高隈演習林産スギ材の強度性能・円周丸太のヤング係数と木取り位置による選別効果

<table>
<thead>
<tr>
<th>著者</th>
<th>寺床 勝也・藤田 晋輔・服部 芳明</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>鹿児島大学農学部演習林研究報告</td>
</tr>
<tr>
<td>巻</td>
<td>□</td>
</tr>
<tr>
<td>ページ</td>
<td>□</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10232/1182</td>
</tr>
</tbody>
</table>
Strength Properties of Sugi Lumber Samples from Takakuma Experimental Forest in Kagoshima (1)
Effectiveness of Selection by Grading of Dynamic Elasticity of Logs and Sawing Position on Sugi Lumber.

Katsuya TERATOKO\(^1\), Shinsuke FUJITA\(^1\) and Yoshiaki HATTORI\(^1\)

1) Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, 21-24, Korimoto 1-chome, Kagoshima 890-0065

The longitudinal vibration method and full scale static bending test were used to evaluate the strength properties of 82 pieces of lumber taken from 30 logs of middle-class- diameter sugi (Cryptomeria japonica D. DON) produced at the Takakuma Experimental Forest in southern Kyusyu. An investigation was conducted into the merits of using the following selection criteria for the purpose of classifying lumber according to strength quality: 1) selection according to saw patterns on logs; 2) selection according to stress grading of dynamic elasticity of logs by longitudinal vibration (EFL); and 3) selection based on both 1) and 2) together. It was found that all three selection methods were useful for distinguishing the strength properties of lumber samples. In particular, in the case of selection using the sawing position alone, the Young’s moduli for outer lumber samples without pith were from 10 to 15 percent higher than those for samples of inner lumber with pith. However, the moduli of rupture (MOR for selected lumber samples showed an effect of only 2%. It is considered that to assure confidence in lumber strength in terms of MOR, weakening factors such as knot diameter and grain angle need to be taken into account.

Key words: Sugi (Cryptomeria japonica D. DON), Middle-class-diameter log, Lumber, Stress grading, Sawing position, Longitudinal vibration, Full scale static bending test.

キーワード：スギ、中目材、ひき板、グレーディング、木取り、打撃音法、実大静的曲げ試験

１．はじめに

スギ（Cryptomeria japonica D. DON）材は、我が国
主要な住宅用材として使用されている。特に、鹿児島県
では全国にさきがけて戦後の大爆発林が行われてきた経緯
があり、今後10年以内に伐採期に到達する利用可能林分は
植栽面積中の3分の2を超えようとしている\(^1\)。ただ、出
材される丸太は、末口径14〜30cmの中径の丸太材（いわ
ゆる中目材）が多い。この中目材から生産される製材品
は、初期の含水率分布に幅広いばらつきを有するために乾燥性の問題がある。また、同一株分内で採取されたスギ材
において個体間の強度性能にばらつきが多いことなど課題
が多く、十分な活用がなされていない状況にある。さら
に、最近の建築基準法の改正\(^2\)に伴い、これまでの仕様規
定から性能規定への移行期にあたり、使用部材の品質保証
との関わりから、木材系構造部材の含水率ならびに強度の
明示化が浮上しにくいことは必要である。このことから、
現場の製材業者においては、乾燥性の諸問題、強度的な品
質保証の確保が大きな課題となっているが、中目材から合目
的な部材を供給する生産技術の確立、特に強度を保証した
生産性向上への対応が迫られている。

本研究では、枆組木工法用住宅に用いる立枆材もしくは架組木工法の間柱、筋交い部材などの構造部材への利用に向けて、スギ中間材からひき板を生産し、その強度性能を検討した。さらに、強度的な品質を向上させる目的で、丸太のヤング係数および木切り位置による選別区分を適用し、区分されたひき板の強度性能を明らかにするとともに、選別効果について実験的検証を行った。

