ON FINITE TOPOLOGICAL SPACES

著者	SHIRAKI Mitsunobu
journal or	鹿児島大学理学部紀要
publication title	
volume	1
page range	1-8
別言語のタイトル	有限位相空間について
URL	http://hdl.handle.net/10232/00010002

ON FINITE TOPOLOGICAL SPACES

By

Mitsunobu Shiraki (Received August 31, 1968)

§ 1. Introduction

V. KRISHNAMURTHY [1] has intended to estimate the number of the possible topologies in a given finite set, in which he has mentioned that a topology of a finite set can be represented by a suitable matrix. It seems that such matrix is a powerful tool to study the structure of finite topological spaces.

After defining a topogenous matrix in section 2, we shall consider some elementary properties of finite spaces in section 3. Especially, it is shown that the topogenous matrix for the product space $X \times Y$ is the direct product of the topogenous matrices of X and Y. In section 4, a concept of a dual space of a finite space is introduced. In section 5, it is shown that the topogenous matrix of a finite T_0 -space is equivalent to a triangular matrix. In section 6, a topological invariant which we call be the degree of connection is defined.

§ 2. Topogenous matrix

Let X be a finite set $\{a_1, a_2, ..., a_n\}$ and let τ be a topology on X, where τ is the family of all open subsets of X.

Since X is finite, each point a_i of X has a unique minimal neighborhood U_i , which is the intersection of open neighborhoods of a_i . Hence if X is the set $\{a_1, a_2, \dots, a_n\}$, then $\{U_1, U_2, \dots, U_n\}$ is an open neighborhood basis of the space (X, τ) .

Now, we shall introduce the topogenous matrices which play an important role in our investigation of finite topological spaces.

DEFINITION 1. In a finite space (X, τ) , let a (n, n) matrix $A = [a_{ij}]$ be defined as follows:

 $a_{ij}=1$ if $a_j \in U_i$ =0 otherwise (i, j=1, 2, ..., n).

Then, the matrix A is said to be a topogenous matrix of the space (X, τ) .

A topogenous matrix has the following important properties.

THEOREM 1. (V. KRISHNAMURTHY). Let A be the topogenous matrix of a finite space X, then the matrix A satisfies the following three conditions

M. Shiraki

- $(1) a_{ij}=0 \quad or \quad 1,$
- $(2) a_{ii}=1,$
- $a_{ik} = a_{kj} = 1 \Rightarrow a_{ij} = 1,$

where i, j, k=1, 2, ..., n.

Conversely, if a matrix $A = [a_{ij}]$ satisfies these three conditions, then A induces a topology in X.

DEFINITION 2. We define the *permutation matrix*, which corresponds to the permutation $\begin{pmatrix} 1 & 2 & \cdots & n \\ p(1) & p(2) & \cdots & p(n) \end{pmatrix}$, by $T = [\delta_{ip(j)}]$ where $\delta_{ip(j)}$ is the Kronecker's delta.

DEFINITION 3. Given two topogenous matrices A and B, if there exists a permutation matrix T such that

$$B = T'AT$$

then A and B are said to be *equivalent* to each other, and are noted as

 $A \sim B$.

THEOREM 2. Let τ_1 and τ_2 be two topologies in a finite set X, and let A_1 and A_2 be the topogenous matrices of (X, τ_1) and (X, τ_2) respectively. Then (X, τ_1) and (X, τ_2) are homeomorphic if and only if A_1 and A_2 are equivalent.

PROOF. Let $B_1 = \{U_1, U_2, \dots, U_n\}$ and $B_2 = \{V_1, V_2, \dots, V_n\}$ be the minimal basic neighborhood systems of (X, τ_1) and (X, τ_2) , respectively, and let $f: (X, \tau_1) \to (X, \tau_2)$ be a homeomorphism such that

$$f(a_i) = a_{p(i)}$$
 (i=1, 2, ..., n).

f induces a mapping

$$f(U_i) = V_{p(i)}$$
 $(i=1, 2, ..., n)$

which preserves the inclusion relation in B_1 and B_2 . If A_1 is noted as $[a_{ij}]$, then we have

$$a_{ij} = 1 \iff U_j \subset U_i \iff V_{p(j)} \subset V_{p(i)}$$

 $\iff a_{p(i)p(j)} = 1,$

and

$$a_{ij} = a_{p(i)p(j)}$$
 (*i*, *j*=1, 2, ..., *n*).

