SIMULTANEOUS CUBIC HYPER-RESOLUTIONS OF
LOCALLY TRIVIAL ANALYTIC FAMILIES OF COMPLEX
PROJECTIVE VARIETIES AND COHOMOLOGICAL DESCENT

0ad TSUBOI Shoji, GUILLEN Francisco

journal or OO0000000ODOO=Reports of the Faculty of
publication title (Science, Kagoshima University

volume 33

page range 1-33

URL http://hdl_handle.net/10232/00010013




Rep. Fac. Sci., Kagoshima Univ.,
No. 33, pp. 1 ~ 33 (2000)

SIMULTANEOUS CUBIC HYPER-RESOLUTIONS
OF LOCALLY TRIVIAL ANALYTIC FAMILIES
OF COMPLEX PROJECTIVE VARIETIES
AND COHOMOLOGICAL DESCENT

SHOJI TSUBOI AND FRANCISCO GUILLEN

Contents

Introduction

§1 Simultaneous cubic hyper-resolutions of locally trivial analytic families
of complex projective varieties

§2 Examples

§3 Cohomological descent

Introduction

In [10] the notion of cubic hyper-resolutions of algebraic varieties has been
introduced, and its cohomological descent property together with several ap-
plications has been shown. For example, the mixed Hodge structure on the
cohomology of an algebraic variety can be described by use of its cubic hyper-
resolution. In this paper we shall consider simultaneous cubic hyper-resolutions
of locally trivial analytic families of complex projective varieties, and prove that
they have also cohomological descent property. This might be considerd as a
relative analogue of the second author’s result in [10, Exposés I, III]. The motiva-
tion of this generalization is to describe the variations of mixed Hodge structure
arising from locally trivial families of complex projective varieties with ordinary
singularites (for terminology see Definition 1.10 and Definition 2.2 below) by use
of simultaneous cubic hyper-resolutions of their fibers. We shall treat the infin-
itestmal mized Torells problem for algebraic surfaces with ordinary singularities
in a forthcoming paper, using the result of this paper.

Throughout this paper, we shall always work over the complex number field.
Our method is basically complex analytic and we shall always regard algebraic
manifolds and algebraic varieties over the complex number field as complex man-
ifols and complex analytic varieties. Here we use the term of complex analytic
varieties in the sense of reduced complex spaces (possibly not irreducible).
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§1 Simultaneous cubic hyper-resolutions of locally trivial analytic
families of complex projective varieties

First, we refer to some terminology and notation from [10]. We denote by
Z the integer ring. For a non-negative integer n, let (07 the augmented n-cubic
category, i.e., the category whose objects Ob(0J7) and the set of homomorphisms
Hommi(a,ﬁ) (o = (o, 00, yan), B= (o, 1, -+, Bn) € Ob(O})) are given

as follows:

Ob(l'_—l:f) = {a = (g, 01, ,a,) EZ"T |0 < a; <1for 0< i< n),

a — f (an arrow from o to 8) ifa; < Bifor0<i<n

Homp (o, B) = {

0 otherwise.

For n = —1 we define 0T, to be the punctual category {x}, i.e., the category
consisting of a single point. For n > 0 the n-cubic category, denoted by [J,,, is
defined to be the full subcategory of 07 with Ob((,,) = Ob(I;}F) — {(0,--- ,0)}.
Notice that Ob([J7) and Ob(0,,) can be considered as finite ordered sets whose
order are defined by a < <= a — f for a, § € Ob(0J}).

1.1 Definition. A O} -object (resp. [J,-object) of a category C is a con-
travariant functor X (resp. X,) from 007 (resp. ,) to C. It is also called an
augmented n-cubic object of C (resp. an n-cubic object of C).

1.2 Definition. Let X,,Y, be (0} -objects (resp. [J,-objects) of a category
C. We define a morphism @, : X, — Y, to be a natural transformation from

the functor X, to the one Y, over the identity functor id : OOF — [} (resp.
id: 0, — O,).

1.3 Definition. Let X, be an n-cubic object of C (n > 0), X an object
of C. An augmentation of Xo to X is a natural transformation from the functor
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X, to the one X over the trivial functor OJ,, — DfD where we consider X as a
Dfl—object of C.