2. 材料および実験方法

供試した中日丸太材は、平成8年7月に鹿児島大学附属高階演習林「14林班から4小班」にて、立木10本を伐採・造材して用いた。この林班の林齢は43年生で、供試木の胸高直徑は、平均約25cmであった。伐採後、供試丸太の長さ3mを玉切りし、1〜5番の50本の丸太を得た。そのうち1〜3番の30本を、ひき板生産用の丸太として。丸太の調査は、丸太の長さ（長径、短径）、表径（長径、短径）、材長、重量を測定した。重量は600kg未満（AND製FT-600KA4）にて、0.1kg精度で測定した。また、丸太の動的ヤング係数（EIL）を、打撃法[12]により算出した。これは丸太の木切り断面をアラスチックハンマーで打撃し、継続振動を励起させ、その音を伝える木の表面からマイクロフォン（RION製NH-17）でとらえ、FFTアナライザー（RION製SA-77）により一次固有振動数を求め、EILを次式により算出した。

\[EIL = (2 \cdot L) \cdot f^2 \cdot \rho / g \]

ここで、EIL：丸太の動的ヤング係数（tf/cm^4）、L：材長（cm）、f：1次固有振動数（Hz）、ρ：みかけの密度（g/cm^3）、g：重力加速度（980cm/sec^2）である。なお、ρの算出方法は、丸太の重量を実験法により求積して求めた丸太の容積で除した値とした。

製材方法は、Fig.1に示すような木取りを行いひき板を製材した。木取りは、先端に細い丸太の長さ（cm）または丸太の長さ（cm）を用いた。ひき板の木乗り位置は、厚さ40mm、幅90mmとした。製材方法は、丸太の軸方向に平行に製材する中心定規法により行った。なお、製材された生材ひき板は木取り位置に応じて、側を含むものを心持材とし、それ以外のものを心去り材とした。これは、現場で選別する際の簡便性を考慮した木取り区分法として採用した。

Fig. 1. Sawing Patterns.
Legend：\(\phi \)：Diameter at top end.

製材後の生材ひき板について、ただちに寸法（長さ、幅、厚さ）、重量を測定し、さらに1次固有振動数をFFT解析して求め、生材の動的ヤング係数（Eig）を算出した。算出式は丸太とも同様である。また、丸太との木切り位置の明らかに治材ひき板について、比例限度領域内で実大静的曲げ試験を行い、生材の曲げヤング係数（MOEg）を求めた。荷重条件は、中央集中荷重方式（スパン180cm、クロスヘッドスピード10mm/min）で、荷重はフラットワイズ面とし、心去り材は木表と木裏の両面から、同様に心持ち材も両面から一定荷重（30kgf）を加え、両荷重基で測定されたたわみを平均化しMOEgを求めた。なお、MOEgの算出は次式により行った。

\[MOEg = \Delta p \cdot L^3 / 4 \cdot \Delta y \cdot b \cdot h^3 \]

ここで、MOEg：生材の静的曲げヤング係数（tf/cm^4）、L：スパン（cm）、Δp：比例限度内荷重（kgf）、Δy：Δpに対応するスパン中央部のたわみ（cm）、b：供試体幅（cm）、h：供試体厚さ（cm）とした。

乾燥は、鹿児島県工業技術センターにおいて、人工乾燥を行いを行った。乾燥スケジュールは、乾燥温度60℃、乾燥温度差5℃を55時間、コンディショニングを乾燥温度70℃、乾燥温度差10℃で24時間行い、仕上がり含水率12%に調整した。なお、含水率の短時間変化をモニタリングするために、生材のロット中、重量の大きいもの、中庸ものの、軽いものを各1本の計3本の生材について、木取口から50cmの距離にて厚さ3cm厚の試験片を切り出し、乾燥法により含水率を求め、残りの実大部の重量変化から乾燥中の含水率の経
時変化を推定した。
乾燥後1週間の養生期間をおき、生材と同様に乾燥材の
動的ヤング係数（Efd）を測定した。最後に、乾燥材の
実大曲げ破壊試験を行った。荷重条件は、3等分4点荷重
方式（ロードスパン90cm、全スパン270cm）で、クロスヘ
ッドスピードを10mm/minとした。なお、たわみは、スパ
ン中央部にてスケールにより測定した。曲げ試験の結果か
ら、乾燥材の曲げヤング係数（MOEkd）、曲げ破壊係数
（MORkd）を次式により算出した。
MOEkd = 23・L’・△p / 108・b’・h’・△y
MORkd = P・L / b・h’
ここで、MOEkd：乾燥材の静的曲げヤング係数（tf/cm），
MORkd：乾燥材の曲げ破壊係数（kgf/cm），
L：全スパン（cm），△p：比例限度内の上限荷重と下限荷
重の差（kgf），△y：△pに対応するスパン中央部のたわ
み（cm），b：供試体幅（cm），h：供試体長（cm），
P：最大荷重（kgf）とした。
以上の強度試験結果から、木取り位置による区分（木取
り区分と称す）、丸首のEFLによる区分（EFL区分と称
す）を適用し、各区分で得られた製材品ロットの強度性能
を比較検討した。

