このページでは、著者の名前やタイトル、出版物の情報が表示されています。なお、学術公開リポジトリからのリンクも提供されています。
<table>
<thead>
<tr>
<th>著者</th>
<th>本間正雄</th>
</tr>
</thead>
<tbody>
<tr>
<td>原誌名及び原誌の巻</td>
<td>鹿児島大学理学部紀要・数学・物理学・化学</td>
</tr>
<tr>
<td>原誌</td>
<td></td>
</tr>
<tr>
<td>原出版社</td>
<td></td>
</tr>
<tr>
<td>別言語のタイトル</td>
<td>たわみテンソルを生かしたフィンスラー接続の決定について</td>
</tr>
<tr>
<td>原語</td>
<td></td>
</tr>
</tbody>
</table>
ON DETERMINATIONS OF FINSLER CONNECTIONS
BY DEFLECTION TENSOR FIELDS

By

Masao Hashiguchi

(Received September 30, 1969)

The author [2] discussed parallel displacements in Finsler spaces and showed that the connection \mathcal{F} defined by E. Cartan [1] is the shortest and fittest from a natural standpoint. In that case we imposed as a natural condition the torsion tensor field to vanish, but in its definition the supporting elements are confined to be parallel. And, M. Matsumoto [4] has proposed, from the standpoint of his modern Finsler theory, the following elegant axioms that determine uniquely that connection \mathcal{F} and the associated non-linear connection \mathcal{N}:

(C1) the connection \mathcal{F} be metrical,
(C2) the deflection tensor field $D=0$,
(C3) the $(h)h$-torsion tensor field $T=0$,
(C4) the $(v)v$-torsion tensor field $S^1=0$,

where the axiom C2 expresses the geometrical meaning as above stated.

So, from the standpoint that the supporting elements may be displaced with respect to any non-linear connection \mathcal{N} in the tangent bundle, we shall replace the condition C2 by some weaker conditions and find the conditions to be imposed thereon in order that the connection \mathcal{F} defined by E. Cartan be obtained (Theorem A).

As a result of this consideration we shall notice that Finsler connections with the deflection tensor field $D=-\delta$ are somewhat canonical. We shall give an example of such a Finsler connection (Theorem B).

Throughout the present paper we shall use the terminology and notations described in M. Matsumoto [5]. In §1, we shall briefly sketch the materials in need of our discussions.

The author wishes to express his sincere gratitude to Prof. M. Matsumoto for the invaluable suggestions and encouragements.

§ 1. Preliminaries

1°. Given a differentiable manifold M of dimension n, we denote by $L(M)(M, \pi, GL(n, R))$ the bundle of linear frames and by $T(M) (M, \tau, F, GL(n, R))$ the tangent bundle, where the standard fiber F is a vector space of dimension n with a fixed base $\{e_a\}$.
The induced bundle $\tau^{-1}L(M) = \{(y, z) \in T(M) \times L(M) | \tau(y) = \tau(z)\}$ is called the Finsler bundle of M and denoted by $F(M)$ $(T(M), \pi_1, GL(n, R))$. The projection π_1 is the mapping

$$\pi_1: F(M) \rightarrow T(M) \mid (y, z) \rightarrow y,$$

and we shall denote by π_2 the mapping

$$\pi_2: F(M) \rightarrow L(M) \mid (y, z) \rightarrow z.$$

The Lie algebra of the structural group $GL(n, R)$ of $L(M)$ or $F(M)$ is denoted by $L(n, R)$ and the canonical base by $\{L_i^j\}$.

2°. A Finsler connection (Γ, N) is by definition a pair of a connection Γ in the Finsler bundle $F(M)$ and a non-linear connection N in the tangent bundle $T(M)$.

