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§1. Introduction

V. KrisuNAMURTHY [ 1] has intended to estimate the number of the possible
topologies in a given finite set, in which he has mentioned that a topology of a finite
set can be represented by a suitable matrix. It seems that such matrix is a powerful
tool to study the structure of finite topological spaces.

After defining a topogenous matrix in section 2, we shall consider some elementary
properties of finite spaces in section 3. Especially, it is shown that the topogenous
matrix for the product space X x Y is the direct product of the topogenous matrices of
X and Y. In section 4, a concept of a dual space of a finite space is introduced. In
section 5, it is shown that the topogenous matrix of a finite Ty-space is equivalent to a
triangular matrix. In section 6, a topological invariant which we call be the degree
of connection is defined.

§ 2. Topogenous ‘matrix

Let X be a finite set {a1, a3, ---, a,} and let ¢ be a topology on X, where t is the
family of all open subsets of X.

Since X is finite, each point a; of X has a unique minimal neighborhood U;, which
is the intersection of open neighborhoods of a;. Hence if X is the set {ai, as, ---, ax},
then {U, U, ---, U,} is an open neighborhood basis of the space (X, 7).

Now, we shall introduce the topogenous matrices which play an important role in
our investigation of finite topological spaces.

DeriniTION 1. In a finite space (X, ), let a (n, n) matrix 4=[a;; ] be defined as
follows:

a;=1 if a;€U;
=0 otherwise i, j=1,2, ..., n).
Then, the matrix A is said to be a fopogenous matrix of the space (X, 7).
A topogenous matrix has the following important properties.

THEOREM 1. (V. KRISHNAMURTHY). Let A be the topogenous matrix of a finite space
X, then the matrix A satisfies the following three conditions
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1) a;=0 or 1,
(2) a,-,-=1,
3) air=ar=1=a;=1,

where i, j, k=1, 2, ..., n.
Conversely, if a matrix A="[a;;] satisfies these three conditions, then A induces a topology in
X.

DeriniTION 2. We define the permutation matrix, which corresponds to the permutation

(p(}) p(22) ;' (n))’ by T=[0;sj,] where 0;4;, is the Kronecker’s delta.

DerFiniTION 3. Given two topogenous matrices 4 and B, if there exists a permutation
matrix T such that

B=T'AT,
then 4 and B are said to be equivalent to each other, and are noted as
A~B.

THEOREM 2. Let vy and ©3 be two topologies in a finite set X, and let Ay and Ay be the
topogenous matrices of (X, t1) and (X, ©2) respectively.  Then (X, t1) and (X, t5) are
homeomorphic if and only if A, and A, are equivalent.

Proor. Let By={Ui, U, ..., U,} and B,={Vy, V3, -.., V,,} be the minimal basic
neighborhood systems of (X, r1) and (X, t3), respectively, and let £ : (X, 71) = (X, 72)
be a homeomorphism such that

f(ai)=ap(i) (i=19 23 Tty n)'
f induces a mapping
f<U1)= Vb(i) (Z=13 2, Ty n)a

which preserves the inclusion relation in B; and B,. If 4, is noted as [a;;], then we
have

a;=1 & U;CU; & Vi C Vs
S apiypn=1,
and
@i = Apiyp() G, j=1, 2, ..., n).
Set

T :[61'17(]')],
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where 0, is the Kronecker’s delta.
Then we have

Ay=T AT,
1. e.
A]_"VAz.

Conversely assume 4;~ A4,, then there exists a permutation matrix T'=[0;,,] such
that A,=T1"4,T. Define f: (X, r1) > (X, 73) by

f(@)=apgiy,

then f is a homeomorphism.
From the above proof we also obtain:

CoroLLARY. A matrix which is equivalent to a certain topogenous matrix is a topogenous
matrix.

§ 3. Some elementary properties

We consider a topological space (X, t) with a finite set X={ai, az, ---, a,} and a
family {Uy, U, ..., U,} of the corresponding minimal basic neighborhoods. And be-
tween elements of (X, t), we define the following order:

a;<a; e U;CU; (or a; € Uy),

then this relation < is transitive and reflexive. This means that (X, <) is a quasi
ordered set.
The following is the known result.

