初期界面き裂を有する接合板の動的界面破壊（接着層のモードI破壊）

Dyamic Interface Fracture on Bonded Plates with an Initial Interface Crack. (Mode I Fracture in the Bonding Layer)

○正 小田美紀男（鹿児島大学） 正 有富 正男（鹿児島大学）
正 戸谷 賢之（鹿児島大学）

Mikio ODA, Kagoshima University, 1-21-40 Korimito Kagoshima
Masao ARITOMI, Masayuki TOYA, Kagoshima University

Key Word: Fracture Toughness, Rate of Stress Intensity Factor, Interface Fracture, Bonded Plates, Dynamic Testing

1. 緒言

接合板の動的界面破壊の動的依存性を調べるため、初期界面き裂を有する接合板に静的および動的負荷を与えた時の接合板の破壊し、それらの応力拡大係数の時刻伝播率の関係を測定している。その結果、破壊範囲の応力拡大係数は時間変化率の関係を求め、破壊因子の応力拡大係数の依存性について調べている。また、破壊範囲の応力拡大係数を求めるため、静的、自由落下式および空気食三式実験装置を用いて、三つずつあおり一点ずつ試験を行っている。応力拡大係数は、き裂近傍のひずみゲージを貼り、そのひずみゲージにより得られたひずみ値から算出している。

2. 実験

2.1 試験片

Fig.1に使用した試験片を示す。この試験片は、2枚のアルミニウム板（AL2024）をエポキシ樹脂系接着剤で接着している。また、ひずみを確保するために、厚さ0.08mmのテフロンフィルムを接合面に挿入している。初期き裂長さは25mm、試験片の厚さは5mmである。また、Table1に使用したアルミニウム合金の機械的性質を示す。

応力拡大係数を測定するために、き裂近傍のひずみゲージを貼り、ひずみゲージを貼り、ひずみゲージにより得られたひずみ値は以下のようにして、応力拡大係数に変換する。

\[K_I = \sqrt{\frac{2}{1 - \nu^2}} E \sigma_s \] \hspace{1cm} (1)

ここで、\(E \) は継弾性係数、\(r \) はひずみゲージ中心までの距離、\(\varepsilon_s \) はひずみゲージによって得られたひずみです。

Table 1 Mechanical Properties in the Aluminum Alloy

<table>
<thead>
<tr>
<th>Young's Modulus</th>
<th>Density</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.5 [GPa]</td>
<td>2700 [kg/m³]</td>
<td>0.33</td>
</tr>
</tbody>
</table>

（No02-05）日本機械学会材料力学部門講演会講演論文集 [2002-10.12-14, 宇都宮市]

NII-Electronic Library Service
自由落下式実験は3点曲げ、空気銃式実験は1点曲げで実験を行います。
それぞれの実験の特徴は、入力棒を用いる場合は、試験片と入力棒が接しているので、衝撃棒を直接試験片に衝突させるより、片当たりが少ない実験ができます。また、空気銃式は、自由落下式より衝撃棒を高速でできます。入力棒を用いた場合は、入力棒を伝播する応力波が弾性限度以下にしなければならないので、衝撃棒を試験片に直接、衝突させた方が、高速変形の実験ができます。以上より、Table2に示す変位速度で実験を行いました。

<table>
<thead>
<tr>
<th>Table 2 Range of Displacement Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Speed (Striker Speed)</td>
</tr>
<tr>
<td>Static Test</td>
</tr>
<tr>
<td>Dynamic Test A</td>
</tr>
<tr>
<td>Dynamic Test B</td>
</tr>
<tr>
<td>Dynamic Test C</td>
</tr>
<tr>
<td>Dynamic Test D</td>
</tr>
</tbody>
</table>

3. 実験結果

Fig.4に実験によって得られた応力拡大係数 K_I の時間変動を示します。破壊靭性値 K_I は、応力拡大係数の最大値であり、応力拡大係数の時間変化率 dK/dt は、Fig.4(b)に示すように、応力拡大係数と時間軸との積分となります。

Fig.4(a)は、静的3点曲げ試験によって得られた結果です。実験は、実験で得られた荷重を破壊力学ハンドブックなどに記載されている式をより応力拡大係数に変換し、破線は、ひずみゲージの応答より応力拡大係数を求めています。この二つの線を比べると、良く一致しており、ひずみゲージによる測定の有効性が分かります。Fig.4(a)～(c)を見ると、変位速度（衝撃棒の速度）が速くなると、破壊時間が早くなることが分かります。

Fig.5に実験によって得られた破壊靭性値 K_I と応力拡大係数の時間変化率 dK/dt の関係を示します。応力拡大係数の時間変化率は、動的試験であるため、$\log_{10}(dK/dt)$で示します。静的3点曲げ試験では、ひずみから求めた破壊靭性値（下）と荷重から求めた破壊靭性値（上）は、応力拡大係数の時間変化率 dK/dt に関係なく、共に2.0MPa m$^{1/2}$ 付近にあり、良く一致していることが分かります。動的試験では、$\log_{10}(dK/dt)$が2MPa m$^{1/2}$が最小であり、その後、破壊靭性値が0.9MPa m$^{1/2}$となり、もっとも小さな値となります。その後、応力拡大係数の時間変化率が増加するにつれて、破壊靭性値が増加する傾向にあることが分かります。

5種類の実験装置で得られた$\log_{10}(dK/dt)$をTable2に示します。これより、静的試験と動的試験Aとの間に、測定できない領域（$\log_{10}(dK/dt)$が0～2MPa m$^{1/2}$）があることが分かります。この領域を測定することが、今後の課題となります。

4. 結言

(1) 5種類の曲げ試験装置を用いた結果、動的試験での応力拡大係数の時間変化率 dK/dt における接着剤の破壊靭性値 K_I を測定できます。

(2) 接着剤の破壊靭性値 K_I は、応力拡大係数の時間変化率 dK/dt が増加するにつれて$\log_{10}(dK/dt)$が0MPa m$^{1/2}$/sまで