Given a Finsler connection (Γ, N), let $l_u(u \in F(M))$ and $l_y(y \in T(M))$ be the respective lifts with respect to Γ and N. In terms of a canonical coordinate system (x^i, y^j, z^k) of $F(M)$, they are expressed by

\begin{align}
(1) \quad l_u\left(\frac{\partial}{\partial x^k}\right)_y &= \left(\frac{\partial}{\partial x^k}\right)_y - z^i\Gamma^j_{ik}\left(\frac{\partial}{\partial z^j}\right)_u, \\
(2) \quad l_u\left(\frac{\partial}{\partial y^k}\right)_y &= \left(\frac{\partial}{\partial y^k}\right)_y - z^iC^j_{ik}\left(\frac{\partial}{\partial z^j}\right)_u, \\
\text{and} \\
(3) \quad l_y\left(\frac{\partial}{\partial x^k}\right)_x &= \left(\frac{\partial}{\partial x^k}\right)_x - F^i_j\left(\frac{\partial}{\partial y^i}\right)_y,
\end{align}

where Γ^j_{ik}, C^j_{ik} are called the components of Γ and the F^i_j the components of N. C^j_{ik} are also the components of the $(h)\nu$-torsion tensor field \mathcal{C}.

For each $f \in F$ the h- and the ν-basic vector fields $B^h(f)$ and $B^\nu(f)$ are defined by

\begin{align}
(4) \quad B^h(f)_u &= l_u l_y(zf), \\
(5) \quad B^\nu(f)_u &= l_u l_y(zf)
\end{align}

at $u = (y, z)$ respectively, where l_y is the vertical lift expressed by

\begin{align}
(6) \quad l_y\left(\frac{\partial}{\partial x^i}\right)_x &= \left(\frac{\partial}{\partial y^i}\right)_y.
\end{align}

The h- and the ν-basic forms θ^h and θ^ν constitute, with the connection form ω of Γ, the dual system of $(B^h(f), B^\nu(f), Z(A))$, where $Z(A)$ is the fundamental vector field corresponding to $A \in L(n, R)$. They are expressed by

\begin{align}
(7) \quad \theta^h &= z^{-1}d x^i e_a,
\end{align}
On Determinations of Finsler Connections by Deflection Tensor Fields

\[\theta^e = z^{-1} \gamma (d y^i + F^i_k dx^k) e_a \]

and

\[\omega = z^{-1} \alpha (d z^i + z^i \Gamma^i_j_k dx^k + z^i C^i_j_k dy^k) L^b_a. \]

If we denote by \(\theta \) the basic form in \(L(M) \) then

\[\theta^b = \pi_2 \theta. \]

3. Given a Finsler connection \((\Gamma, N)\), we get the associated non-linear connection \(\overline{N} \) with the subordinate \(F \)-connection \(\Gamma_F \) to \((\Gamma, N)\). The pair \((\Gamma, \overline{N})\) is a Finsler connection and is called the associated connection with the given one. We shall denote by putting - the quantities with respect to \((\Gamma, \overline{N})\).

If we put

\[F^i_j_k = \Gamma^i_j_k - C^i_j_m F^m_k, \]

the components \(F^i_j \) of \(N \) are

\[F^i_k = y^i F^i_k, \]

and differ by \(y^i F^i_j_k - F^i_k \) from \(F^i_k \). The quantities

\[D^i_k = y^i F^i_k - F^i_k \]

are the components of the deflection tensor field \(D \) defined by

\[D(f) = B^h(f) \gamma, \]

where \(\gamma \) is the characteristic field defined by

\[\gamma : F(M) \rightarrow F(y, z) \rightarrow z^{-1} y = z^{-1} y^i y^i e_a. \]

Between the h-basic vector fields \(B^h(f) \) and \(\overline{B^h(f)} \) there exists the relation

\[B^h(f) = \overline{B^h(f)} + B^v(D(f)), \]

therefore, as the dual relation, we have

\[\theta^e = \overline{\theta^e} - D(\theta^b). \]

4. Given a Finsler metric function \(L \), the usual metric tensor field \(G \) is defined, its components \(g_{ij} \) being given by

\[g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}. \]

A Finsler space means here a differentiable manifold \(M \) endowed with such a metric tensor field \(G \).
We put

\[(18) \quad \tau_{ijk} = -\frac{1}{2} \left(\frac{\partial g_{ij}}{\partial x^k} + \frac{\partial g_{jk}}{\partial x^i} - \frac{\partial g_{ik}}{\partial x^j} \right), \]

\[(19) \quad g^i = \frac{1}{2} \tau^i_{jk} y^j y^k, \]

and

\[(20) \quad g^i_k = \frac{\partial g^i}{\partial y^k}, \]

where \(\tau^i_{jk} = g^{ih} \tau_{ijk} \).

