of the coordinates, or equivalently by

(2.2) x(s) = R(s) mi+nf  (mf,nf eR).

Now, let h;; be the angular metric tensor: k;;=g;;~l;, where l;=3L[oy’. Then, we

have

Proposition 2.1. A Finsler space (M, L) is with rectilinear geodesics if and only if
the mamnifold M s covered by coordinate neighbourhoods in which it holds

(2.3) G = pl
for some (2)p-homogeneous local function p(z, y), or equivalently
(2.4) hijGi =0.

Proof. Let z, be a fixed point of M and y, be a fixed tangent vector at z,. If (M,
L) is with rectilinear geodesics, there exists a coordinate neighbourhood around %, in
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which the geodesic passing through x, and tangent to yo/L(%,, o) is given by
@i(s) = R(s) yi+x5  (R(0) =0, R'(0) = L(o, o) ™) -

Then, we have d2x/ds?+-(-R"|R’)(dx!|ds)=0. Hence, putting p(z,, yo)=—R"(0)/2R'(0)3,
we have G(z,, yo)=p(%o, Yo)ls. Since z,, ¥, can be arbitrarily chosen, it follows (2.3).

Conversely, if M is covered by coordinate neighbourhoods in which it holds (2.3),
the equations (2.1) of a geodesic become

d?x¢[ds®+2 p(x, dw/ds) (dxt[ds) = O,

which are, assuming da‘/ds>0 without loss of generality, reduced to dlog(dz’/ds)/ds=
~2p, from which we have (2.2) by putting R(s)=§ exp(-2§pds)ds.

On the other hand, since p in (2.3) becomes p=I;G7, it is evident that (2.3) is
equivalent to (2.4).

Especially, let (M, L) be a locally Minkowski space. Since M is covered by
coordinate neighbourhoods in which G*=0, we have

Proposition 2.2. A4 locally Minkowsk: space vs with rectilinear geodesics.

§3. Randers changes of Finsler metrics.

If we see a Randers metric o+ (a=/(a;;y'y/)'2, f=by’) as a modification of a
Riemannian metric o by f, we can generally consider the following change of Finsler
metrics by f=by':

(3.1) L->L=L+8.
This change L—L was first studied by M. Matsumoto [14]. We shall call this the
Randers change by f, and consider the properties that remain under this change.

Since o2L[oyioyi=aL|oy'dy/, that is, L-'h;;=L-h;;, we have first

Proposition 3.1. The tensor Lh;; s invariant by any Randers change.

Next, we shall get the transformation formula of G by a Randers change. For
the purpose we shall express the equations of a geodesic for the metric L=L-+§ in
terms of the arc-length s for the metric L. The Euler-Lagrange equations

(3.2) d(0L/oy")/ds — oL [oxf =0
become
(3.3) d(dL[dy")/ds—oL[oat +2by;jy(da[ds) =0,

where we put 2br;;; = ob;/ox/—ob; o’ .

Interrupted here the discussion we note

Theorem 3.1. 4 Ronders change L>L=L+f by B=by’ s projective, that is, any
geodesic remains to be a geodesic by the change, of and only if b; is gradient: br;;1=0.
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Returning to (3.3) and calculating from L=(g,;;5'y/)'/2, (3.3) is written
(3.4) A2 [ds® + 26 (0, dw|ds) +2g7iby jy(dack[ds) = O .
If we change the parameter s in (3.4) to the arc-length § for the metric L, we have
(3.5) A2 A2 + 26 (x, das/d5) + 29°7by jz1 (dac*[dS) (ds/ds)
+(da?|d3) (bjix(da?|d3) (da®|d5)—29™byby ji(dact[d3) (ds[ds) ) =0,
where b, is the h-covariant derivative of b; with respect to »the Cartan connection of

the Finsler space with L. In fact, from §={L(x, dx/ds)ds we have ds/ds=1+b;(da/|ds),

and
d25/ds? = (9b; (o) (dai|ds) (da|ds) +b;(d>ai[ds?)

the latter of which becomes from (3.4)

(3.6) d25/ds?® = b 5(dai]ds) (dat[ds)—2g"ibyby jpi(da?/ds) .
Since we have daf/ds=(dz’|d3)(d5/ds), and
(8.7) d2xi|ds? = (d2x[ds?) (d5/ds)? + (dw?[d3) (d%5/ds?) ,

we can derive (3.5) by substituting into (3.7) from (3.4), (3.6).
The equation (3.5) shows that
26w, da|d5) — 26%(w,dn]ds) +2g by ol da?|d5) (ds)d5)
+ (da? [d3) (bj4(dac? | d3) (dac®[d5)—29%ibyby ju1(dac?/d5) (ds/ds) ) .
Since for arbitrary #‘, 4* we can choose the geodesic satisfying daf/ds=y’|L(x, y), ds/ds=
L(z, y)|L(z, y) at x, we have
(3.8) G' = G¥ -+ Lg'ibg jry* + LL-Y(bjxyiy* [2— Lgibby jryy*) V.
The formula (3.8) has been already obtained by M. Matsumoto [14]. We have tried to

derive this from the equations of geodesics.
Paying attention to Proposition 3.1 we have from (3.8)

Proposition 3.2. By a Randers change (3.1) the quantity h;;G7 is transformed as
(39) I—,-lﬁ,-]@i = L—lh,;jGj—i-b[U]yj .

