Smooth invariant classes for singular integrals
Dedicated to Professor Shoji Tsuboi on the occasion of his 60th birthday

KUROKAWA Takahide

journal or publication title

Reports of the Faculty of Science, Kagoshima University

volume

36

page range

29-36

URL

http://hdl.handle.net/10232/803
著者	都筑敏彦
論文 | 鹿児島大学理学部紀要 第36巻 第29-36号
言語 | 日本語
URL | http://hdl.handle.net/10232/00000238
Smooth invariant classes for singular integrals

Dedicated to Professor Shoji Tsuboi on the occasion of his 60th birthday

By Takahide KUROKAWA

Abstract. It is well known that the \(L^p \)-spaces are invariant for singular integrals. In this paper we establish invariance of certain classes which consist of smooth functions.

1. Introduction and preliminaries

Let \(R^n \) be the \(n \)-dimensional Euclidean space. Elements of \(R^n \) are denoted by \(x = (x_1, \ldots, x_n) \). For a domain \(\Omega \subset R^n \), we denote by \(C^\infty(\Omega) \) the set of all infinitely differentiable functions on \(\Omega \). A function \(k(x) \) is called a smooth Calderon-Zygmund kernel if \(k(x) \) satisfies the following three conditions:

(1.1) \(k(x) \in C^\infty(R^n - \{0\}) \),

(1.2) \(k(x) \) is homogeneous of degree \(-n\),

(1.3) \(\int_\Sigma k(x)dS(x) = 0 \)

where \(\Sigma \) is the unit sphere \(\{|x|=1\} \) and \(dS \) is the surface element of \(\Sigma \) (cf. [Sa: Chap.6]). For a smooth Calderon-Zygmund kernel \(k(x) \) we consider the singular integral

\[
Kf(x) = \lim_{\epsilon \to 0} K_\epsilon f(x)
\]

where

\[
K_\epsilon f(x) = \int_{|x-y| \geq \epsilon} k(x-y)f(y)dy.
\]

For \(1 < p < \infty \) we let

\[
L^p(R^n) = \{ f : \|f\|_p = \left(\int |f(x)|^pdx \right)^{1/p} < \infty \}.
\]

The \(L^p \)-theory of singular integrals ([Sa: Chap.6], [St: Chap.II] and [SW: Chap.VI]) shows that the \(L^p \)-spaces \((1 < p < \infty) \) are invariant for singular integrals. Namely, for \(f \in L^p \), \(Kf(x) = \lim_{\epsilon \to 0} K_\epsilon f(x) \) exists for almost every \(x \in R^n \) and \(Kf \in L^p \).
For a multi-index $\alpha = (\alpha_1, \cdots, \alpha_n)$, we denote $D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$, where D_j denotes the differentiation with respect to x_j ($j = 1, \cdots, n$). The Lizorkin space Φ is defined by

$$\Phi = \{ \varphi \in S : \int \varphi(x)x^{\alpha}dx = 0 \text{ for any multi-index } \alpha \}$$

where S is the Schwartz space (see [Li: §2 in Chap.II] and [SKM: §25]). The discussion in [Ku1: §2] shows that the Lizorkin space Φ is also invariant for singular integrals. Further, in [Ku2] we proved that the class $C^{\infty,+}(\mathbb{R}^n)$ is invariant for singular integrals where

$$C^{\infty,+}(\mathbb{R}^n) = \bigcup_{r>0} C^{\infty,r}(\mathbb{R}^n)$$

with

$$C^{\infty,r}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) : \sup_{x \in \mathbb{R}^n} (1 + |x|)^r |D^\alpha f(x)| < \infty \text{ for any } \alpha \}.$$

In this article we investigate invariance of the following class $C^{\infty,r}(\mathbb{R}^n)$: For positive number r, we let

$$C^{\infty,r}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) : \sup_{x \in \mathbb{R}^n} (1 + |x|)^{r+|\alpha|} |D^\alpha f(x)| < \infty \text{ for any } \alpha \}.$$