And we shall sometimes use the notations

\[(21) \quad l^i = \frac{y^i}{L}, \quad l_j = g_{ij} l^i. \]

5. Let a Finsler connection \((\Gamma, N)\) be given in a Finsler space \((M, G)\). The conditions C1–C4 are expressed as follows:

\[(22) \quad \Gamma_{jkh} + \Gamma_{hjk} = \frac{\partial g_{jh}}{\partial x^k}, \]

\[(23) \quad C_{jkh} + C_{hjk} = \frac{\partial g_{jh}}{\partial y^k}, \]

\[(24) \quad F^i_k = y^i F^i_{jk}, \]

\[(25) \quad F_{jkh} = F_{khj}, \]

\[(26) \quad C_{jkh} = C_{khj}, \]

where \(\Gamma_{jkh} = g_{ih} \Gamma^i_{jk}, \ C_{jkh} = g_{ih} C^i_{jk}\) and \(F_{jkh} = g_{ih} F^i_{jk}\). We shall here explain some geometrical meanings of these conditions.

Let \(C\) be a differentiable curve in \(M\) and \(\bar{C}\) be a differentiable curve in \(T(M)\) mapped on the \(C\) by the projection \(\tau\). Tangent vectors \(X(t)\) along \(C\) are said to be parallel along \(C\) with respect to \(\bar{C}\), if the equations

\[(27) \quad \frac{dX^i}{dt} + \Gamma^i_{jkh}(x, y) \frac{dx^j}{dt} + C^i_{jkh}(x, y) \frac{dy^k}{dt} = 0 \]

are satisfied, where \(C\) is expressed by \(x'(t)\) and \(\bar{C}\) by \(x'(t), \ y'(t)\).

Under the parallel displacement along a curve \(C\), if we take in particular \(\bar{C}\) to be a lift \(\bar{C}_N\) with respect to the non-linear connection \(N\), i.e.

\[(28) \quad \frac{dy^i}{dt} + F^i_k(x, y) \frac{dx^k}{dt} = 0, \]
On Determinations of Finsler Connections by Deflection Tensor Fields

the equations (27) may be written in the form

\[\frac{dX^i}{dt} + F_j^i(x, y)X^j \frac{dx^k}{dt} = 0. \]

(29)

The supporting elements \(y^i \) (the points of the lift \(\tilde{C}_N \)) are parallel with respect to \(\tilde{C}_N \), i.e.

\[\frac{dy^i}{dt} + F_j^i(x, y)y^j \frac{dx^k}{dt} = 0, \]

(30)

if and only if the equations (24) are satisfied, which is a geometrical meaning of the condition C2.

The connection \(\Gamma \) is called to be metrical if the length of a vector remains unchanged under the parallel displacement along any curve \(C \) with respect to any \(\tilde{C} \), which is a geometrical meaning of the condition C1. On the other hand, the non-linear connection \(N \) is called to be metrical if the supporting elements as the points of a lift \(\tilde{C}_N \) of any curve \(C \) have a constant length, that is, the (28) yields

\[\frac{d}{dt}(g_{ij}(x, y)y^iy^j) = 0. \]

(31)

In the case that the \(\Gamma \) is metrical, the non-linear connection \(N \) is metrical if and only if

\[g_{jk}y^jD^k_h = 0, \quad \text{or} \quad l_iD^i_k = 0. \]

(32)

This is easily verified by (22), (23), (28) and (13). Hence, if the condition C2 is satisfied, the non-linear connection \(N \) is metrical.

Let \(T(x) \) be the fibre \(\pi^{-1}x \) over a point \(x \in \mathcal{M} \) and \(F(x) \) be the Finsler subbundle \(\pi^{-1}T(x) \). If we denote by \(\Gamma^v \) the restriction of the distribution \(\Gamma \) to \(F(x) \), the \(\Gamma^v \) is regarded as a linear connection on the differentiable manifold \(T(x) \), whose components are \(C^v_{jk} \). Since the (v)\(v \)-torsion tensor field \(S^v \) is expressed by \(S^v_{jk} = C^v_{jh} - C^v_{hj} \), the condition C4 requires this connection \(\Gamma^v \) to be without-torsion.