Thus, from Proposition 2.1 we have

Theorem 3.2. A Randers change L—L=L+-8 by B=>by* holds the property that the
Finsler space be with rectilinear geodesics, if b; s gradient.

Theorem 3.3. A4 Finsler space (M, L) becomes a Finsler space (M, L+pB) with
rectilinear geodesics by a Randers change by B=byy’, if and only if the manifold M 1s
covered, by coordinate neighbourhoods in which it holds

(310) k,‘jGj-l-Lb[;j]yj =0.
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§4. Randers spaces with rectilinear geodesics.
Now, we are in position to treat a Randers space (M, a-+p), where o=(a;;y'y/)!/3,

B=byy’. Putting L=o in Theorem 3.3, the condition that the Randers space be

with rectilinear geodesics is that M is covered by coordinate neighbourhoods in which
it holds

(4:1) k,-jGj—l—Otb[ij]yj =0.

In this case, we have h;j=a;;—(30/dy*)(dx[2y’), and G/= 13y"y*[2, where (J;} is the
Christoffel symbol for the Riemannian metric tensor a;;. Hence, k;;G7 in (4.1) is
expressed as

(4.2) hijG = (a; ja—anaz) G} yhy'yye|202
Since o is an irrational function of y¢, (4.1) is equivalent to
(43) k,'jGj =0, b[,-j] =0.

Thus we have

Theorem 4.1. A Rander space (M, o+ B) (a=(a;jy'y/)112, B=by’) is with recti-
linear geodesics if and only if the corresponding Riemannion space (M, «) is with
rectilinear geodesics and b; is gradient. Then, any geodesic of (M, o) remains to be o

geodesic of (M, o+ ).

The latter assertion of the above theorem follows from Theorem 3.1. Also,
Theorem 3.1 makes Theorem 3.2 trivial, because we have no information about
the converse of Theorem 3.2, It is shown, however, from Theorem 4.1 that the
converse holds if we confine a Randers change within Randers metrics.

Theorem 4.2. A Randers change L—-L=L+p by B=by’ changes a Randers
metric L to a Randers metric L. And, 1t holds the property that the Randers space be
with rectilinear geodesics, if and only if b; is gradient. Then, this change ts projective.

On the other hand, from Proposition 2.1 the condition A;;G¥=0 is equivalent to
G =qy’, that is, in a Riemannian case

(4.4) G} yyl2 =gy,

where ¢ is some (1)p-homogeneous function. Differentiating the both sides of (4.4) by
y/ and y* successively, we have

(4.5) e} = (%gloyioy™) v +(2g/oy7) 8 +(2g/y*) 87 .

The contraction of (4.5) with respect to ¢ and j yields ogq/oy/={};}/(n+1), from which
it follows 2%g/dyidy*=0. Hence, {;k] has the form

(4.6) (i} = (G} /(0 +1)) 85 +( {13}/ (n+1)) 8,
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that is, the Riemannian space (M, a) is projectively flat. It is well known that a
Riemannian space is projectively flat if and only if it is of constant curvature. So,

Theorem 4.1 is restated as

Theorem 4.3. A Randers space (M, a-+p) (a=(a;jy'y))1/?, p=by’) is with rec-
tilinear geodesics if and only if the corresponding Riemannian space (M, o) is of constant

curvature and b; is gradient. Then, the geodesics wn (M, a+pB) covncide with the geodesics
w (M, o).

Finsler spaces with rectilinear geodesics contain Riemannian spaces of constant
curvature and locally Minkowski spaces, and are thought to be the Finsler spaces cor-
responding to Riemannian spaces of constant curvature. Of course, we have an
example of a non-Minkowski Randers space with rectilinear geodesics. S. Kikuchi
[12] has shown that a Randers space (M, a-+pB) (B=by’) is locally Minkowski if and
only if the corresponding Riemannian space (M, o) is flat and b; is parallel with
respect to the Riemannian connection. So, in order to get an example of a non-Minko-
wski Randers space with rectilinear geodesics it suffices to modify the euclidean
metric o by a non-constant gradient vector b;.

Example. Let R” be the n-dimensional euclidean space. The Randers space (B"-
{0}, L) with the following fundamental function L is with rectilinear geodesics and not
locally Minkowski:

(4.7) L= (8;9'y)) 2 +biy*
where b;=0b/ox’ for b=(8;xz/)1/2.
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