Set

 $T = [\delta_{ip(j)}],$

where $\delta_{ip(j)}$ is the Kronecker's delta.

Then we have

$$A_2 = T'A_1T,$$

i. e.

$$A_1 \sim A_2$$
.

Conversely assume $A_1 \sim A_2$, then there exists a permutation matrix $T = [\delta_{ip(j)}]$ such that $A_2 = T'A_1T$. Define $f: (X, \tau_1) \to (X, \tau_2)$ by

$$f(a_i) = a_{p(i)},$$

then f is a homeomorphism.

From the above proof we also obtain:

COROLLARY. A matrix which is equivalent to a certain topogenous matrix is a topogenous matrix.

§ 3. Some elementary properties

We consider a topological space (X, τ) with a finite set $X = \{a_1, a_2, \dots, a_n\}$ and a family $\{U_1, U_2, \dots, U_n\}$ of the corresponding minimal basic neighborhoods. And between elements of (X, τ) , we define the following order:

 $a_i \leq a_j \Leftrightarrow U_i \subset U_j$ (or $a_i \in U_j$),

then this relation \leq is transitive and reflexive. This means that (X, \leq) is a quasi ordered set.

The following is the known result.

THEOREM 3. (ALEXANDROFF [2]). A finite space (X, τ) is a T_0 -space if and only if (X, \leq) is a partially ordered set.

REMARK 1. Let $A = [a_{ij}]$ be the topogenous matrix of a finite space (X, τ) , then

 $a_{ij}=1 \Leftrightarrow a_j \leq a_i$.

REMARK 2. Given two finite spaces (X, τ) and (X, σ) , mapping $f : X \to Y$ is continuous if and only if the following is satisfied:

$$a \leq b(a, b \in X) \Rightarrow f(a) \leq f(b).$$

Let A be the topogenous matrix of a finite space (X, τ) , where $X = \{a_1, a_2, ..., a_n\}$. For a subset $Y = \{b_1, b_2, ..., b_k\}$ of X, we consider the subspace (Y, τ_Y) and its topogenous matrix A_Y .

We have the following theorem.

THEOREM 4. (Y, τ_Y) is closed in (X, τ) if and only if the following holds:

$$A \sim \left[\begin{array}{c|c} A_Y & * \\ \hline 0 & A_{Y^c} \end{array}
ight] \quad \text{or} \quad A \sim \left[\begin{array}{c|c} A_{Y^c} & 0 \\ \hline * & A_Y \end{array}
ight].$$

PROOF. Y is closed in (X, τ) if and only if $U_x \cap Y = \phi$ for $x \in Y^c$ and for the minimal neighborhood U_x of x. Hence from the definition of the topogenous matrix, the theorem follows immediately.

COROLLARY 1. Y is open and closed if and only if the following holds:

$$A \sim \left[\begin{array}{c|c} A_Y & 0 \\ \hline 0 & A_{Y^c} \end{array} \right].$$

COROLLARY 2. Let A be the topogenous matrix of a finite space (X, τ) . Then we have

where A_i is a topogenous matrix of a component of (X, τ) .

For finite spaces (X, τ) and (Y, σ) , let A_X and A_Y be the topogenous matrices of (X, τ) and (Y, σ) , respectively, and let $A_{X \times Y}$ be the topogenous matrix of the product space $(X \times Y, \tau \times \sigma)$. As for the relations between the matrices A_X , A_Y and the matrix $A_{X \times Y}$. We have the following theorem.

