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Abstract

We obtain the distribution of inflection points and singularities on a parametric
cubic segment with specified tangent directions and curvatures at two data points.
Its use enables us to check whether the segment has unwanted inflection points or
singularities and gives us an idea how to assign the curvatures at the data points
for the shape preserving segment. We also obtain the sufficient conditions for the

fair parametric rational segments of the cubic/quadratic and cubic/linear forms.
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1 Introduction

Much attention has been focused on a single- and vector-valued shape preserving in-
terpolation. There is a considerable literature on numerical methods for generating shape
preserving interpolation; see for example, [1], [6] and the references therein. Parametric
cubic splines of cumulative chord length have been widely used because of their simple
computation and good interpolation effects. However, the cubic splines do not always gen-
erate “visually pleasing”, “shape preserving” (or simply “fair”) interpolants which do not
contain unwanted or unplanned inflection points and singularities to a set of planar data
points or have the minimum number of inflection points and singularities compatible with
the data. A way to overcome this problem is to consider nonlinear approximation sets,
for example, exponential splines, lacunary splines, rational splines or splines with variable
additional nodes. For functional data, Delbourgo [3] has successfully treated monotonic-
ity and convexity preserving rational functions of the cubic/quadratic form which contain
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tension parameters for shape adjustments to be made as necessary. However, the func-
tions in tension have also a lack of flexibility in some applications since when the tension
parameters become large enough, they approximate the polygon formed by chords joining
the data points. To provide more flexibility, the requirements of continuity are relaxed
from C?-continuity to GC?-continuity where “the curve is GC?-continuous” means “the
unit tangent vector and curvature of the curve vary continuously along the curve but each
component of the curve is not of C%-continuity at each knot”. Goodman & Unsworth
[1] and Su & Lui [6] have obtained the sufficient conditions for a shape preserving cubic
interpolation of GC?-continuity with specified tangent vectors and curvatures at the data
points. Note that use of the C%-continuous spline would require a polynomial of degree
five, i.e., a quintic spline which is hard to control as it may have three inflection points.

The object of this paper is to describe the distribution of inflection points and singular-
ities (a loop or a cusp) on a rational cubic segment with specified tangents and curvatures
at two end points. Now, consider two data points Iy and I, and suppose we have assigned
tangent vectors Ty and T; at these points. Let p (> 0) be a rationality parameter. Then,
the rational cubic segment 2(t),0 <t < 1 with some a,b > 0 is given by

(1.1) (14 ptu)z(t) = w*{1+ (2 + p)t}o + {1 + (2 + p)u}]; + atu®Tp — bt*uTh,
u=1-t

with z{(= 2/(0)) = aTp and 2{(= 2/(1)) = bT}. It satisfies the given conditions at the end
points I;,i = 0,1 and is equivalently rewritten as with 6(¢) = tu?/(1 + ptu)

(12) Z(t) = UI() + t.[l + (CLTO — A[)O(t) + (AI - le)H(u), Al = .[1 — Io.

where z € Span{t,u,tu?/(1 + ptu),t*u/(1 + ptu)} or z € Span{t,u,t?/(1 + qt),u?/(1 +
qu)} with p = ¢*/(14q) ([2], [5]). Sections 2-3 describe the distribution of inflection points
and singularities on the parametric cubic segment of the form (1.1) with p = 0 which is
an extension of the sufficient conditions for the convexity preserving interpolation in [1]
and [6]. Its use enables us to check whether the segment has unwanted inflection points
or singularities when the tangents and curvatures at the data points are approximated
by any means and gives us an idea how to assign the curvatures at the data points
for the shape preserving segment. Section 4 describes a sufficient condition for the fair
parametric rational segment with p > 0, that is, a large value of p always gives the fair
segment if at [y and I, it is turning towards the line joining Iy to ;. Section 5 considers
a sufficient condition for another fair rational segment z of the cubic/linear form, i.e.,
z € Span{t, u,t3/(1 + pt),u®/(1 + pu)} with a rationality parameter —1 < p < 0 as

(1.3) z(t) = ulp + th + (aTy — AL)7(t) + (AL — bT7)7(u)
with

(1.4) ()= LR A3+ 2+ 0P}

(3+2p)(1 + pt)(1 + pu)

([4)-
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Then, for p sufficiently close to —1+, the segment (1.3) is fair if at I and I3, it is turning
towards the line joining I to [;.

