グラフ理論を用いた相互扶助モデルの試み

地域計画 地域生活サービス ソーシャル・キャピタル
グラフ理論 シモールワールド

1. 研究の背景と目的
かつての日本には、血縁や地縁による自発的な協力が存在し、近年の急速な核家族化や生活スタイルの多様化といった様々な要因により、こうした規範が薄れ、地域コミュニティの果たす役割は減少している。一方で、子供高齢・人口減少時代への突入し、質の高い住民生活を守るために、既存の行政サービスに代わるNPOやボランティア活動等の住民同士の連携が重要視されている。

こうした観点で、欧米で生まれた「ソーシャル・キャピタル（以下、SCと略す）」という概念が近年、我が国でも注目されている。SCは、社会関係資本と訳され、地域のネットワークによりもたらされる規範と信頼の枠組みを意味し、地域共通の目的に対する協働モデルの概念を指す。SCを構成する要素は、コミュニティにおける信頼関係が互換の規範に基づく慣行を普及させ、その結果ネットワークが強化し、さらに信頼を生む相互補強的な関係にある（図1）。今後の持続可能な地域計画の進む上でSCは重要な役割を担うと考える。

本報告は、地域生活サービスとSCの関係性を明らかにすると共に、新たなサービスの枠組み構築に目的をおき、ネットワークの視点からよりよい相互扶助関係を探求するモデル化を試みる。

2. モデルの構築
2-1. グラフ理論の導入
モデル構築にあたって、数学の一分野である「グラフ理論」を用いる。グラフ(Graph)とは、ノード(Node)と呼ばれる点とそれらを結ぶリンク(Link)と呼ばれる線の集合をいう。グラフを用いた考え方の特徴は、点と点の「つながり方」に着目し、それらの関係性を可視化できる点にある。グラフ理論は、コンピュータのデータ構造やアルゴリズム等に広く応用されている。建築計画の分野では、図書館ネットワークや施設配置論といった領域で利用例が見られる。

グラフにおける特徴量は、次に示す2つの指標により定義される。1つは平均頂点間距離(d)である。「距離」とは、任意の2つのノード間を渡る際の最小のリンク数を指し、dはグラフ中の全ノード対についての距離の平均をいう。

図1. ソーシャル・キャピタル概念イメージ

図2. ファミリー・サポート・センターの仕組み

2-2. モデルの概要
2-2-1. 対象
相互扶助モデルの設定において、「相互扶助の実現には、既存の行政団体ではなく、住民生活を密着している町丁字単位や町内会単位等の狭域圏が適切である」という仮説を立てること。

対象モデルは、市町村単位で設置されている「ファミリー・サポート・センター(図2)」のサービス事例を取り上げる。定域圏域は町内会単位の狭域圏とする。また、施設は置かず、利用者の依頼者と提供者をノードに置き、両者の関係をリンクに対応させる。

2-2-2. 評価方法
図3にモデルの概念を示す。地域全体の結果力や近所付き合いの親密さに相当する指標を「総信頼度」とし、これを「信頼度」と呼ぶ。信頼度は0〜1に置き換え、依頼者iと提供者jの間でサービス提供が成立する確率として

A Trial of a Model of Mutual Aid in Community-Based Welfare Services with Graph Theory

TOMARI Kazuya, TOMOKIYO Takakazu, HONMA Toshio
3. 解析と考察

モデルの有効性を検証するため、極めて単純なモデルでの全数調査解析を実施する。図4は解析から得られたネットワーク形態とその数値結果の一例である。ノード数はそれぞれ依頼者4、提供者3とし、慰留率は8と設定する。数値結果は図5、6に示す。

図5は、LとCを評価値の高い順に左側から並べたものである。近似曲線を見ると、評価が高くなるにつれてLは小さくなり、Cは0.25前後である。

図6は、最も評価値の高いパターン（図4）における数値分布である。数値としては、1のノードが仕切りノード率を示す。図より、次数が少なくなるにつれてノード数は多くなるという結果を得た。

一般に、多くのリンクを制する数少なノードを抑制するものとなる。Lの多くのノードすなわち構成されるネットワークでは、次数分布がピーク側に従い、ハブが存在することを意味する。このようなL、Cおよび次数のパラメータが得られるモデルとしてA-L. Barabasiが提案する優先的選択型成長モデルがある。このモデルでは、新しいネットワークに加わったノードは、次数の大きなノードにつながりやすい性質を持つ。今後、地域のネットワークでハブが果たす役割を明らかにするには、地域生活サービスの専属的な展開に大きく関与する。ここでは7ノードで解析した。本来の対象モデルを想定したノード数にすると、前述の傾向がより明確に現れると考えている。

4. 総括

グラフ理論を用いた相互制約関係の簡単なモデル化の概念構築について述べてきた。ノードに個人属性、リンクに個人間の関係性を与えることで、モデルへの社会概念導入が可能であり、ネットワークの状態の考察に有効であるとの考えをした。一方で、最も若き多様なネットワーク概念の探索に必要なネットワーク評価値δを評価的に導入するため、遺伝的アルゴリズム(GA)等の発見の最適化手法を取り入れた解析手法の導入が必要である。

今後は、さらにモデルを発展させると同時に、ノード数を増やした解析を行い、ネットワークモデルが優先的選択型成長モデルに関連したネットワーク形態の特性を備えていることを見出すために、地域生活サービスの特性に対して、SCが有効であることを示したい。

【参考文献】

1) 笹村信子、大村武和：農村地域の高齢者の福祉を視野に入れた地域関係の分析、農村問題論叢に創、3、145-150、2001.12
2) NPOホームページ(内閣府社会局)：平成14年度内閣府社会局がソーシャル・キャピタルを豊かな地域社会を形成するため、http://www.npo-homepage.go.jp/index.html、2003.6
3) 金子浩、社会ネットワーク分析の基礎、労動通信、2003
4) 松尾敏、史努シールドとビジネス発展、経済学研究会、18(3)、288-294、2003.5
5) 堂本善雄、今野幸雄、ブロックネットワークの発展、地域課題、2005.2

*1鹿児島大学大学院理工学研究科 修士課程
*2鹿児島大学工学部建築学科 教授 工博
*3鹿児島大学大学院工学研究科 助教授 工博

*1 Graduate School, Dept. of Architecture, Kagoshima University
*2 Prof., Dept. of Architecture, Kagoshima University, Dr. Eng.
*3 Assoc. Prof., Dept. of Architecture, Kagoshima University, Dr. Eng.