3．結果および考察
3－1．供試丸首の概要
Table 1に供試丸首の結果を示す。30本の丸首（1～3
番首含む）の平均木末直徑が、17cmであり、典型的な中目
丸首であった。丸首の動的ヤング係数（Efd）は全体の
平均で53.5tf/cmで、変動係数は約15％となった。鹿児島
県内の主要4カ所の供託所で取り扱われた中目丸首の
EFLの調査結果では、丸首のEFLは30～100tf/cmと広
範囲で、県内の平均値60tf/cmと比較した場合、今回供試
した丸首はやや強度的に低いヤング係数を示したといえ
る。
次に、番首数別でみたEFLの平均値を比較すると、1番
首が47.4tf/cm、2番首で57.1tf/cm、3番首で56.0
tf/cmとなり、1番首が最も低い値を示し、番首数が上が
るにしたがいEFLは高くなる傾向がみられ、2番首が最も
高い値を示した。なお、変動係数をみてでも2番首のばらつ
きは低い結果となった。Fig. 2には、丸首の木取り高さ方
でみた1番首のEFLに対する2，3番首のEFLの比を示
した。その結果2，3番首は、1番首に対し平均で1.2
倍の向上となった。ただし、3番首のばらつきは大きく、
材質的に不安定な未成熟材の割合が大きいことの影響も
考えられた。

3－2．ひき板の強度性能
製材後、得られた生材ひき板は121枚であったが、製材
過程で丸首の腹歯が不明な材が多く出るために、結果
として82本について解析を行った。Table 2には、82本の
ひき板の生材時および乾燥時における強度性能の一覧を示
した。

Table 1. The properties of sample logs.

<table>
<thead>
<tr>
<th></th>
<th>1st logs</th>
<th>2nd logs</th>
<th>3rd logs</th>
<th>All logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi) (cm)</td>
<td>Mean 20.8</td>
<td>Mean 17.1</td>
<td>Mean 12.7</td>
<td>Mean 16.9</td>
</tr>
<tr>
<td>CV (%)</td>
<td>7.9</td>
<td>8.9</td>
<td>11.0</td>
<td>21.6</td>
</tr>
<tr>
<td>(\rho) (g/cm³)</td>
<td>1.00</td>
<td>0.91</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>ARW (mm)</td>
<td>3.4</td>
<td>3.5</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>EFL (tf/cm²)</td>
<td>47.4</td>
<td>57.1</td>
<td>56.0</td>
<td>53.5</td>
</tr>
</tbody>
</table>

Legend: \(\phi \): Diameter at top end, \(\rho \): Density, ARW: Average ring width at bottom and top end of log, EFL: Dynamic elasticity of logs for longitudinal vibration, CV: Coefficient of variation.
Note: Number of all logs is 30 (1st logs: 10, 2nd logs: 10, 3rd logs: 10).
Table 2. The strength properties of sample lumbers.

<table>
<thead>
<tr>
<th></th>
<th>(\rho) (g/cm(^3))</th>
<th>(\rho_{kd}) (g/cm(^3))</th>
<th>(E_{fg}) (tf/cm(^2))</th>
<th>(MOE_{fg}) (tf/cm(^2))</th>
<th>(Ef_{kd}) (tf/cm(^2))</th>
<th>(MOE_{kd}) (tf/cm(^2))</th>
<th>(MOr_{kd}) (kgf/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Mean</td>
<td>0.7</td>
<td>0.4</td>
<td>48.9</td>
<td>37.9</td>
<td>52.9</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>15.4</td>
<td>14.4</td>
<td>16.4</td>
<td>15.5</td>
<td>16.4</td>
<td>14.6</td>
</tr>
<tr>
<td>lumbers</td>
<td>Inner</td>
<td>0.7</td>
<td>0.4</td>
<td>44.4</td>
<td>35.1</td>
<td>48.3</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>15.2</td>
<td>13.5</td>
<td>16.0</td>
<td>15.4</td>
<td>17.5</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Outer</td>
<td>0.6</td>
<td>0.4</td>
<td>50.9</td>
<td>39.1</td>
<td>55.0</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>14.3</td>
<td>12.2</td>
<td>15.0</td>
<td>14.5</td>
<td>14.5</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Legend: \(\rho \): see Table 1., \(E_{fg} \): Dynamic elasticity for longitudinal vibration, \(MOE \): Moduli of elasticity for static bending test, \(g \): green lumbers, \(kd \): kiln-dry lumbers.