2 Inflection points and singularities on the segment (1.1)
(p=0)

In Sections 2-3, we consider the case p = 0 when the segment of the form (1.1) reduces
to the well-known cubic one. We use the similar notations in [1] as a = Ty X AL, § =
Al x Ty,v = Ty x Ty with the usual vector product 'x’ and || || is the Euclidean norm.
Assume that af # 0 as in [1], i.e., neither Ty nor 77 are parallel to AI. In addition, we
assume 7y # 0. We require the following simple but easy to use lemma ([4], [5]).

Lemma 2.1 Assume z, X z; # 0. Then, AI(= I; — Iy) can be represented in terms of z
and 21 as AI = \z{ + pzy where () x 21)(A\, p) = (A x 21,2, X AI). The planar cubic
segment z(t),0 < t < 1 has i-inflection points or a loop or a cusp if (A, u) € N;;0<1i <2
or L or C where the boundary of the region L is composed of A (a part of the hyperbola:
A(Bu—1) = p? limited by the second quadrant), B ( a part of the hyperbola: p(3X—1) = \?
limited by the fourth quadrant) and C (a branch of the hyperbola: (A — 1/3)(n —1/3) =
1/36, A\ < 1/3,u < 1/3); see Fig. 2.1.

I Y4
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Mo Ab N

Fig. 2.1. Distribution of inflection points and singularities.

Here, we note that the tangent vector 2z’ vanishes if and only if the segment has a cusp
since

(2.1) 2'(t) = u{l + (6X — 3)t}zy + t{1 + (6u — 3)u}z;
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from which putting 2'(t) = 0,¢ € (0,1) gives 1 + (6A — 3)t = 0,1 + (6p — 3)u = 0 and
eliminating ¢ gives (A —1/3)(n —1/3) =1/36,A < 1/3, 1 < 1/3.
Now, a simple calculation gives

(2.2) (2 x 2")(t) = 2aby(3AE2 + 3pu® + 3tu— 1), O0<t<lu=1-t

Hence, the curvatures k;(= k(7)) at I;,i = 0,1 are given by

6abfy( -1/3) 6aby(A — 1/3)
(23) SILF T T emE
Since y(aA, bu) = (8, @),
1 (B 1Tl ko 1, (a\ TPk
R (;) Wl ko oy~ Ly (;) Inlh,

Define D;,i = 0,1 by 4(Do, D1) = ( By I|Toll* [ko/(6)|, a/IIT3|I® |k1/(68)| ) to obtain a
system of equations in (\, u):

(2.5) V = Do, py/£(1— a

with the sign in Dy (or D;) to be + and — according to akq (or Sk;) > 0 and < 0 since
a,b> 0 < ADy, uD; > 0. Refer to Lemma 2.1 to obtain Theorems 2.1-2.3 concerning the
distributions of inflection points and singularities on the segment with respect to (D, D1)
(being dependent only on the prescribed quantities I;, T}, k;, 2 = 0, 1) where

filz,y) = (zy)*{z® + y? — 9(ay)? — 1/8} + 1/6912, =2,y >0

falz,y) = (zy)*{z® + y* + 9(zy)® — 1/8} — 1/6912, z,y >0

f3(z,y) = (zy)*{—2® + y* + 9(zy)? — 1/8} —1/6912, z <0,y >0

fa(z,y) = 2*{y?* —2* +9(2y)* — (1/3 - y*)(1/3+2y*)} = (1/3—9?)*/9, 2 <0,y >0.
For the relative positions of fi(z,y) =0,1 <i <4, fi(z,y) =0 is above fo(z,y) =0 and
intersects z = 1/3 (or y = 1/3) at y = v/6/8 (or z = v/6/8). In addition, f5(z,y) = 0 is
over fy(z,y) =0 and fi(z,y) =0,i = 3,4 are over y = 1/3.

Note that Lemma 2.1 very easily gives the numerically determined distributions of
inflection points and singularities since D;,7 = 0,1 are represented in terms of the param-
eters (A, p).
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Fig. 2.2. Graphs of curves f;(z,y) =0,1 <i < 4.

