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Abstract

We give a simple derivation of necessary and sufficient conditions for the rational quadratic
Bézier segment to be a spiral or to have local extrema by means of differentiation and
Descartes’s rule of signs. We also determine (i) how to place control the vertices and (ii)
how to give the tangent vectors at the endpoints for the spiral.
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1 Introduction

Polynomial curves have been widely used in computer-aided design. However, the curves
do not always generate “visually pleasing”, “shape preserving” (or simply “fair”) interpolants
which do not contain unwanted interior inflection points and singularities (loop or cusp) to a set
of planar data points. There is a considerable literature on numerical methods for generating
a shape preserving interpolation; for example, see Ahn & kim [1], Farin [2], Meek & Walton
(4], Spath ([5], [6]), and the references therein. A way to overcome this problem is to introduce
the quadratic and cubic rational curve segments. In this note, we consider a rational quadratic

Bézier segment z(t) with weights w;,0 < i < 2 of the form:

(1 1) z(t) _ wou2b0 + 2wy tub; + w2t2b2
' T wou? + 2wty + wet?

L 0<t<lu=1-t
Then the curvature k(t) of the above curve segment 2z(t),0 <t < 1 is given by
(1.2) k(t) = (2 x 2) @)/ |Z@®))>, o<t<1

where x means a vector product and ||e|| is the Euclidean norm. The control points b; belong
to R? and we assume that the weights w; are all positive. By use of symmetry of conics,

Ahn & kim[1] obtained necessary and sufficient conditions for the curvature of the quadratic
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rational Bézier curve to be monotone (a spiral), to have a unique local minimum, to have a
local maximum, and to have both extrema. Frey & Field[3] found the similar conditions by
differentiation of the curvature. We assume the quadratic rational Bézier curve to be of the
standard form, i.e., wop = we = 1, w1 = p(> 0) and for simplicity, by = (0,0),b = (—1,0). In
addition, we assume that the remaining vertex b is restricted to be above the X—axis and left
of the vertical line u = —1/2.

In Section 2, we use differentiation and Descartes’ rule of signs to obtain the same necessary
and sufficient conditions for the rational quadratic Bézier spiral segment in terms of (i) the
control vertices and (ii) the angles of the tangent vectors at the endpoints. In addition, we
shall note that an introduction of the weights does enlarge the region required for the rational

quadratic Bézier spiral.

2 Main Theorems

The first theorem considers a choice of the control vertex by = (u,v),u < —1/2,v > 0 for the
rational quadratic spiral whose curvature is monotone increasing; note that the proof is easier
to read and more straightforward than the one given in Ahn & Kim [1]. For later use, we define
D;,i=1,2as D1 = {(u,v)| 2p?(u?+v?)+u > 0}, Do = {(u,v)| 2u*{(u+1)2+v?} - (u+1) < 0},
and D$(D5) is the complimentary set of D; (D). Then for u < —1/2, we have

Theorem 2.1 ([1])
(2.1) If (u,v)e (i) DinNDq, (ii) DiNDs, (iii) DfNDq, (iv) DN D§

then the curvature of the rational quadratic Bézier curve segment of the form (1.1) is (i) mono-
tone increasing, (ii) has just one local mazimum, (iii) has just one local minimum, (iv) first just

one local minimum and next just one local mazimum.
Proof With help of Mathematica or not so lengthy calculation by hand,

_ 3o [(s+ 1)(s? + 25 + 1)) qa(s)
2{ra(s)}5/2 ’

where quartic polynomials g4(s), r4(s) are given by

(2.2) K'(t) t=1/(14s),0<s< o0

qa(s) = p{20° (W® + %) + u}s® + {44 (W® +0%) — 135 — 3p(2u + 1)
= [42 {17 + 0%~ 1] s - 2@+ 12+ 0% - (1))
(2.3)

ra(s) = {s+ p+ pu(l — s")}* + {po(1 - s1)}%.
o

Depending on the signs of the coefficient as(= p{2u?(u? + v?) 4+ u}) of s* and the constant
term ag(= —p [20%{(u + 1)? + v} — (u + 1)]) in g4(s), we consider the four cases in which we



On Curvatures of Rational Quadratic Bézier segments 17

shall count of the number of the positive roots of g4(s) = 0:
(i) for ag > 0, ag > 0 (& (u,v) € D1NDy); then the coefficients of s*, k = 1, 3 are non-negative

as follows
(24) 4p?(w? +0%) = 1> —(2u+1) (> 0), - [4p?{(w+1)*+ 0%} = 1] > ~(2u+1) (> 0) ’

In addition, note the positivity of the coefficient of s? since —3u(2u+1) > 0. In this case, all the
coefficients of s*,0 < k < 4 being nonnegative, Descartes’ rule of signs shows that the segment
is a spiral.

(ii) for ag > 0, ag < 0(¢ (u,v) € Dy N DS); then the coefficient of s® being nonnegative
as (i), the sequence of the signs of the coefficients of s¥,0 < k < 4 of ascending order is
(—,?,4,+,+ or 0) from which combining Descartes’ rule of signs and theorem of intermediate
value shows that the curvature has just one local maximum; note that t = 0 and ¢t = 1 correspond
to s = 0o and s = 0, respectively.