Note: Number of all lumbers is 82 (Inner lumbers: 25, Outer lumbers: 57).

した。なお、木取り区区分した場合の心持ち材と心去材の結果も併記した。なお、心持ち材は25本、心去材は57本であった。

Table 2 から生材の動的ヤング係数（\(E_{fg} \)）の平均値は全体で48.9tf/cm\(^2\)となり、それに対して、生材の曲げヤング係数（\(MOE_{fg} \)）の平均値は37.9tf/cm\(^2\)となった。このことから、生材ひき板の\(MOE_{fg} \)は\(E_{fg} \)に対し23%低い値を示した。従来、動的ヤング係数（\(MOE \)）は静的曲げヤング係数（\(E_{fg} \）に対し、10%程度高い値を示すとされてきたが、本試験の生材の場合、\(MOE_{fg} \)がより低い値を示すことが示された。それゆえ、含水率の影響による動的ヤング係数と静的曲げヤング係数との関係を検討する必要があることが示された。一方、乾燥材の動的ヤング係数（\(Ef_{kd} \））は、平均で52.9tf/cm\(^2\)となり、また乾燥材の曲げヤング係数（\(MOE_{kd} \））は、平均で53.07tf/cm\(^2\)となり、\(Ef_{kd} \)と等しい値となっている。

つぎに、生材が乾燥材のそれぞれの\(E_{fg} \)と\(MOE \)の関係をFig. 3 に示す。相関関係は、生材で相関係数r = 0.93、乾燥材でr = 0.84となり、ともに1%の有意差で正の相関が得られた。\(E_{fg} \)による\(MOE \)の推定は可能といえる。

次に、乾燥前後のヤング係数の変化を、Table 3に示した。

<table>
<thead>
<tr>
<th></th>
<th>(Ef_{kd}/E_{fg})</th>
<th>(MOE_{kd}/MOE_{fg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Mean</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>6.8</td>
</tr>
<tr>
<td>lumbers</td>
<td>Inner</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Outer</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>CV(%)</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Table 3. The ratio of Young's Moduli of green lumbers to that of kiln-dry lumbers.

Fig. 3. Relationship between \(E_{fg} \) an \(MOE \) for green or kiln-dry lumbers.

3－3、木取り区区分による選別効果

次に、丸太材からの木取り位置で選別した場合の、ひき板の強度性能の結果について検討した。結果の一覧は、先に掲げたTable 2 に示した。全般的な傾向として、心去材の方が、心持ち材に比べて高い強度性能を示した。まず、\(E_{fg} \)の木取り区区分の効果をみると、心持ち材の\(E_{fg} \)は44.4tf/cm\(^2\)となり、心去材の\(E_{fg} \)は50.9tf/cm\(^2\)と心去材が高く、その比は1.15倍となり約15%の向上を示した。この関係を\(MOE_{fg} \)でみると1.11倍、\(Ef_{kd} \)で1.13倍、\(MOE_{kd} \)で1.08倍となり、全般的に、心去材のヤング
グ係数は心持ち材に対して約10～15%高い値を示した。なお、全体の平均値と比べると、心持ち材のEfgは0.9倍、心去り材で1.04倍となった。以下同様でMOEgで0.9倍と1.03倍、Efdは0.91倍と1.04倍、MOEdは0.94倍と1.03倍となり、全体のロットを心去りと心持ちの2区分で仕分けすることは有効といえる。以上のように、木取り区分の効果をヤング係数で比較した結果、心持ち材のロットは全体のロットに対し10%の減少、心去り材では5%の増加。心持ち材と心去り材では10～15%の差を示した。この木取り区分は、素材である丸太のEflとの関連において、心去り材のヤング係数は丸太のEflに対し高く、心持ち材はEflより低い値と評価されることが想定できる。そこで、Eflとの関係をTable 4に示した。まず、Efg/Eflを木取り区分なしの全体でみると0.96となるが、木取り区分を適用した場合、心去り材では1.00、心持ち材では0.86となり、心去り材では丸太と同等の動的ヤング係数を示したため、心持ち材は全体的に丸太より低い値となった。Efd/Eflよりも、区分なしの全体では1.03となり、心持ち材では0.94と低く、心去り材では1.07と心持ち材に対して高い結果を示した。予想のように、丸太のEflと対照した場合、心去り材の方が高く、心持ち材では丸太のヤング係数と同等かそれ以下であることが示された。