1.4 Remark. Notice that we may think of an n-cubic object of C with
an augmentation to X as an augmented n-cubic object of C. Conversely, an
augmented n-cubic object X : (OF)° — C of C can be identified with an n-
cubic object Xq := X:L!Dn : (0,)° = C of C with an augmentation to X(T),---,o)?
where o denotes the dual category.

In what follows we shall interchangeably use an augmented n-cubic object

of C and an n-cubic object of C with an augmentation.

1.5 Definition. A O} -complez projective variety (resp. 07 -complez ana-
lytic variety) is defined to be a [} -object of the category of complex projective
varieties (Proj/C) (resp. complex anlytic varieties (An/C)) . It is also called an
augmented n-cubic compler projective variety (resp. augmented n-cubic complez
analytic variety).

1.6 Example. Let X be a complex projective variety and {X,}o<r<n all
of irreducible components of X. For each a = (ag, -+, ay) € O, we define

Xo=[{Xi|ai=1}.

If « < 3 in [O,, then there is the natural inclusion map X3 C X,. Hence the
correspondence o« € [0, — X, € (Proj/C) defines an n-cubic complex projective
variety X, : (0,)° — (Proj/C). We consider X as a (0T, -complex projective
variety. Then there exists naturally an augmentation X, — X, which can be
considered as an augmented n-cubic complex projective variety (cf. Remark 1.4)

1.7 Definition. For a [0} -complex projective variety X,, a contravariant
functor Y, from O] to the category of (0} -complex projective varieties is called
a 2-resolution of X, if Y, is defined by a cartesian square of morphisms of
(O -complex projective varieties

Y'l]o ? Yl)lo

(1.1) | |7

Yl()o _— }‘}J(Jo;

which satisfies the following conditions:
(i) Yooe = X,

(i) Yo1e is a smooth O -complex projective variety, i.e., a contravariant
functor from [0} to the category of smooth complex projective varieties,

(ili) the horizontal arrows are closed immersions of [JF-complex projective
varieties,

(iv) f is a proper morphism between [} -complex projective varieties, and

(v) f induces an isomorphism from Yj15 — Y115 to Yo — Y105 for any

B € Ob(O7).



Shoji Tsuol and Francisco GUILLEN

We think of the cartesian square in (1.1) as a morphism from the [T e
complex projective variety Yiee to the one Yj,e and write it as Yiee — Yiee-

For a 2-resolution Z, of Yise, we define the I 4 3-complex projective variety
rd(Ye, Zs) by

Z1ite — Zp1e

rd(Y., Za) = l l
Zl[)o —_— }rﬂoo-

and call it the reduction of {Y,, Z.}.

1.8 Definition. Let X be a complex projective variety and let {X2, X2,
-++, X} be a sequence of (I} -complex projective varieties X7 (1 < r < n) such
that

(i) X! is a 2-resolution of X,
ii) X7t is a 2-resolution of X7, for every r with 1 <r <n — 1.
. le Yy

Then, by induction on n, we define

Ze=rd(X), X2, X1):i=rd(rd( X}, X2,--- X071, X))
With this notation, if Z, are smooth for all &« € Ob(O,), we call Z, an augmented
n-cubic hyper-resolution of X.

1.9 Example. A 2-dimensional complex projective varity is said to be with
ordinary singularities if it is locally isomorphic to one of the following germs of
hypersurfaces of the complex 3-space C3:

{ (Z) z=10 (simple poim:)7 (ZZ) yz =10 (ordina,ry double point)7
(ZH) TYyz = 0 (ordinary triple point), (iv) :Eyz — 22 = 0 (cuspidal point),

where (,y,2) is the coordinate on C*. We fix notation as follows:

Let S be a complex projective surface with ordinary singularities. We denote
by Dg the singular locus of S, and call it the double curve of S. Dg is a singular
curve with triple points. We denote by ¥tg the triple point locus of S, and
by Yc¢g the cuspidal point locus of S. Let f : X — S be the normalization.
Note that X is non-singular. We put Dx := f~1(Dg) and Stx := f~1(Stg).
Dy is a singular curve with nodes and ¥tx coincides with the set of nodes of
Dx. We denote by ng : D¢ — Dg and nx : D%y — Dx the normalizations
of Dg and Dx, respectively. We denote by ¢ : D% — D% the lifting of the
map fipy : Dx — Ds. We put St} = ng'(Sts), Bk = ng' (Scs) and
Nt :=ny' (Stx). With this natation, we have a 2-cubic hyper-resolution of S
as follows:
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. 55"
4X111 = Z'/’ik; }‘( = )(011
y g::‘s(il)
6(()1) 552)
X0 =) 1% D§ =: Xo10 vx=:65"
6(()1) vg=:60
st Xio1 =D tx X =: Xons
()
f=:600
)(100 = Ets S = Xg(]()

§(0)

where vg and vy are the composites of the normalizations ng : D§ — Dg and
nx : D% — Dx and the inclusion maps Dg — S and Dx — X, respectively,
and the square on the left-hand side is the one induced from the square on the
right-hand side.

The important property of a cubic hyper-resolution is cohomological de-
scent. There are two sorts of cohomological descent; one is that of R-module
sheaves (R:a commutative ring with identity element 1, especially R=7Z,Q and
C)([10, p.41, Théoréme 6.9]) and the second is that of de Rham complexes ([10,
p.61, Théoreme 1.3]).

Now we are going to give the definitions of locally triviel analytic fami-
lies of complex projecitive varieties (resp. complex analytic varieties) and their
simultaneous cubic hyper-resolutions.

1.10 Definition. By an analytic family of complex projective varieties
(resp. complex analytic varieties), parametrized by a complex space M, we
mean a triple (X, , M) satisfying the following conditions:

(i) 7: X — M is a flat surjective holomorphic map of complex spaces,and

(ii) X¢ := 771(¢) is a complex projective variety (resp. complex analytic
variety) for any t € M.

Let (%X,7,M) and (X',7',M) be analytic families of complex projective
varieties (resp. complex analytic varieties) parametrized by the same complex
space M.

1.11 Definition. By a morphism (resp. an isomorphism) for (¥, 7, M) to
(X', 7', M) we mean a holomorphic (resp. biholomorphic) map H: X — X' such
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that the diagram

r oy

M 2R, g

commutes, where idjs is the identity map on M.

1.12 Definition. An analytic family of complex projective varieties (resp.
complex analytic varieties) (X, 7, M) is said to be locally trivial if it satisfies the
following condition: for every point p € X, there exist open neighborhoods U/ of
pin X, V of n(p) in M with «(if) =V, and a biholomorphicmap ¢ : U« — U xV,
where we define U := U N X(,y, such that;

(a) the diagram

U 4 UxV
”\lx Pry
Vv

commuts,

(b) Q{D!U = ZdU

We denote by Fpr(Proj/C) (resp. Far(An/C)) the category of analytic fam-
ilies of complex projective (resp. analytic) varieties, parametrized by a complex
space M.

1.13 Definition. We call a ;" -object (resp. [,,-object) of Fps(Proj/C), or
of Far(An/C), an analytic family of augmented n-cubic (resp. n-cubic) complez
projective varieties, or complexr analytic varieties, parametrized by a complex
space M.

Let be : Xo — X be an augmented n-cubic complex projective (resp. an-
alytic) variety and M a complex space. Then X, x M (a € O,), X x M,
Gy = by X 1dps: Xog X M —- X X M and 7 := Pry: X x M — M, the
projection to M consititute an analytic family of augmented n-cubic complex
projective (resp. analytic) varieties , parametrized by a complex space A, which
we denote by

X, x M LeZbexidm ooy mEPTM gy

and call the product famuly of augmented n-cubic complez projective (resp. an-
alytic) varieties, parametrized by a complez space M. Let X} = {aq : ¥, — X}
be an analytic family of augmented n-cubic complex projective (resp. analytic)
varieties (for notation see Remark 1.4 above), parametrized by a complex space
M. Whenever we wish to express its parameter space M explicitly, we write

(1.2) X x5 M
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Fort € M, Xot := (7 oaa) (1) (o € Oy), X := 771(t) and anr 1= Ga|X,, :
Xat — X; constitute an augmented n-cubic complex projective (resp. analytic)
variety, which we denote by Xy —5 X, and call the fiber at t € M of an analytic
family of augmented n-cubic complex projective (resp. analytic) varieties in
(1.2). For an open subset U of X, we form an analytic family