We introduce a topology on $C^{\infty,r}$ that makes the space a Fréchet space. Toward this end we introduce a countable family of seminorms $\{p_{\ell,r}\}_{\ell=0,1,2,\cdots}$ defined by

$$p_{\ell,r}(f) = \sum_{|\alpha| = \ell} \sup_{x \in \mathbb{R}^n} (1 + |x|)^{r+\ell} |D^\alpha f(x)|.$$

We prove that Kf is a continuous linear operator on $C^{\infty,r}(\mathbb{R}^n)$ for $0 < r < n$ (Theorem 2.4). We use the symbol C for a generic positive constant whose value may be different at each occurrence.

2. Invariance of the space $C^{\infty,r}$ ($0 < r < n$)

We prepare three lemmas.

Lemma 2.1. Let $q + s + n < 0$ and $s + n > 0$. Then

$$I_{q,s}(x) = \int_{|x-y| \geq \max(1,|x|/2,1)} |x-y|^q (1 + |y|)^s dy \leq C(1 + |x|)^{q+s+n}.$$
PROOF. First, let $|x| \leq 2$. Since $|x| \leq 2$ implies $(1 + |x - y|)/3 \leq 1 + |y| \leq 3(1 + |x - y|)$, we see that

(2.1) \quad I_{q,s}(x) \leq \max(3^s, 3^{-s}) \int_{|x - y| \geq 1} |x - y|^q (1 + |x - y|)^s dy = C_{q,s} < \infty

by the condition $q + s + n < 0$.

Next, let $|x| > 2$. We divide $I_{q,s}(x)$ as follows:

$$I_{q,s}(x) = I^1_{q,s}(x) + I^2_{q,s}(x) + I^3_{q,s}(x)$$

where

$$I^1_{q,s}(x) = \int_{|y| < |x|/2} |x - y|^q (1 + |y|)^s dy,$$

$$I^2_{q,s}(x) = \int_{|y| \geq |x|/2, |x - y| > |y|} |x - y|^q (1 + |y|)^s dy$$

and

$$I^3_{q,s}(x) = \int_{|x - y| \geq |x|/2, |x - y| \leq |y|} |x - y|^q (1 + |y|)^s dy.$$

For $I^1_{q,s}(x)$, since $|y| < |x|/2$ implies $(1 + |x|)/4 < |x - y|$, we have

(2.2) \quad I^1_{q,s}(x) \leq 4^{-q} (1 + |x|)^q \int_{|y| < |x|/2} (1 + |y|)^s dy \leq C(1 + |x|)^{q+s+n}

by the conditions $q < 0$ and $s + n > 0$. For $I^2_{q,s}(x)$, since $1 \leq |x|/2 \leq |y|$ and $|x - y| > |y|$ imply $|x - y| > (1 + |y|)/2$, we obtain

(2.3) \quad I^2_{q,s}(x) \leq 2^{-q} \int_{|y| \geq |x|/2} (1 + |y|)^{q+s} dy \leq C(1 + |x|)^{q+s+n}

by the conditions $q < 0$ and $q + s + n < 0$. For $I^3_{q,s}(x)$, since $1 \leq |x|/2 \leq |x - y|$ and $|x - y| \leq |y|$ imply $1 + |x - y| \leq 1 + |y| \leq 3(1 + |x - y|)$ and $|x - y| < 1 + |x - y| \leq 2|x - y|$, we get

(2.4) \quad I^3_{q,s}(x) \leq 2^{-q} \max(1, 3^s) \int_{|x - y| \geq |x|/2} (1 + |x - y|)^{q+s} dy \leq C(1 + |x|)^{q+s+n}

by the conditions $q < 0$ and $q + s + n < 0$. The estimates (2.1), (2.2), (2.3) and (2.4) give the lemma.