また、EflとEfgの相関関係をFig. 4（a）（b）に示した。Fig. 4（a）は、各丸太から得られたひき板のEfgの平均値をとり、Eflとの関係を示したものである。ここでの相関はr = 0.67と5%の有意差で正の相関関係が認められた。ただ、通常、EflとEfgの相関をとると、強い正の相関関係が認められるはずである。しかし、Fig. 4（b）においてみられるように、個々のひき板のEfgがEflに対して大小ならつきを示したことは、今後のサンプリングに121本中39本の丸太との履歴の不明なひき板が多数出现したことなどから、全体の相関を引き下げたものである。なお、Fig. 4（b）から、心持ち材の分布（図中の○）は、回帰直線から低く位置づけられていることがわかる。

以上のことから、単純な「心持ち」、「心去り」の2つの木取り区分のみで、強度的に分別化されたひき板を得ることができる。さらに、丸太のEflとひき板のEfgとの間の相関が認められたことから、丸太のEflで選別すれば、それに応じた強度性能を有するひき板が効率よく採取可能と考えられる。

3-4. Efl区分による選別効果

Efl区分を適用するためにあたり、丸太のヤング係数をL40（30小于Efl小于50）、L60（50小于Efl小于70）の2つに区分した。Table 5には、各区分の丸太から採材されたひき板のロットの強度性能の一覧を示した。

Table 4. The ratio of Efl for logs to Efg of green lumbers and Efg of green lumbers and Efd of kiln-dry lumbers.

<table>
<thead>
<tr>
<th></th>
<th>Efg/Efl</th>
<th>Efd/Efl</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.96</td>
<td>1.03</td>
</tr>
<tr>
<td>lumbers CV (%)</td>
<td>15.8</td>
<td>16.1</td>
</tr>
<tr>
<td>Inner</td>
<td>Mean</td>
<td>0.86</td>
</tr>
<tr>
<td>lumbers CV (%)</td>
<td>14.3</td>
<td>17.0</td>
</tr>
<tr>
<td>Outer</td>
<td>Mean</td>
<td>1.00</td>
</tr>
<tr>
<td>lumbers CV (%)</td>
<td>14.4</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Fig. 4. Relationship between Efl and Efg.
Legend: (a) : Mean lumbers Efg, (b) : Individual lumbers Efg.
まず，E_{fg} では，クレーディングなしの全体の平均値 48.9 tf/cm²に対し，L40で44.8 tf/cm²，L60で51.8 tf/cm²となり，その差は約15%を示した。丸太の強度区分が上がれば，ひき板のヤング係数の平均値が高い傾向する結果となった。このことは，MOE_{kg}，EFkd，MOE_{kgd}についても同様な結果が得られ，L40とL60の差はMOE_{kg}で13%，EFkdで15%，MOE_{kgd}で15%となり，丸太のEFLによる区分で約15%の差を示した。さらに，変動係数に着目すると，EFgの全サンプルでは16.4%であるのに対し，L40で15.4%，L60で14.4%とばらつきを低く抑えられた。このことは，MOE_{kg}，EFkd，MOE_{kgd}についても同様の結果をとった。

しかしながら，MORkdでは，ヤング係数に比べ，顕著な効果は認められず，L40とL60の差はわずか2%であった。

3-5. EFL区分と木取り区分の選別併用効果

EFL区分と木取り区分による選別を併用した結果をTable 6に示す。表はEFL区分をL40とL60の2つにクレーディングした場合と，木取り区分別に仕分けたときの，乾燥材のEFkd，MOE_{kgd}，MORkdの結果である。