If we restrict the metric tensor field \(G \) to \(T(x) \), then the \(T(x) \) becomes a Riemannian space. Thus, the connection satisfying (23) and (26) is the Riemannian connection, which is uniquely determined by the \(G \) as follows:

\[C_{jkh} = \frac{1}{2} \frac{\partial g_{ih}}{\partial y^k}. \]

(33)

Therefore, \(C_{jkh} \) are symmetric and the relations

\[C_{jkh} y^k = 0, \quad \text{or} \quad C_{jkh} l^k = 0 \]

(34)

hold good.

Now, since \(F_j^k = \Gamma_j^k - C^m_{jm}F^k_m \), the (h)\(h \)-torsion tensor field \(T \), which is expressed by \(T^i_{jk} = F^i_j - F^i_k \), depends not only on the \(\Gamma \) but on the \(N \). However, the conditions C1 and C4 do not depend on the \(N \). So, the condition C2 gives an influence upon the
§ 2. Determinations of Finsler connections by deflection tensor fields

6°. First, we shall consider the case that any non-linear connection is given in the tangent bundle of a Finsler space.

Proposition 1. Given a non-linear connection \(N \) in the tangent bundle of a Finsler space, there exists a unique Finsler connection \((\Gamma, N)\) satisfying the following four conditions:

(C1) the connection \(\Gamma \) be metrical,
(C2') the non-linear connection be the given \(N \),
(C3) the \((h)h\)-torsion tensor field \(T_0 = 0 \),
(C4) the \((v)v\)-torsion tensor field \(S_1 = 0 \).

The components \(\Gamma_{jkh} \) and \(C_{jkh} \) of the \(\Gamma \) are

\[
\Gamma_{jkh} = \gamma_{jkh} + \frac{1}{2} \left(\frac{\partial g_{ih}^{m}}{\partial y^{m} h} - \frac{\partial g_{hh}^{m}}{\partial y^{m} i} F_{j}^{m} \right),
\]

\[
C_{jkh} = \frac{1}{2} \frac{\partial g_{ij}^{h}}{\partial y^{h}},
\]

where \(F_{j}^{i} \) are the components of the given non-linear connection \(N \).

In this case \(F_{jkh} \) are

\[
F_{jkh} = \gamma_{jkh} - \frac{1}{2} \left(\frac{\partial g_{ij}^{m}}{\partial y^{m} h} - \frac{\partial g_{hh}^{m}}{\partial y^{m} i} F_{j}^{m} + \frac{\partial g_{ih}^{m}}{\partial y^{m} h} - \frac{\partial g_{hh}^{m}}{\partial y^{m} i} F_{j}^{m} \right),
\]

and if we put

\[
\frac{\delta}{\partial x^{k}} = \frac{\partial}{\partial x^{k}} - F_{j}^{m} \frac{\partial}{\partial y^{m}},
\]

then they are expressed by

\[
F_{jkh} = \frac{1}{2} \left(\frac{\partial g_{ij}^{k}}{\partial x^{k}} + \frac{\partial g_{hh}^{k}}{\partial x^{j}} - \frac{\partial g_{ih}^{k}}{\partial x^{k}} \right).
\]

Proof. (33) follows from (23) and (26) as remarked in 5°. If we put

\[
\Gamma_{jkh} = \gamma_{jkh} + \frac{1}{2} \left(\frac{\partial g_{ij}^{m}}{\partial y^{m} h} - \frac{\partial g_{hh}^{m}}{\partial y^{m} i} F_{j}^{m} \right) + A_{jkh},
\]

then we obtain by (22) and (18)

\[
A_{jkh} + A_{kjh} = 0,
\]
and by (11), (33) and (25)

\[A_{jhk} = A_{khj}. \]

From these equations it follows that \(A_{jhk} = 0 \). Hence, (39) becomes (35), and (36) follows.

And the \(\Gamma \) defined by (35) and (33) satisfies with the \(N \) our conditions.

From (36) and (34), we have

\[y^j F^i_j = y^j r^i_j - \frac{1}{2} g^{ih} \frac{\partial g_{hk}}{\partial y^m} F^m_i y^j. \]

We may solve \(F^i_j \) from (13) and (42), and obtain

\[F^i_j = G^i_j + C^i_j D^i_k y^k - D^i_k. \]

Substituting (43) into (35), we have

Proposition 2. Given a Finsler tensor field \(D \) of type \((1, 1)\) in a Finsler space, there exists a unique Finsler connection \((\Gamma, N)\) satisfying the following four conditions:

\[(C1)\] the connection \(\Gamma \) be metrical,

\[(C2')\] the deflection tensor field be the given \(D \),

\[(C3)\] the \((h)h\)-torsion tensor field \(T = 0 \),

\[(C4)\] the \((v)v\)-torsion tensor field \(S^1 = 0 \).