THEOREM 3. (ALEXANDROFF [ 2]). A finite space (X, ) is a To-space if and only if
(X, <) is a partially ordered set.

RemARk 1. Let 4=[a;;] be the topogenous matrix of a finite space (X, t), then
a;j= 1 ajga,-.

ReMark 2. Given two finite spaces (X, ¢) and (X, ¢), mapping f: X — Y is con-
tinuous if and only if the following is satisfied:

a<b(a, b € X) = f(a)<f(b).

Let A be the topogenous matrix of a finite space (X, t), where X={ay, as, ---, @n}.
For a subset Y={by, by, --., bz} of X, we consider the subspace (Y, ry) and its topo-
genous matrix Ay.

We have the following theorem.

THEOREM 4. (Y, ty) is closed in (X, t) if and only if the following holds:
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A~ Ay' * or A~ Ayc 0 -I
0 |4y * ’AYJ

Proor. Yis closed in (X, 7) if and only if U,N\Y=¢ for x € Y and for the mini-
mal neighborhood U, of x. Hence from the definition of the topogenous matrix, the
theorem follows immediately.

CoroLLARrY 1. Y is open and closed if and only if the following holds:

A~F(%1.

|
-

CoROLLARY 2. Let A be the topoge'nous matrix of a finite space (X, t). Then we have

where A; is a topogenous matrix of a component of (X, t).

For finite spaces (X, 7) and (Y, 0), let 4x and A4y be the topogenous matrices of (X,
) and (7Y, 0), respectively, and let 4x.y be the topogenous matrix of the product space
(Xx Y, rx0). As for the relations between the matrices Ay, Ay and the matrix Ax,y.
We have the following theorem.

THEOREM 5. Let Ax, Ay and Ax.y be the topogenous matrices of finite spaces (X, t),
(Y, 0) and the product space (X x Y, © X 0), respectively. Then Ax«y is equivalent to the direct
product of Ax and Ay, i. e.

Axxy~Ax X Ay.

Proor. Let X=4{ai, az, ---, an} and Y={by, by, ..., b,}, {Uy, Us, ---, U} and {V1,
Vs ---y Va} be families of the minimal basic neighborhoods, respectively. And let
Ax=[a;;] and Ay=[b;;] be the topogenous matrices of these spaces.

Now, consider

X x Y={(a,~, bj)|l:1, 2,~-,m; ]:1, 2,--~, n}.

If U; and V; are minimal neighborhoods of @; in X and b; in Y, then U;x V; is the
minimal neighborhood of (a;, b;) in X x Y. Then the topogenous matrix A4 .y is noted
in the form
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(ah bl)"'(aha bk)"'(ambn)
Ui Vi 5

AXXY= Ui >.< V:,- ............ C(i‘,]“)(h,k) ............ ’

U,x V,

where
ciiyn =1 & (an, bp) € U;x V;
&S ap € U,' and bkE V,
& a,-;,=1 and bjk'—:l.

Hence, we have A= Ax X Ay.

§ 4. Dual spaces

A finite space is a quasi ordered set (X, >>). Then there exists a quasi ordered set
(X, <) in which the ordering a<b means a_>b in (X, >>). The dual space of a finite
topological space (X, ) is a topological space corresponding to (X, <). The following
is evident.

LemmA 1. Let M be the (n, n) topogenous matrix of a finite space (X, t). Then a space
(X, ©) is a dual space of (X, t) if and only if the topogenous matrix N of (X, T) is equivalent
to the transposed matrix M’ of M.

Let M=[a;;]be a (n, n) topogenous matrix. Then we define a matrix M*=[a¥;
by

b J—
Q;;=Au—j+1 n—i+1e

The matrix M* is obtained from mapping reflectively all elements of M in the di-
agonal which is not principal. We have the following.

THEOREM 6. Let M be the (n, n) topogenous matrix of a finite space (X, t). Then
M~ M*
is satisfied.