Lemma 2.2. If $f \in C^{\infty,c}(R^n)$ ($r > 0$), then $Kf \in C^{\infty}(R^n)$ and $D^\alpha(Kf)(x) = K(D^\alpha f)(x)$ for any α.
Proof. First, we prove that $K_\epsilon f \in C^\infty(R^n)$ and $D^\alpha(K_\epsilon f)(x) = K_\epsilon(D^\alpha f)(x)$. For $T > 0$, let $B_T = \{ x : |x| < T \}$. It suffices to show that $K_\epsilon f \in C^\infty(B_T)$ and $D^\alpha(K_\epsilon f)(x) = K_\epsilon(D^\alpha f)(x)$ on B_T. Since $1 + |y| \leq (1 + T)(1 + |x - y|)$ for $x \in B_T$, we have

$$|k(y)D^\alpha f(x - y)| \leq \frac{C}{|y|^n(1 + |y|)^{r+|\alpha|}}, \quad x \in B_T$$

by the condition $f \in C^{\infty,r}(R^n)$ and (1.2). Therefore we can apply the differentiation under the integral sign, and hence

$$D^\alpha(K_\epsilon f)(x) = \int_{|y| \geq \epsilon} k(y)D^\alpha f(x - y)dy, \quad x \in B_T.$$

This implies the necessary conclusions. Next we prove that $D^\alpha K_\epsilon f(x)$ converges uniformly on R^n as ϵ tends to 0 for any α. Let $0 < \epsilon < \eta$. By (1.3) we have

$$|D^\alpha K_\epsilon f(x) - D^\alpha K_\eta f(x)| = |K_\epsilon(D^\alpha f(x) - K_\eta D^\alpha f(x))|$$

$$= \int_{|y| \leq |x - y| < \eta} k(x - y)D^\alpha f(y)dy|$$

$$= \int_{|y| \leq |x - y| < \eta} k(x - y)(D^\alpha f(y) - D^\alpha f(x))dy|.$$

By the mean value theorem of calculus we see that

$$|D^\alpha f(y) - D^\alpha f(x)| = \left| \sum_{j=1}^n D^{\alpha+\epsilon_j} f(y + \theta(y - x))(y_j - x_j) \right|$$

$$\leq C|x - y| \sum_{j=1}^n \frac{1}{(1 + |y + \theta(y - x)|)^r}$$

$$\leq C|x - y|$$

where $0 < \theta < 1$. Therefore by (1.2) we get

$$|D^\alpha K_\epsilon f(x) - D^\alpha K_\eta f(x)| \leq C \int_{|y| \leq |x - y| < \eta} |x - y|^{1-n}dy = C(\eta - \epsilon).$$

Hence $D^\alpha K_\epsilon f(x)$ converges uniformly on R^n as ϵ tends to 0 for any α. This implies that $Kf(x) \in C^\infty(R^n)$ and $D^\alpha(Kf)(x) = K(D^\alpha f)(x)$ for any α. We complete the proof of the lemma.
The following lemma follows from Gauss's divergence theorem.

Lemma 2.3. Let D be a bounded domain with C^∞-boundary ∂D. Let $\mathbf{n}(x) = (\mathbf{n}_1(x), \ldots, \mathbf{n}_n(x))$ denote the outer unit normal to the boundary ∂D at the point $x \in \partial D$. We assume that g and h have continuous partial derivatives on a neighborhood of the closure of D. Then

$$
\int_D g(x) D_j h(x) dx = \int_{\partial D} g(x) h(x) \mathbf{n}_j(x) dS(x) - \int_D D_j g(x) h(x) dx
$$

where dS represents the surface element of ∂D.

Now we prove our main result.

Theorem 2.4. Let $0 < r < n$. If $f \in C^{\infty,r}(\mathbb{R}^n)$, then

$$
p_{\ell,r}(Kf) \leq C \left\{ \begin{array}{ll}
\left(\sum_{k=0}^{\ell-1} p_{k,r}(f) + p_{\ell+1,r}(f) \right), & \ell \geq 1 \\
p_{0,r}(f) + p_{1,r}(f), & \ell = 0,
\end{array} \right.
$$

and hence Kf is a continuous linear operator on $C^{\infty,r}(\mathbb{R}^n)$.