Celay @)

ay; ' (U) U )

of augmented n-cubic analytic varieties, parametized by a complex space w(U).
With these notions, we define a simultaneous cubic hyper-resolution of a locally
trivial analytic family of complex projective varieties, parametrized by a complex
space as follows:

1.14 Definition. Let 7 : X — M be a locally trivial analytic family of
complex projective varieties, parametrized by a complex space M. A simulta-
neous (n-) cubic hyper-resolution of the family 7 : £ — M is defined to be an
analytic family ¥, —» ¥ - M of augmented n-cubic complex projective vari-
eties with a certain non-negative integer n, parametrized by the complex space
M. which satisfies the following conditions:

(i) for any pont t € M, aet : Xet — Xy is an augmented n-cubic hyper-
resolution of X,

(ii)(analytical ”local triviality”) for any point p € X, there exists an open

neighborhood U of p in X such that a!(U) UL ) is

analytically isomorphic to

Yolag @)

Tm(u)

. . P
(ao‘l(u)ﬂxon(p)) X W(Z/{) — (Z/[ﬂ)xﬂ-(p)) X TF(Z/{) _— ’/T(Z/{)
over the identy map idr(y) : 7(U) — 7(U)

If the parameter space M of a locally trivial analytic family 7 : X — M
of complex projective varieties is smooth, we have the following theorems.

1.15 Theorem. Let 7 : X — M be a locally trivial analytic family of
complex projective varieties, parametrized by a compler manifold M, and a, :
Xe — X the canonical cubic hyper-resolution of X. Here “canonical” means in
the sense of Bierstone-Millman ([2]). Then X, = ¥ 5 M is a simultancous

cubic hyper-resolution of m: X — M.

Proof. The construction of the canonical hyper-resolution of X is obtained, using
the canonical process of desingularisation in the proof of the existence of the
resolution of a diagram of complex projective varieties (or compact complex
analytic varieties) (cf. [10, Théoréme 2.6]). Then, because of the hypothesis of
locally triviality of 7 : X — M, the fibre Xo; — X, for each t € M is also
the canonical hyper-resolution. Hence ¥, —> ¥ -5 M is a simultaneous cubic
hyper-resolution of the family 7 : ¥ — M in the sense of Definition 1.14.
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Q.E.D.

1.16 Theorem. Let X, —> X = M be o simultaneous n-cubic hyper-
resolution of locally trivial enalytic family 7 : X — M of complex projective
varieties, parametrized by a compler manifold M. Then the Oy, -o0bject me : Xo —
M(my := m o as) of smooth families of complez manifolds, parametrized by M
18 C° trimal at any point of M; that s, for any point ty € M, there erist
an open neighborhood N of tg in M and a diffeomorphism &, : (x71)(N) —
KXoty X N of O,,-0bjects of complez manifolds over the identy map idy : N — N.
Furthermore, ¥, — X 5 M 1is topologically trivial at any point of M.

Proof. Let Ni be a coordinate neighborhood of tg in M with a holomorphic local
coordinate system (¢1,--- ,ty), and N a relatively compact open subset of N;
with N C N;. Let t; = 2; + /= 12my;(1 <1 < m) be the expression of ¢; in real
local coordinate functions z;,y;. To prove the theorem it suffices to show that
for every 0/0z; (1 <t < 2m) and every a € [0, there exists its liftings v to
T (N), i.e., a C™ vector field on 7, !(N) with the property

(dma)(08) =m0

subject to the requirement
(1.3) dEas(v]) = Es(vf)

in E;;0x%, for every pair (a, ) of elements of Ob(L,) with & < 3 in the
category O, where F,3 : X3 — X, denotes a holomorphic map corresponding
to an arrow o — f in O, and ©x_ the sheaf of germs of holomorphic vector
fields on X,. In fact, if such liftings {vQ},en, exist, integrating v, we have
a C'*°-trivialization of the family 7, : X4 — N along the z;-axis in N for all
« € O, such that those trivializations commute with the maps Eq3: X3 — X4
for every pair (w, ) of elements of Ob([0,,) with & — 3 in the category [J,, due
to the requiement (1.3). Arguing inductively on the dimension of M, we finally
get the trivialization asserted in the proposition (cf. for more precise argument
we refer to Theorem 3.3 in [8]). Now we are going to prove the existence of the

liftings v® to 751 (N) of 9/0z; subject to the requirement (1.3).