Theorem 2.1 Assume akg > 0,8k; > 0. Then, the segment has

(i) no inflection point if Dy, D1 < 0 or 0 < Do, D1 < 1/3 or (Dy, Dy) in the first quadrant
is limited by f1(Do, D1) = 0;

(ii) one inflection point if Dy < 0,D1 > 1/3 or Dy > 1/3,D; < 0.

Theorem 2.2 Assume akg < 0,8k; < 0 to note that (Do, D) is in the first quadrant.
Then, the segment has

(i) two inflection points or a loop if (Dy, D1) is in the interior of the region limited by
f2(Do, Dy) = 0;

(11) a cusp with the pair (Dy, D1) which lies on fo(Dgy, D1) = 0.

Theorem 2.3 Assume ako > 0,8k; < 0 to note that (Do, Dy) is in the first or second
quadrants. In the first quadrant, the segment has an inflection point if D1 < 1/3. In the
second quadrant, it has

(i) no inflection point if (Do, D) is in the region limited by fi(Do,D1) = 0 or on
fa(Do, D) = 0;

(1) two inflection points if (Do, D1) is in the region characterized by Dy = 1/3, f3(Do, D1) =
0;

(111) a cusp with the pair (Do, D1) on f3(Do, Dy) = 0;

(1v) a loop if (Do, D) is in the region limited by f3(Do, D1) =0 and f4(Do, D7) = 0.

If the regions in (i)-(iv) have the common part, for example, (Do, D1) is in the region
limited by f3(Do, D1) = 0 and fy(Do, D1) = 0, the segment has two inflection points or a
loop.
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Fig. 2.3. Distribution of inflection points when aky, > 0, Gk; > 0.

Theorem 2.1-2.3 imply that if possible (we can specify the curvatures kg, k; uncon-
ditionally), it is desirable to assign the curvatures as akg > 0 and Bk; > 0. Fig. 2.3 gives
the distribution of inflection points in the case when at I, and I;, the segment is turning
towards the line joining Iy to [; or equivalently, aky > 0 and Bk; > 0. Note that then it
has no singularity.

3 Proof of Theorems 2.1-2.3

Four cases depending on the signs of aky and Gk; will be discussed separately.
Case I akg, k1 > 0: Since A(A—1/3) >0, pu(p—1/3) > 0, \u # 0, the segment has one
or no inflection point and no singularity. Use (2.4) to have

1 1
3.1 —~—=D l——=
(3.1) M1=3,= Do 1= =Dy

which give

A2 A2 1
= ——— D = D = - —_
M 3(}\2 — D(Q))? 1( 1()\)) 1

(3.2) S0T=T7) %

Since (i) A,u < 0 > Do,D; < 0 and (ii) A < O, > 1/3 <> Dy < 0,D; > 1/3 or
A>1/3,u <0+« Dy >1/3,D; <0, Lemma 2.1 shows that the segment has no or
one inflection point in the above (i) or (ii), respectively. Now, for A\, u > 1/3, first hold
Do(> 1/3) fixed. Then, with u = 6D3{1 + 4/1 — 1/(12D3)}, D, is monotone decreasing
(or increasing) on (Dg,u) (or (u,00)) and D;(Dg+) = oco. Hence, the segment has no
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inflection point if Dy > 1/3,D; > Di(u). D; = D;(u) reduces to fi(Do,D;) = 0
as follows. Let (r,s) = (u?/{3(u® — D2)},u) to get (3.1) with (A\,u) = (s,7). Since
(r—1/3)(s — 1/3) = 1/36, by (3.1)

(3.3) r+s=108(DyD;)* 4+ 1/4, s =36(DoD;)>.

Note D2 + D? = r? + s2 — (r® + s%)/(3rs) to get fi(Do,D;) = 0. Next, hold Dg €
(0,1/3) fixed. Since D;(1/3+) = 0 and D;(o0) = 1/3, the segment has no inflection if
0 < Dy, Dy < 1/3. The symmetry of (A, 1) bringing the symmetry of (Do, D;), change of
Dy from 0 to oo gives the distribution of the inflection point in Theorem 2.1.