THEOREM 5. Let A_X , A_Y and $A_{X \times Y}$ be the topogenous matrices of finite spaces (X, τ) , (Y, σ) and the product space $(X \times Y, \tau \times \sigma)$, respectively. Then $A_{X \times Y}$ is equivalent to the direct product of A_X and A_Y , *i.e.*

$$A_{X \times Y} \sim A_X \times A_Y.$$

PROOF. Let $X = \{a_1, a_2, ..., a_m\}$ and $Y = \{b_1, b_2, ..., b_n\}$, $\{U_1, U_2, ..., U_m\}$ and $\{V_1, V_2, ..., V_n\}$ be families of the minimal basic neighborhoods, respectively. And let $A_X = [a_{ij}]$ and $A_Y = [b_{ij}]$ be the topogenous matrices of these spaces.

Now, consider

$$X \times Y = \{(a_i, b_j) | i = 1, 2, ..., m; j = 1, 2, ..., n\}.$$

If U_i and V_j are minimal neighborhoods of a_i in X and b_j in Y, then $U_i \times V_j$ is the minimal neighborhood of (a_i, b_j) in $X \times Y$. Then the topogenous matrix $A_{X \times Y}$ is noted in the form

On Finite Topological Spaces

where

$$c_{(i,j)(h, k)} = 1 \iff (a_h, b_k) \in U_i \times V_j$$
$$\Leftrightarrow a_h \in U_i \quad \text{and} \quad b_k \in V_j$$
$$\Leftrightarrow a_{ih} = 1 \quad \text{and} \quad b_{jk} = 1.$$

Hence, we have $A = A_X \times A_Y$.

§ 4. Dual spaces

A finite space is a quasi ordered set (X, \geq) . Then there exists a quasi ordered set (X, <) in which the ordering a < b means $a \ge b$ in (X, \ge) . The *dual space* of a finite topological space (X, τ) is a topological space corresponding to (X, <). The following is evident.

LEMMA 1. Let M be the (n, n) topogenous matrix of a finite space (X, τ) . Then a space $(X, \tilde{\tau})$ is a dual space of (X, τ) if and only if the topogenous matrix N of $(X, \tilde{\tau})$ is equivalent to the transposed matrix M' of M.

Let $M = [a_{ij}]$ be a (n, n) topogenous matrix. Then we define a matrix $M^* = [a_{ij}^*]$ by

$$a_{ij}^* = a_{n-j+1} a_{n-i+1}$$
.

The matrix M^* is obtained from mapping reflectively all elements of M in the diagonal which is not principal. We have the following.

THEOREM 6. Let M be the (n, n) topogenous matrix of a finite space (X, τ) . Then

$$M' \sim M^*$$

is satisfied.

PROOF. If we put $M = [a_{ij}], M' = [a'_{ij}], M^* = [a^*_{ij}]$, then we have

$$a_{ij}^* = a_{n-j+1 \ n-i+1} = a_{n-i+1 \ n-j+1}.$$

Now let T(i, j) be the permutation matrix which corresponds to a transposition (i, j), and consider

$$T = T(n, 1)T(n-1, 2) \cdots T(n-k, k+1) \cdots \left(k \le \frac{n-1}{2}\right)$$

Then we have

$$T'M^*T=M'$$
,

i.e.

$$M^* \sim M'$$
.

§ 5. Finite T_0 -spaces

In the present section, we shall find a condition for the topogenous matrix that a given finite topological space is a T_0 -space.

THEOREM 7. A finite space (X, τ) is a T_0 -space if and only if the topogenous matrix A of (X, τ) is equivalent to a certain triangular matrix.

PROOF. Assume that (X, τ) is a finite T_0 -space with a topogenous matrix A. Let $X = \{a_1, a_2, \dots, a_n\}$, and let U_i be the minimal neighborhood of a_i . We note N_i the number of the elements of U_i , and rearrange X as $X = \{a_{p_1}, a_{p_2}, \dots, a_{p_n}\}$ such that if $i \leq j$, then $N_{p_i} \leq N_{p_j}$. We consider the topogenous matrix $B = [b_{ij}]$ which corresponds to the new basis $(a_{p_1}, a_{p_2}, \dots, a_{p_n})$ of X. If i < j, then we have $a_{p_i} \notin U_{p_j}$, and $b_{ij} = 0$. Therefore, B is a triangular matrix which is equivalent to A.