We take open coverings V = {Va}aen, and V' = {Vi}aen, of 7 1(N) in X
that satisfy the following conditions:

for every A € Ay,
(i) Y is a compact subset of V},
(ii) there exists an embedding ¢y : V{ — C™, and

(i) a7t (V4) == Vi 5 w(V4) is analytically trivial.
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We are allowed to put the condition (iii) due to the analytical “local triviality”
of the family X, == X 5 M (cf. Definition 1.14 (ii)). By this condition
there exist liftings v$; of 3/9z; to ay'(V}) for every a € O,, and every A € Ay,
subject to the requirement (1.3). We take a C'*® partition of unity {px}rea, on
X = UAEAO V) subordinate to the covering V = {Vi}rea,, 1-€., pa’s are “C™>
functions” on X' := | Jy¢,, V) satisfying the following conditions:

(1) 0<px<1for A€ Ay,
(ii) Supppx C V) for A € Ay,
(iii) > yep, P2 =1 on X',

Notice that X' is a singular space. We use here the term ”C*° functions” in the
sense of that they are locally pull-backs of C*> functions on C™* via embeddings
ox : Vi — C™ . The existence of C*°-partition of unity {px}res, as above
is guaranteed by the fact that the proof of the existence of C*°-partition of
unity subordinate to a countably indexed open covering of a C'°*°-manifold is
also applicable in our case (cf.[8, Chapter I, Theorem 4.6]). We define

of == ) an(pa)vss

A€EA,

for a € O,,. Then we can easily check that

(dma)(7) = a5

0
. ) and

(dEap)(v]) = Exp(o])

for every pair («, 3) of elements of Ob(0,,) with o < § in the category O,,.

Finally, we shall show that the C' triviality of the family 7y : X¢ — M
implies the topological triviality of the family ¥, —» ¥ — M. For a fiber X,
(t € M) of the family 7o : X4 — M, we define an equivalence relation on the
topological space [[,cq Xat (disjoint sum) by

o < and e =
p~qiff p€ Xq¢,q € Xps such that { =p as(4) =
=q,

or o> and egy(p)

where eqp : Xpr — Xat (resp. ega @ Xor — Xp¢) is the holomorphic map
corresponding to an arrow a — f (resp. f — «) in O,. Then the natural
map from ([[,cg, Xat/ ~) (the quotient topological space of [ cq Xat by
the equivalence relation ~ defined above) to X; gives rise to a homeomorphism
between these spaces, because X44 is a cubic hyper-resolution of X;. Therefore
a diffeomorphism between different fibers X and Xqp(2,¢' € M) gives rise to
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a homeomorphism between different fibers Xq¢ — X; and X4 — Xy of the
family X, = X 5 M.
Q.E.D.

§2 Examples

In this section we shall show that we can obtain a simultaneous cubic hyper-
resolution of a locally trivial family of complex projective varieties with ordinary
singularities of dimension < 3 as well as of a locally trivial family of complex
projective varieties with normal crossing of any dimension by taking normaliza-
tions of their fibers successively. Though, using the local equations of ordinary
singularities obtained in [15], we can prove that the same statement holds for
locally trivial families of complex projective varieties with ordinary singularities
of dimension 4 and 5, we omit its proof (for the case of dimension 4 see [19,
Example 4.2.10]).

By definition a 1-dimensional complex projective varietiy with ordinary sin-
gularities is no more than a curve with nodes (possibly reducible). The definition
of 2-dimensional complex projective varieties with ordinary singularities has been
given in Example 1.7.