Proor. If we put M=[a;; ], M'=[a},;], M*=[a},], then we have

x _ '
Qi =Cn—j+1 n—i+1= @n—i+1 n—j+1.

Now let T'(i, j) be the permutation matrix which corresponds to a transposition (7,
), and consider



6 M. SHIRAKI

T=T(n, )T(n—1,2) ... T(n—k, k+1)... (kg n—1 )
Then we have
T'"M*T=M,
i.e.
M* ~ M.

§ 5. Finite Ty-spaces

In the present section, we shall find a condition for the topogenous matrix that a
given finite topological space is a To-space.

THEOREM 7. A finite space (X, ©) is a To-space if and only if the topogenous matrix A of
(X, ©) is equivalent to a certain triangular matrix.

Proor. Assume that (X, t) is a finite To-space with a topogenous matrix 4. Let
X={ay, as, ---, a,}, and let U; be the minimal neighborhood of a;. We note IN; the
number of the elements of U;, and rearrange X as X=1{a,, ay, ---, a5 ,} such that if
: <j, then N, <{N,. We consider the topogenous matrix B=[b;; ] which corresponds
to the new basis (a,,, a5, -+, a5,) of X. If i<j, then we have a,, ¢ U,, and b;;=0.
Therefore, B is a triangular matrix which is equivalent to 4.

Conversely, assume that for a topogenous matrix A4 of (X, ), there exists a triangular
matrix 4;=[a;; | such that A~4,. If a;, a; € X and a;<a;, then a;;=0 since 4, is a
triangular matrix. Hence a; ¢ U,, that is, (X, t) is a T,-space.

§ 6. Degree of connection

Let (X, t) be a finite To-space and let 4=[a;;] be the topogenous matrix of X, and
E be the unit matrix.
Now, set

dA=A—E,
and define
d?A=(dA)* (p=1,2, ...),
d°"A=E.

DerFiniTION 4. Let (X, 7) be a finite Tp-space and let 4 be the topogenous matrix
of X. If

d"A+0 and d""'A4=0,

then we say that the degree of connection of X is n, and we denote
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degX=n.

Let (X, >) be a partially ordered set, and x be an element of X. Consider the
family of chains in X such that

20< 1< 22 < < Xp=x.
The maximum number of 4 defined for all the above chains is denoted by I[ x7], and
is called the length of x. We also define the length I[ X ] of X by

I[ X J=max{l[ x]|x € X}.
TueoreM 8. If (X, ) is a finite To-space, then

degX=1[X].
Proor. Let 4=[a;;] be the triangular topogenous matrix.
Set
d?A=[a:{p)] (p=12, ..),
and let

uila;, aly agy vy a5y, a;)]0;<a1<a; < <aj;<a;} be the number of the
different chains of the form ¢;<a;<a;< - <a;-,<a;.
Then we shall prove by the induction that

(1

ai(p)=ui(a;, ai, as,

Sy a)e;<ai<a; < <ajo<a;}t.
In the case that p=1, we have evidently

1 for a;<a;
a;(1)=

0 otherwise
on the other hand,

1 lf aj< a;
2) 1i(aj, a;)|a;<ai} = .

M
otherwise
Hence, we obtain (1) in the case that p=1.

Second, we assume that (1) is valid for p, and consider the case of p+1.
Remarking that

3) (dAY* ' =(dA)"(dA),

we have

ai(p+ 1)=ij:1 ai(plari(1).

"—‘k; Lui(ay ag, -, af;—u aj)a,<a;< "'<a1/>—1<az‘}':u{(aj, ak)laj <ap}]
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:ﬂ{(ap Qpy a{a Tty a;—la ai)laj<ak<a]/.<"'<a;>—1<ai}~

So, we obtain (1) in the case of p+1.
Hence, by the induction, (1) is established.
Now, let deg X=m, then

d”A>0 and d"*'4=0.

Hence by (1) there exists at least a chain of the length m, but no chains of the length
m++1.
Therefore

degX=1[X].
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