Proof. Let $f \in C^{\infty,r}(\mathbb{R}^n)$. It follows from Lemma 2.2 that $Kf \in C^{\infty}(\mathbb{R}^n)$ and $D^\alpha(Kf)(x) = K(D^\alpha f)(x)$ for any α. Let $|\alpha| = \ell$. We have

$$
D^\alpha Kf(x) = KD^\alpha f(x)
$$

$$
= \lim_{\epsilon \to 0} \int_{|x-y| \leq \max(|x|/2,1)} k(x-y) D^\alpha f(y) dy + \int_{|x-y| > \max(|x|/2,1)} k(x-y) D^\alpha f(y) dy
$$

$$
= K_1(D^\alpha f)(x) + K_2(D^\alpha f)(x).
$$

By (1.2) and (1.3) we obtain

$$
|K_1(D^\alpha f)(x)| = \left| \lim_{\epsilon \to 0} \int_{|x-y| \leq \max(|x|/2,1)} k(x-y)(D^\alpha f(y) - D^\alpha f(x)) dy \right|
$$

$$
= \int_{|x-y| \leq \max(|x|/2,1)} k(x-y)(D^\alpha f(y) - D^\alpha f(x)) dy
$$

$$
\leq C \int_{|x-y| \leq \max(|x|/2,1)} \frac{|D^\alpha f(y) - D^\alpha f(x)|}{|x-y|^n} dy.
$$

Since $f \in C^{\infty,r}(\mathbb{R}^n)$, by the mean value theorem of calculus we obtain

$$
|D^\alpha f(y) - D^\alpha f(x)| = \left| \sum_{j=1}^{n} D^{\alpha+\epsilon_j} f(x + \theta(y-x))(y_j - x_j) \right|
$$

$$
\leq C \frac{|x-y|}{(1 + |x + \theta(y-x)|)^{r+1+\epsilon_1}} p_{\ell+1,r}(f)
$$
where $0 < \theta < 1$. Further, since $|x - y| \leq \max(|x|/2, 1)$ implies $1 + |x + \theta(y - x)| \geq (1 + |x|)/2$, we have

$$
(2.5) \quad |K_1(D^\alpha f)(x)| \leq C \frac{P_{t+1,r}(f)}{(1 + |x|)^{r+\ell+1}} \int_{|x-y| \leq \max(|x|/2, 1)} |x-y|^{1-n}dy
$$

$$
= C \frac{P_{t+1,r}(f)}{(1 + |x|)^{r+\ell+1}} \max(|x|/2, 1)
$$

$$
\leq C \frac{P_{t+1,r}(f)}{(1 + |x|)^{r+\ell}}.
$$

The multi-index ε_j denotes the ordered n-tuple that has 1 in the jth spot and 0 everywhere else ($j = 1, \cdots, n$). In case $\ell \geq 1$, we let $\alpha = \varepsilon_{j_1} + \cdots + \varepsilon_{j_\ell}$. By Lemma 2.3 we have

$$
K_2(D^\alpha f)(x) = \lim_{M \to \infty} \int_{M > |x - y| > \max(|x|/2, 1)} k(x - y)D^\alpha f(y)dy
$$

$$
= \lim_{M \to \infty} \int_{\{y: |x - y| = M\}} k(x - y)D^{\alpha - \varepsilon_{j_1}} f(y)n_{j_1}(y)dS(y)
$$

$$
+ \sum_{k=2}^\ell \lim_{M \to \infty} \int_{\{y: |x - y| = M\}} D^{\varepsilon_{j_1} + \cdots + \varepsilon_{j_{k-1}}} k(x - y)D^{\alpha - \varepsilon_{j_1} - \cdots - \varepsilon_{j_k}} f(y)n_{j_k}(y)dS(y)
$$

$$
+ \int_{\{y: |x - y| = \max(|x|/2, 1)\}} k(x - y)D^{\alpha - \varepsilon_{j_1}} f(y)n_{j_1}(y)dS(y)
$$