For given curvatures ko, k; satisfying akq, 8k, > 0, it is not always possible to construct
the segment (1.1) with p = 0 since the above proof of Theorem 2.1 shows that it exists
only for a choice of (ko, k1) from the region N;,i = 0,1 in Fig. 2.3.

It is possible to relate our results in Theorem 2.1 to how to assign the curvatures in [1]
and [6]. Theorem 2.1 enables us to choose the curvatures ko, k; so that D; = 1/3,i =0, 1,
or explicitly speaking

(3.4) (3/2)lkol IToll* = 7*lal /6% (3/2)|ka| IT2))* = +*18]/ 0.

The above assignment of the curvatures is essential the same to the one in ([6], p.85).
Next, note that

(3.5) 7 <2{B Tl + ® | TI%Y/ AT (= 26)

since YAI = Ty + oT1,v(= Ty x T1) # 0. Hence, substitution of 42 by 2§ in the above
assignment in [6] gives the one in [1]:

(3.6) (3/2) kol I Toll* = 26|01 /6, (3/2)|ka IT11* = 2618 /?

which |D;| = v/25/(3]y|) > 1/3,i = 0,1. If ay, By > 0, Theorem 2.1 shows that both the
assignments of the curvatures ensure the fair segment of the form (1.1) with p = 0 since
D; > 1/3,i=0,1. In addition, note that [6] uses smaller values of D;,i = 0,1 than [1].

Suppose I; = (z;,¥;),0 < i < N are data points in the plane and we have assigned
tangents T; at I;. As in [1], define a; = T; x AL, 8 = AL X Ty1q1,v = T; X Ti41. Then,
the curvatures k; at I; are assigned as

(3.7) B/2)|k| 1T = Max(v]aal /67, vl Bial/afy), 1<i<N—1

where aiki, ﬂiki—l—l > 0.
Since ;AL = BT + Ty,

(3.8) 7 < 26BN + o |1 Tona P} ALY (:= 26,).
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Hence, from (3.7) and (3.8) we have the assignment of the curvatures in [1].
Case II ako, Sk; < 0: Since 0 < A\, 1 < 1/3, the segment contains either two inflection
points or a singularity. Use (2.4) to get

(3.9) 1/——1 ,/ﬁ—l—D1

Keeping Dy(> 0) fixed as A > 0, from above

A2 A2 1
m, Dl(I: Dl()\)) —_ T /=57 - — ].

1 —
(310) # 32+ D2)\ 3x

Note that with v = 6D2{—1+ /1 +1/(12D3)}, (\,u) € L or C or N, if A € (0,v) or

A =wvor A€ (v,1/3), respectively. Easily, D; is monotone increasing (or decreasing)

n (0,v) (or on (v,1/3) ) and D;(4+0) = 0,D;(1/3—) = 0. Hence, the segment has two
inflections or a loop if 0 < Dy < D;(v) where a cusp occurs if D; = D;(v). For a simple
form of Dy = D;(v), let (r,s) = (v?/{3(v? 4+ D)}, v) to obtain (3.5) with (X, u) = (s,7).
Since (r, s) is on C, by (3.5)

(3.11) r+s=108(DoD;)* + 1/4, 7rs=36(DyD;)>.

Note D} + D} = — (r? + s?) + (r* + s*)/(3rs) to get fa(Dyg, D;) = 0. Change of Dy from
0 to 1/3 gives Theorem 2.2.

In Case II, given I;, T; and k;, determine (D, D1). Then, the above analysis shows that
the system of equations (3.7) has two solutions (A, ) which lead to two values of (a, b) if
D;,i = 0,1 are in the interior of f5(Dy, D;) = 0 in the first quadrant. The two solutions
give the segments of the form (1.1) with two inflection points and a loop, respectively. If
D;,1 = 0,1 are out of fy(Dy, D1) = 0, the segment (1.1) does not exist.