The components \(\Gamma_{jhk}, C_{jhk} \) and \(F^i_j \) of the \((\Gamma, N)\) are

\[
\Gamma_{jhk} = \gamma_{jhk} + \frac{1}{2} \left(\frac{\partial g_{ij}}{\partial y^m} G^m_j - \frac{\partial g_{jk}}{\partial y^m} G^m_i \right) \\
+ C_{jkm} C^i_j D^i_k y^k - C_{hkm} C^m_j D^m_i y^i - C_{jkm} D^m_i + C_{hkm} D^m_i,
\]

\[(33)\]

\[C_{jhk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}, \]

and

\[(43)\]

\[F^i_j = G^i_j + C^i_j D^i_k y^k - D^i_k, \]

where \(D^i_k \) are the components of the given Finsler tensor field \(D \).

7°. Proposition 2 shows that the connection \(\Gamma \) determined in Proposition 1 or 2 is the one defined by E. Cartan if and only if

\[(45)\]

\[C_{jkm} C^m_i D^i_j y^j - C_{hkm} C^m_i D^m_j y^j - C_{jkm} D^m_i + C_{hkm} D^m_i = 0. \]

It is easily verified by (34) that (45) is equivalent to
Thus we have

Theorem A. Given a Finsler tensor field D of type $(1, 1)$ in the Finsler bundle of a Finsler space, there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

(C1) the connection Γ be metrical,
(C2') the deflection tensor field be the given D,
(C3) the $(h)h$-torsion tensor field $T = 0$,
(C4) the $(v)v$-torsion tensor field $S^v = 0$.

And, a necessary and sufficient condition that the Γ thus determined be the one defined by E. Cartan is that the deflection tensor field D satisfies the condition

\[C(f_1, D(f_2)) = C(f_2, D(f_1)), \]

where C is the $(h)v$-torsion tensor field of the (Γ, N), or equivalently that the components D_k^j of the deflection tensor field D satisfy the conditions

\[\frac{\partial g_{i h}}{\partial y^m} D_k^m = \frac{\partial g_{h k}}{\partial y^m} D_j^m. \]

In this case the conditions

\[\frac{\partial g_{i h}}{\partial y^m} D_k^m y^v = 0 \]

hold good, and the components Γ_{jkh}, C_{jkh} and F^i_k of the (Γ, N) are

\[\Gamma_{jkh} = \gamma_{jkh} + \frac{1}{2} \left(\frac{\partial g_{i h}}{\partial y^m} G_m^k - \frac{\partial g_{h k}}{\partial y^m} G_j^m \right), \]

\[C_{jkh} = \frac{1}{2} \frac{\partial g_{i h}}{\partial y^k}, \]

and

\[F^i_k = G^i_k - D_k^i. \]

8. As a special example of the D satisfying the condition (48), we have

Proposition 3. In a Finsler space there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

(C1) the connection Γ be metrical,
(C2''') the deflection tensor field D be given by

\[D^i_k = \lambda l^i l_k + \mu \delta^i_k, \]
where λ and μ are scalar functions on the tangent bundle,

(C3) the (h)-torsion tensor field $T=0$,

(C4) the (v)-torsion tensor field $S^1=0$.

The connection Γ is the one defined by E. Cartan. And, the non-linear connection N is metrical if and only if $\lambda + \mu = 0$.

This is easily proved by (34) and (32). Thus, we have noticed that, in order to determine the connection Γ defined by E. Cartan, the condition (C2) may be replaced by the weaker condition (C2'). If we take D in (C2'') such that

\[D = \lambda (l^i l_k - \delta^i_k), \]

then the non-linear connection N is metrical, and so we have a generalization of the (Γ, N) defined by E. Cartan.