Conversely, assume that for a topogenous matrix A of (X, τ) , there exists a triangular matrix $A_1 = [a_{ij}]$ such that $A \sim A_1$. If $a_i, a_j \in X$ and $a_i < a_j$, then $a_{ij} = 0$ since A_1 is a triangular matrix. Hence $a_j \notin U_i$, that is, (X, τ) is a T_0 -space.

§ 6. Degree of connection

Let (X, τ) be a finite T_0 -space and let $A = [a_{ij}]$ be the topogenous matrix of X, and E be the unit matrix.

Now, set

$$dA = A - E$$
,

and define

$$d^{p}A = (dA)^{p}$$
 (p=1, 2, ...),
 $d^{0}A = E$.

DEFINITION 4. Let (X, τ) be a finite T_0 -space and let A be the topogenous matrix of X. If

$$d^n A \neq 0$$
 and $d^{n+1} A = 0$,

then we say that the degree of connection of X is n, and we denote

On Finite Topological Spaces

deg X = n.

Let (X, \geq) be a partially ordered set, and x be an element of X. Consider the family of chains in X such that

$$x_0 < x_1 < x_2 < \cdots < x_h = x.$$

The maximum number of h defined for all the above chains is denoted by l[x], and is called the *length of x*. We also define the length l[X] of X by

$$l[X] = max\{l[x] | x \in X\}.$$

THEOREM 8. If (X, τ) is a finite T_0 -space, then

deg X = l [X].

PROOF. Let $A = [a_{ij}]$ be the triangular topogenous matrix. Set

$$d^{p}A = [a_{ij}(p)] \qquad (p=1, 2, \ldots),$$

and let $\mu\{(a_j, a'_1, a'_2, \dots, a'_{p-1}, a_i) | a_j < a'_1 < a'_2 < \dots < a'_{p-1} < a_i\}$ be the number of the different chains of the form $a_j < a'_1 < a'_2 < \dots < a'_{p-1} < a_i$.

Then we shall prove by the induction that

(1)
$$a_{ij}(p) = \mu\{(a_j, a'_1, a'_2, \cdots, a'_{p-1}, a_i) | a_j < a'_1 < a'_2 < \cdots < a'_{p-1} < a_i\}.$$

In the case that p=1, we have evidently

$$a_{ij}(1) = \begin{cases} 1 & \text{for } a_j < a_i \\ 0 & \text{otherwise} \end{cases}$$

on the other hand,

(2)
$$\mu\{(a_j, a_i) | a_j < a_i\} = \begin{cases} 1 & \text{if } a_j < a_i \\ 0 & \text{otherwise} \end{cases},$$

Hence, we obtain (1) in the case that p=1.

Second, we assume that (1) is valid for p, and consider the case of p+1. Remarking that

(3)
$$(dA)^{p+1} = (dA)^p (dA),$$

we have

$$\begin{aligned} a_{ij}(p+1) &= \sum_{k=1}^{n} a_{ik}(p) a_{kj}(1). \\ &= \sum_{k=1}^{n} \left[\mu\{(a_k, a_1', \dots, a_{p-1}', a_i) \mid a_k < a_1' < \dots < a_{p-1}' < a_i\} \cdot \mu\{(a_j, a_k) \mid a_j < a_k\} \right] \end{aligned}$$

$$= \mu\{(a_j, a_k, a'_1, \cdots, a'_{p-1}, a_i) | a_j < a_k < a'_1 < \cdots < a'_{p-1} < a_i\}.$$

So, we obtain (1) in the case of p+1.

Hence, by the induction, (1) is established.

Now, let deg X = m, then

$$d^m A \neq 0$$
 and $d^{m+1} A = 0$.

Hence by (1) there exists at least a chain of the length m, but no chains of the length m+1.

Therefore

$$deg X = l [X].$$

Reference

[1] V. KRISHNAMURTHY: On the number of topologies on a finite set. Amer. Math. Monthly 73, (1966), 154-157.

[2] P. ALEXANDROFF: Diskrete Räume. Mat. Sb. (N.S) Vol. 2, (1937), 501-518.