Case III ak, < 0, 5k; > 0: Since A(A—1/3) > 0,0 < p < 1/3, the segment contains zero
to two inflection points or a singularity. Use (2.4) to have

1 1
3.12 )\”——I—D V1-—57=
( ) 3/.1, 0 19 3\ Dl

which give

A2 A2 1

(3.13) p= 3021 D7)’ D,(:= D;())) = m 1-— ETR

First, since A > 1/3,0 < 4 < 1/3 <> Dy > 0,0 < D; < 1/3, Lemma 1 shows that the
segment has one inflection point if Dy > 0,0 < D; < 1/3. Next, if A < 0,0 < p < 1/3,
keep Dy(< 0) fixed. Then, note that with wyg = — 6D2{1 + /1 + 1/(12D2)} and w; the
root of t* + 9D3t? +9D§ = 0, (A, ) € Na, C, L, Ny if A € (—00, wp), wo, (wo, wy), [wi, 0),
respectively. Easily, D; is monotone increasing (or decreasing) on (—oo,wp) (or (wp,0))
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and D;(—oo) = 1/3,D;(0—) = 0. Hence, the segment has two inflection points or a
cusp or a loop or no inflection point if Dy < 0 and in addition if 1/3 < D; < Dy(wyp)
or Dy = Dy(wg) or Di(wy) < Dy < Dy(wp) or 0 < Dy < Dy(w,). For a simple form of
Dy = Dy(wy), let (r,s) = (w2/{3(wi + D2)}, wo) to get (3.8) with (A, u) = (s,7). Since
(r,s) is on C, by (3.8)

(3.14) r+s=—108(DyD;)*> +1/4, rs=— 36(DyD;)>

Note D2 — D? = — (r? + s%) + (r® + s)/(3rs) to get f3(Do, D1) = 0. For Dy = D;(wn),
let (r,s) = (w?/{3(w? + D2)},w;) to get (3.7) with (A, u) = (s,r). Since (s,r) is on A,
by (3.8)

3.15 s+r=—D>—-9D2+1/3, rs=— 3D2.
1 0 0

Note D2 — D% = — (12 + s%) + (r® + s®)/(3rs) to get fi(Do, D;) = 0. Change of Dy from
—o0 to 0 gives Theorem 2.3.
Case IV aky > 0,0k, < 0: The similar treatment in Case III would give the similar
result in Case III.

Here we may say a few words here on the exceptional case when v = 0, i.e., 2] = mz].
Then, note that if m > 0 (or < 0), the segment has no (or one) inflection point and no
singularity ([4]). A simple and direct calculation gives

6 6 6
(3.16) kO:—ag, klz_ﬂ_g N g= __i?, b= _ﬁ_g
a? || To| b2 || 11| ko || Tol| Ky || T ]|

provided that akg, Bk, > 0.
Hence, the segment has no (or one) inflection point and no singularity if 7} = cTp,¢ > 0
(or ¢ < 0).

4 A condition for the fair segment (1.1) (p > 0)

In this case, refer to [5] to get the distributions of inflection points and singularities
with respect to (D, D1). For the sake of simplicity, we obtain the sufficient condition for
the fair rational segment (1.1) with p > 0.

Lemma 4.1 (/5]). Assume z, X 2} # 0, and AI = \zy + pzi. Then, the rational cubic
segment is fair if \,u > 1/(3 + p).

Then, the tangent vector 2z’ does not vanish as follows. Letting r = tu,0 <r < 1/4,

(1+pr)22'(t) = [{(6 + 2p)r + (2p + P*)r* I\ + u? — 2r — pr?)z],
(4.1)
+ [{(6 4 2p)r + (2p + p*)r?}u + t* — 2r — prP]zy.
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Putting 2/(t) = 0 gives
2pr? +6r — 1
(2p + p?)r2 + (6 + 2p)r’
The right hand side of (4.2) is monotone increasing in r, and so
(4.3) A p< 23tp) 2
124+6p+p? ~ (3+p)
from which the tangent vector z’ does not vanish if A, > 1/(3 + p). Strictly speaking,

(4.2) A p=

as in the case p = 0, it follows from [5] shows that the tangent vector vanishes if and only
if the segment has a cusp as follows. From (4.1),

(4.4) {(6+2p)r + (2p + pH)r?}(\, 1) = (pr? + 2r — u?, pr2 + 2r — £2).
A simple calculation (or for example, use of Mathematica) shows that (A, i) satisfies:
(45) k(A p) =4{B+pp -1} + 44’ {(3+p)A — 1} - 3032

HE+)A = 1P{B+p)u— 1} = 6Au{(3 +p)A = 1H{(B +p)u— 1} =0.