また，一例としてFig. 5には，各区分で選別されたひき板のEFkdの度数分布を示した。

まず，EFkdをみると，Table 6とFig. 5からL40とL60の差が明確である。次にL40における心持ち材と心去り材の差は心去り材の方が高く1.16倍となり，L60では1.15倍となった。また，心持ち材のL40とL60の比較をすると，L60が1.17倍と高く，心去り材のL40とL60では1.14となった。最も低い値を示したL40の心持ち材と最も高いL60の心去り材を比較すると，その差は1.32倍と約30%の差が示された。同様の比較をMOE_{kgd}にて適用すると1.27倍，MORkdで1.08倍となった。以上の結果から，ヤング係数では，選別併用効果は最大約30%の分別化が可能となった。しかしながら，MORkdでは区分しても最大8%の差にとどまった。

次に，MORkdの5%下限値を区別に，Table 7に示す。82本のサンプル全体で15%下限値は，364 kgf/cm²であった。これをEFL区分のみでみた場合，L40で約364 kgf/cm²，L60で369 kgf/cm²となり，EFL区分での効果は，その差約4 kgf/cm²とわずかながら認められた。次に，木取り区分のみでみると，L40の場合，心持ち材で約347 kgf/cm²，心去り材で約387 kgf/cm²となり，約40 kgf/cm²の差を生じており，木取り区分の効果がより大きいことが示された。

最も低い値はL40の心持ち材の347 kgf/cm²で，最も高い値を示すと考えられたL60の心去り材は374 kgf/cm²にとどまり，L40の心去り材の387 kgf/cm²と比較して低い結果

<table>
<thead>
<tr>
<th>Classes (Ranges)</th>
<th>EFg (tf/cm²)</th>
<th>MOE_{kg} (tf/cm²)</th>
<th>EFkd (tf/cm²)</th>
<th>MOE_{kgd} (tf/cm²)</th>
<th>MORkd (kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L40 (30<EFL≤50)</td>
<td>Mean 44.8</td>
<td>35.0</td>
<td>48.6</td>
<td>48.9</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>CV (%) 15.4</td>
<td>14.6</td>
<td>14.6</td>
<td>13.0</td>
<td>11.3</td>
</tr>
<tr>
<td>L60 (50<EFL≤70)</td>
<td>Mean 51.8</td>
<td>39.9</td>
<td>56.0</td>
<td>56.0</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>CV (%) 14.4</td>
<td>13.9</td>
<td>13.9</td>
<td>13.0</td>
<td>11.7</td>
</tr>
<tr>
<td>Totals</td>
<td>Mean 48.9</td>
<td>37.9</td>
<td>52.9</td>
<td>53.0</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>CV (%) 16.4</td>
<td>15.5</td>
<td>16.4</td>
<td>14.6</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Note: Number of L40 lumber is 34, L60 lumber is 48.

<table>
<thead>
<tr>
<th>Classes (Ranges)</th>
<th>EFkd (tf/cm²)</th>
<th>MOE_{kgd} (tf/cm²)</th>
<th>MORkd (kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L40 (30<EFL≤50)</td>
<td>Mean 43.4</td>
<td>50.4</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>CV (%) 10.3</td>
<td>13.8</td>
<td>14.3</td>
</tr>
<tr>
<td>L60 (50<EFL≤70)</td>
<td>Mean 51.1</td>
<td>58.5</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>CV (%) 17.5</td>
<td>11.6</td>
<td>10.8</td>
</tr>
<tr>
<td>Totals</td>
<td>Mean 48.3</td>
<td>55.0</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>CV (%) 17.5</td>
<td>14.5</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Note: Number of L40 inner lumbers is 9 and that of outer lumbers is 25.
Number of L60 inner lumbers is 16 and that of outer lumbers is 32.
果を得た。Table 6 に示したように L60 の心去り材の MORkd の変動係数が 12.8% であり、L40 の心去り材の 9.7% と比較して大きいことも 5% 下限値を引き下げる原因の一つと考えられる。また、十分な強度を発現しなかった原因として、心去り材の縦振動特性に起因する強度低減が考えられる。特に今回の製材は中心定規法によるために、心去り材は縦振の目切れが生じやすいことが考えられる。実際の心去り材の曲げ破壊の状態をみると、低い曲げ強度を示したものの中には目切れによる破壊が認められている。このことから、MORkd の強度区分の信頼性を向上させるには、製材品の縦振動特性に寄与する欠点を考慮した選別方法を併用すべきであると考えられる。