However, in order to obtain the Γ only, it does not need the non-linear connection to be metrical. In particular, if $\lambda = 0$, $\mu = -1$ (i.e. $D = -\delta$) then the components F^i_1 of the non-linear connection N become $F^i_1 = G^i_1 + \delta^i_1$, which are somewhat canonical in features. So, it seems to be interesting that, apart from Finsler metrics, we treat Finsler connections with the deflection tensor field $D = -\delta$. Next, we shall give an example of such a Finsler connection.

§ 3. Finsler connections derived from affine connections

9°. Let $F(M)$ be the affine bundle over M, where $\tilde{G} = GL(n, \mathbb{R}) \times F$ is the affine group with the multiplication

\[(g_1, v_1) (g_2, v_2) = (g_1 g_2, g_1 v_2 + v_1). \]

Each $(g, v) \in \tilde{G}$ acts on $F(M)$ by

\[T_{(g, v)} : F(M) \to F(M) \mid (y, z) \mapsto (y + vz, zg), \]

so we have the restrictions

\[T_g : F(M) \to F(M) \mid (y, z) \mapsto (y, zg) \]

and

\[S_v : F(M) \to F(M) \mid (y, z) \mapsto (y + vz, z). \]

Therefore, a connection in the affine bundle is invariant not only by T_g but by S_v.

The Lie algebra of the structural group \tilde{G} is $L(n, \mathbb{R}) + F$, if we identify the Lie algebra of the additive group F with F itself. If we denote by $Z(A)$ and $Y(f)$ the respective fundamental vector fields corresponding to $A \in L(n, \mathbb{R}) + 0$ and $f \in 0 + F$, then $Z(A)$ is also the fundamental vector field in the Finsler bundle $F(M)$, and $Y(f)$ is the induced fundamental vector field.
The induced vertical distribution F^i defined by

$$F(M) \ni u \to \{X \in F(M)_u | \pi_2 X = 0\}$$

is spanned by $Y(f)$, where $F(M)_u$ is the tangent space at $u \in F(M)$.

10°. Let \tilde{F} be a connection in the affine bundle $F(M)$. Then, a Finsler connection (Γ, N) is obtained by pairing \tilde{F} with the induced vertical distribution F^i. In this case the v-basic vector field $B^v(f)$ is $Y(f)$.

Since the \tilde{F} is S^r-invariant, the h-basic vector field $B^h(f)$ is S^r-invariant. Therefore, the subordinate F-connection to (Γ, N) is a linear connection and the deflection tensor field D of (Γ, N) is S^r-invariant.

Now, we shall treat the connection forms.

Proposition 4. Let ω and ω' be the connection forms of \tilde{F} and F respectively. If we consider the form $\omega + \theta^v$ to take values in the Lie algebra $L(n, R) + F$, then

$$\tilde{\omega} = \omega + \theta^v.$$

Proof. Since $(\theta^h, \theta^v, \omega)$ constitutes the dual system of $(B^h(f), Y(f), Z(A))$, we have

$$\tilde{\omega} = \omega + \theta^v.$$

These relations show that $\omega + \theta^v$ is just the connection form $\tilde{\omega}$ of the \tilde{F}. Because, with respect to the connection in the affine bundle $F(M)$ over M, the horizontal subspace is spanned by $B^h(f)$ and the vertical subspace by the fundamental vector fields $Z(A)$ and $Y(f)$.

Proposition 5. Let ω be the connection form of \tilde{F}, and ω' be the connection form of the subordinate linear connection to (Γ, N). If ε is the injection

$$\varepsilon: L(M) \to F(M) | z \to (0, z),$$

then

$$\varepsilon^* \tilde{\omega} = \omega - D(\theta).$$

The proof will be obtained from (55), (16), (12) and (10). A connection F in the affine bundle is canonical, if the $\varepsilon^* \tilde{\omega}$ has the form

$$\varepsilon^* \tilde{\omega} = \omega + \theta,$$

and is called the affine connection $[3]$. The formula (58) shows that the connection \tilde{F} is affine if and only if

$$D = -\theta.$$

Thus we have
Theorem B. Let \tilde{F} be a connection in the affine bundle $F(M)$ over M. Then, a Finsler connection (\tilde{T}, N) of M may be defined by the Finsler pair (\tilde{T}, F'), where F' is the induced vertical distribution. Its subordinate F-connection becomes a linear connection and its deflection tensor field D is S_v-invariant. In particular, the connection \tilde{F} is an affine connection of M if and only if $D=-\delta$.

References