Therefore, by (4.3) (A, ) is on the branch ki(A, 1) = 0 of k(A, u) = 0 characterized by
AMp<1/(3+p). Asin [5], with0<t<1lu=1-—t¢

(4.6) (1 + ptu)3(2' x 2")(t) = 2aby{(3 + pt)t*X + (3 + pu)u’p + 3tu — 1}

which gives

_ 6aby{(1 +p/3)p —1/3} _ 6aby{(1+p/3)A —1/3}
(47) o = k) k= /o) .
a® || To| b3 |71 |
Hence
2 3 2 3
2, P Lo (B Tl ke 5o 2 1. (e Tk
(48 N+g-3)= (7) 6a  “UTsT =) Tes

Asfor p = 0, let 7(Do, D1) = ( B/ Tol* |ko/(6a)], ay/|ITu|* |k1/(68)| ) to obtain a system
of equations in (A, u):

p 1 p 1
4. MELI+=——)=D +x(1+=——)=D
(49) e+ -y =py wfra+2- )=,

with the sign in Dy (or D;) to be + and — according to aky (or Bk;) > 0 and < 0.
Use Lemma 4.1 and the similar argument in Case I of Section 3 to show that Dy, D; >

1/(34/1 +p/3) give A\, u > 1/(3 + p). Thus,

Theorem 4.1 Assume ako,Bky > 0. Then, the segment (1.1) with p > 0 is fair if

D07D1 Z 1/(3\/1 +p/3)

Hence, the segment (1.1) of the cubic/quadratic form is fair for p sufficiently large if
at Iy and I, it is turning towards the line joining I, to I;. In practical calculation, it

suffices to increase the parameter p, starting at p = 0, until it is satisfactory.
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5 A condition for the fair segment (1.3) (-1 < p <0)

In this case, we require
Lemma 5.1 ([4]). Assume z{ x 2] # 0, and AI = Xz{ + pzi. Then, the rational cubic
segment (1.3) with —1 < p <0 is fair if \,u > (1 +p)/(3 + 2p).

Note that the tangent vector 2’ does not vanish as follows. Put 2/(t) = 0 or let the
coefficients of z/,i = 0,1 of 2'(t) equal be zero to get

(5.1) &)+ {1-70t) -7 (w)IN=0,7"(u)+ {1 —7'(t) — 7' (u)}u = 0.
Note
: oy (L+p)*(1 —4r) _ 1
(5.2) T'(t) + 7'(u) = At pt i’ 0<r—tu§4
which gives
(5.3) 0<7(#t)+7'(u)<1l, 0<t<lu=1-t.

By means of (5.1) and (5.3),
() +7(w)  _20+p)
T'(t)+7'(u)—1 ~ 3+2p°
Therefore, the tangent vector does not vanish if A\, p > (1+p)/(3+2p). As in the segment

(5.4) At p=

of the form (1.1), numerical experiments imply that the tangent vector would vanish if
and only if the segment has a cusp, however it is impossible to check it analytically since
the exact distribution of a singularity ( a loop or a cusp) has never been obtained yet

([4]). Now,
_ 2aby(1+p+ p?/2)
B (1+p)?

(2" x 2")(0) {B+2p)u—(1+p)}

(5.5)
_ 2aby(1+p +p?/2)
B (1+p)?

Use the same D;,7 = 0,1 in Section 4 to give a system of equation in (A, u):

(2" x 2")(1) {B+2p)A—-(1+p)}.

56 A+ 2L Do), yfea4 - LD < bty

with ¢(p) = \/(1 +p+p?/2)/(1 + p)® where the sign in Dy (or D;) are chosen to be +
and — according to aky (or Bk;) > 0 and < 0. As in Section 4, Lemma 5.1 gives

Theorem 5.1 Assume ako,5k; > 0. Then, the segment (1.3) with —1 < p < 0 is fair if

Do, D1 > (1+p)/(34/1+2p/3).

Hence, the rational cubic segment of the linear/cubic form is fair for p sufficiently close
to — 1if at Iy and I, it is turning towards the line joining Iy to I;.
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