4. 結論

高梁試験林林中日立スギ丸太材からひき板を製材し、強度的な品質区分の向上を目的として、丸太の動的ヤング係数による区分、製材品の木取り位置による区分、そしてその併用区分による強度性能向上への効果を検討した。その結果、以下の知見を得た。

（1）心去り材と心持ち材のヤング係数の平均値を比較すると、心去り材の方が高く、10～15％高い結果を示した。ただし、MORkd の差は 2% と大きな違いは認められなかった。

（2）生材のEfgを木取り区分でみたとき、丸太のEflに対して、心去り材は約 5％の向上、心持ち材は約 10% 減少した。

（3）丸太のEfl区分でみたとき、ひき板の強度性能は、丸太のグレードが向上するに伴い平均値は向上することが明らかとなった。

（4）Efl区分と木取り区分の選別併用効果は、ヤング係数（Efg, MOEkd）で顕著に認められ、最大 30% の差を生じた。しかし、MORkd では十分な選別効果は認められなかった。MORkd については、他の強度低減因子（縦振動特性、節等）の影響を考慮した観測手法の検討を要すると考えられた。

謝辞

本研究を遂行するにあたり、鹿児島大学農学部附属高梁林業技術校の松元正美氏、野下治博氏には伐木作業に快くご協力いただいた。また、乾燥機、実験試験機の使用にあたり、鹿児島県工業技術センター木材工業部の遠矢良太郎氏（当時木材工業部長）、山之内清亀氏、福留重人氏にはご援助いただいた。ここに厚意を表します。

参考文献

1) 例えば、林野省：森林資源現況。（1997）
2) 例えば、建築基準法案研究会編：建築基準法改正、日経BP社（1997）
3) 小泉章夫、飯島泰男、佐々木貴信、川井安生、岡崎泰男、中谷浩：秋田県産スギ材の強度特性（第1報）丸太のヤング率、木材学会誌、43(1)，46-51（1997）
4) 小泉章夫、飯島泰男、佐々木貴信、岡崎泰男：秋田県産スギ材の強度特性（第2報）ひき板の強度、木材学会誌、43(2)，210-214（1997）
5) 飯島泰男、小泉章夫、岡崎泰男、佐々木貴信、中谷浩：秋田県産スギ材の強度特性（第3報）丸太とひき板材質の関連、木材学会誌、43(2)，159-164（1997）
6) 荒武志朗、森田秀樹：宮崎県南部地域産スギ集成材の材質（第1報）丸太の区分と木取りによるラミナの選別、木材学会誌、45(2)，111-119（1999）
7) 藤田晋輔、佐田武信、馬田英隆、遠矢良太郎、山田式
典、橋本一利：打撃音法によるスギ製材品のヤング係数
の評価法 [1]. 木材工業, 47, 544-547 (1992)
8) 図師朋弘, 山角達也, 遠矢良太郎, 森田慎一, 山之内
清竜, 福留重人, 日高富男: 中小断面集成材の製造技術
に関する研究 (1) 鹿児島県産スギの強度性能. 鹿児島県
工業技術センター研究報告, No.9, 45-48 (1995)
9) Robert J. Ross, Kent A. McDonald, David W.
Green and Kristin C. Schad: Relationship between
log and lumber modulus of elasticity, 47(2), 89-92,
Forest Products Journal (1997)
抄 録
高隈演習林産スギ（Cryptomeria japonica D. Don）
の中径丸太材30本から製材したひき板82枚の強度性能を評
価するために、打撃音法による非破壊試験と静的曲げ破壊
試験を行った。そして、ひき板の強度的品質を区分するた
めに、以下の選別手法の効果について検討した。すなわ
ち、1) 丸太の木取り位置によるひき板の選別、2) 丸太のヤ
ング係数（EIL）を用いたグレーディングによるひき板の
選別、3) 1)と2)の併用である。その結果、これら3つの選
別方法は、ひき板の強度性能を区分するのに有効であっ
た。特に、木取り区分だけでも、低を含まない心去材の
ヤング係数は、心持ち材に対して10〜15％高い値を示し
た。しかし、曲げ破壊係数（MOR）では、2％の低い効
果しか認められなかった。ひき板の MOR の強度的信頼性
向上には、節径や纖維走向角などの強度低減因子の適用が
必要と考えられた。