(iii) for a4 < 0, ag > 0(& (u,v) € D§ N Dy); the coefficient of s is nonnegative as

(2.5) ~ [+ 1)+ 0% =1 21 -2u+1) = —(2u+1) >0

Hence, the sequence of the signs of the coefficients of s*,0 < k < 4 is (+,+,+,7,—), and so
combine the rule of signs and theorem of intermediate value to show that the curvature has just
one local minimum.

(iv) for a4 < 0, ap < 0 (& (u,v) € DfN DS); then the sequence of the signs of the coefficients
s$,0<k <4is(—,7,+,7,—) and g4(0) < 0,¢4(1)(= —2u(p+1)%(2u+1) ) > 0, gs(c0) < 0 which
imply that the curvature has first just one local minimum and next just one local maximum as

the segment starts at by and ends at bs.

Remark 1. For u = —1/2,
(2.6) ai(s) = {420 + )~ 1~ D{E( +1) + 5)

from which the segment (1.1) is a spiral (circular arc) if 4u?(v? + 1/4) — 1 = 0. If otherwise, it
has just one local maximum or minimum. Strictly speaking, the segment has a local maximum
(minimum) if v? > (<) (1/p? - 1)/4.

Since

u+1 u (2u + 1) (u? + v2 + u)

27 wr i+ U@ T @ o) {wt D of)

combine Theorem 2.1 and Remark 1 to obtain

Remark 2. For a control vertex by = (u,v),u < —1/2,v > 0, the segment (1.1) whose curvature

is monotone increasing is a spiral if

(2.8) u? + v +u<0



18 Katsuyuki SUENAGA and Manabu SAKAI

where the weight p (> 0) must satisfy

u+1
2.9 <o <
(2.9) _u_(u

w2402 (u+1)2 402

Here we note that the quadratic segment of the form (1.1) with g =1 (when (1.1) reduces
to the quadratic polynomial) is a spiral if 2(u? + v?) +u < 0. Therefore, an introduction of the
weight u enlarges the region for the rational quadratic segment to be a spiral.

Assume that the the tangent vector rotates counterclockwise as one traverses the segment
which starts at by with tangent vector £y at angle m — 6, and ends at by with tangent vector tg
at angle 7 + 9; note (6,v¢) = (7 — argtp, —argta),0 < 6,1 < w/2. Then, Remark 2 gives the
necessary and sufficient condition on the angles of the tangent vectors tg,t2 at bg, by for the the

rational quadratic spiral segment as follows.

Theorem 2.2 If the rational quadratic segment of the form (1.1) satisfies the Hermite in-

terpolation conditions: 2'(0) || to, 2’ (1) || t2, it is a spiral whose curvature is monotone increasing
if
(2.10) 0<O0<yp<m/2, O+ <m7/2

where the weight p (> 0) must be

(2.11) COSHSI-II(Q + ) <ot < cos¢s1.n(9 + )
sin ) sin 6
Proof By a simple calculation,
(2.12) 2(0) = 2u(u,v), 2'(1) = —2u(1 +u,v)
from which we have with r; > 0,7 =1,2
(2.13) 2u(u,v) = ri(—cosb,sinf), —2u(l+u,v)=ra(—costp,—sine))

Solve the above equations for (u,v), and (r1,r2) to obtain

sin ¢ . 2u ) .
2.14 = (-~ = 7
(2.14) (u,v) (@ T w)( cosf,sinf), (r1,r2) S0+ 9) (sint,sin 6)
Substitute the above (u,v) into (2.9) to obtain (2.11) and note
1 sin(d — ) 9 g sin @ sin v cos(6 + )
2.15 D= T —
(2.15) Ut 2sin(0 + )’ Wt sin?(0 + )
to have (2.10) (which is geometrically trivial from (2.8)). This completes the proof of Theorem
2.2. O

Remark 3. The quadratic segment of the form (1.1) with x4 = 1 (i.e., the quadratic polynomial

segment) is a spiral whose curvature is monotone increasing if

(2.16) 2sinf < cossin( + )
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Figure 1. Angles (6,v¢) of tangent vectors at both endpoints for a spiral.

Figure 1 gives an restriction on the angles (6,) of the tangent vectors at the both endpoints
bo = (0,0),b2 = (—1,0) for the rational quadratic Bézier segment (1.1) to be a spiral with a
monotone increasing curvature where the region {(6,¢) |0 < 8 < ¢ < 7/2, 6+ < 7/2} is
divided by the curve: 2sinf = cossin(f + 1). Remark 3 means that the dashed region is the
one for the quadratic segment (x = 1) to be a spiral.

By means of Theorem 2.1, we obtain a spiral condition for an offset curve z4 with n(t) the

unit normal vector of z at z(t) and its direction outward from the vector z

(2.17) z4(t) = z(t) +dn(t), deR

Note

(2.18) n(t) = /(1) ~<O)/ |0, 2 = @ ©), ¥ (?)

to obtain

(2.19) Z(t) = {1+ dk(t)}2'(t), (2} x 2L)(t) = {1+ dk(t)}2(2' x 2")(t)

Hence, we have a condition on radius d for the offset (2.17) to be a spiral.

Remark 4. Assume the conditions in Remark 2, i.e., u? + v? +u < 0, u < —1/2. Then the
offset curve (2.17) is also a spiral whose curvature is monotone increasing and has the same

tangent directions to the one of the segment (1.1) at both endpoints bg, b2 if and only if

2(y2 1 12)3/2
(2.20) d>—1/magc<{tli(1t)}=>d>_m (= 2 ;r )

)

where p satisfies (2.9).
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