$$
+ \sum_{k=2}^\ell \int_{\{y: |x - y| = \max(|x|/2, 1)\}} D^{\varepsilon_{j_1} + \cdots + \varepsilon_{j_{k-1}}} k(x - y)D^{\alpha - \varepsilon_{j_1} - \cdots - \varepsilon_{j_k}} f(y)n_{j_k}(y)dS(y)
$$

$$
+ \lim_{M \to \infty} \int_{M > |x - y| > \max(|x|/2, 1)} D^\alpha k(x - y)f(y)dy
$$

$$
= \lim_{M \to \infty} I_1^{1,M} + \sum_{k=2}^\ell \lim_{M \to \infty} I_k^{1,M}(x) + I_2^1(x) + \sum_{k=2}^\ell I_k^2(x) + I_3(x).
$$

In case $\ell = 0$, we have

$$
K_2(D^\alpha f)(x) = K_2 f(x) = I_3(x).
$$

By the condition $f \in C^{\cdot,r}(R^n)$ and (1.2) we have

$$
|I_1^{k,M}(x)| \leq C P_{t-k,r}(f) \int_{\{y: |x - y| = M\}} |x - y|^{-n-k+1}(1 + |y|)^{-r-\ell+k}dS(y),
$$

$$
|I_2^k(x)| \leq C P_{t-k,r}(f) \int_{\{y: |x - y| = \max(|x|/2, 1)\}} |x - y|^{-n-k+1}(1 + |y|)^{-r-\ell+k}dS(y)
$$
for $k = 1, 2, \cdots, \ell$, and

$$|I_3(x)| = \int_{\{y:|x-y| > \max(|x|/2,1)\}} D^\alpha k(x-y) f(y) dy \leq C \rho_0, r(f) \int_{\{y:|x-y| > \max(|x|/2,1)\}} |x-y|^{-n-\ell} (1 + |y|)^{-r} dy.$$

We may assume that $M \geq 2|x|$. Therefore, since $|x-y| \geq 2|x|$ implies $(1 + |x-y|)/2 \leq 1 + |y| \leq 3(1 + |x-y|)/2$, we obtain

$$|I_1^{k,M}(x)| \leq C \rho_{r, k, r}(f) M^{-n-k+1} (1 + M)^{-r-\ell+k} \int_{\{y:|x-y|=M\}} dS(y) = C \rho_{r, k, r} M^{-k} (1 + M)^{-r-\ell+k} \to 0 \quad (M \to \infty).$$

Since $|x-y| = \max(|x|/2, 1)$ implies $(1 + |x|)/2 \leq 1 + |y| \leq 3(1 + |x|)/2$, we get

$$|I_2^k(x)| \leq C \rho_{r, k, r}(f)(\max(|x|/2, 1))^{-n-k+1} (1 + |x|)^{-r-\ell+k}(\max(|x|/2, 1))^{n-1} \leq C \rho_{r, k, r}(1 + |x|)^{-r-\ell}.$$

Furthermore, since $0 < r < n$, Lemma 2.1 gives

$$|I_3(x)| \leq C \rho_{0, r}(f)(1 + |x|)^{-r-\ell}.$$

Thus

$$(2.6) \quad |K_2(D^\alpha f)(x)| \leq C (1 + |x|)^{-r-\ell} \sum_{k=1}^\ell \rho_{\ell-k, r}(f) = C (1 + |x|)^{-r-\ell} \sum_{k=0}^{\ell-1} \rho_{k, r}(f).$$

The estimates (2.5) and (2.6) give the theorem.

References

[Ku2] T.Kurokawa, Poincaré’s lemma on primitives of higher order, Preprint.

Takahide KUROKAWA
Department of Mathematics
and Computer Science
Faculty of Science
Kagoshima University
Kagoshima, 890-0065
Japan
E-mail: kurokawa@sci.kagoshima-u.ac.jp