2.1 Definition. A 3-dimensional complex projective variety is said to be
with ordinary singularities if it is locally isomorphic to one of the germs of
hypersurfaces of the complex 4-space C* as follows:

(2.1)
(Z) w=~0 (simple point), (ZZ) zw =10 (ordinry double point),,
(ZZZ) Yyzw = 0 (ordinary triple point)./ (Z"()) TYyzw = 0 (ordinary quadruple point)7
(v) zy? — 2% = 0 (cuspidal point), (vi) w(zy? — 2?) = 0 (stationary point),

where (z,y,2,w) is the coordinate on C*.

2.2 Definition. By a locally trivial analytic family of complex projective
varieties with ordinary singularities, parametrized by a complex space M, we
mean a locally triviel analytic family 7 : X — M of complex projective varieties
all of whose fibers X; := 77 !(t) are complex projective varieties with ordinary
singularities.

Now we are going to show that we can obtain a simultaneous cubic hyper-
resolution of a locally trivial analytic family of complex projective varieties with
ordinary singularities of dimension < 3 by taking normalizations of their fibers
successively. Our arguments in the subsequence are rather “set-theoretical” (not
scheme-theoretic) and all complex analytic varieties and subvarieties are assumed
to be reduced. First, we introduce a general notion and mention a fundamental
fact on it, which will be needed later. Let I be a finite ordered set. Remember
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that Ob(J;}) and Ob((),) can be considered as finite ordered sets. We think
of I as a category. Let Xo: I° — (An/C) be an I-object of complex analytic
varieties, that is, a contravariant functor from the category I to the category
(An/C) of complex analytic varieties. We shortly call an I-object of complex
analytic varieties an I-complex analytic variety.

2.3 Definition. A morphism of I-complex analytic varieties f, : X4 — Y,
is defined to be a normalization of Y, if f; : X; — Y; is the normalization for
every 1 € I.

For an I-complex analytic variety X,, we denote by e;; : X; — X; the
corresponding holomorphic map to ¢, € I with ¢ < j, and by N(X;) the non-
normal locus of X; for each 7 € I.

2.4 Lemma. With the same notation as above, for an I-compler analytic
varity Xo we assume that ei_jl(N(Xi)) is analyticelly rare wn X;, 1.e., for any
open subset U of X; the restriction map Ox,;(U) — Ox; (U \ e:jl(N(X,'))) i8
ingective, for every i,) € I with ¢ < 7. Then there exists a normalization v, :
X — X, of Xo and it 1s unique up to isomorphisms in the category of I-complex
analytic varieties over the identity map idx, : Xo — X,.

Proof. For any : € I we take the normalization v; : X} — X,. By the assump-
tion, every e;; : X; — X, for ¢, € I with ¢ < j can be uniquely lifted to
ef; + X7 — X} ([6, p.121, Proposition 2.28]). Then {X},e};} constitutes an
I-complex analytic variety due to the uniqueness of the liftings e}, and by defi-
nition, this is a normalization of X,. The uniqueness of X! up to isomorphisms
over the identity map idyx, : Xe — X, results from the uniqueness of each X/}

up to isomorphisms over the identity map idx, : X; — X, for every 1 € I.
Q.E.D.

2.5 Definition. For a morphism of I-complex analytic varieties f, : X —
Y,, the discriminant of f, is defined to be the smallest, closed I-complex analytic
subvariety Dy, of Y, such that f, induces an isomorphism f; : X; — 7' (Dy,) —
Y; — Dy, for every i € I.

2.6 Remark. Let fo : Xo — Y, be a proper morphism of I-complex
analytic varieties, i.e., f; : X; — Y, is proper for every ¢ € I. Then one has

D = UijIm(T; = Yi) (i€,

where T; denotes the discriminant of f; : X; — Y; (cf. [10, p.9, Proposition
2.3]).

The notion of a cubic hyper-resolution of a compler analytic variety being
obtained by successive normalizations is defined as follows:

Let X be a complex analytic variety. First, we define a Df-complex analytic
variety X} to be
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-1 . * jl 't/ Vel |
1X11 - _Z)U1 — 4X — . JXUI

(2.2), ml l

X, =D, — X =: X{,,
21
where v : X — X is the normalization of X, D,, the discriminant of vy,
D; = v (D,,), and p; := vipy, = Dy, — D, the restriction of vy to Dy, .
Inductively, for an integer r > 2 we define [0 -complex analytic variety X! to

be

X7y, o= DE 5 (X7 = Xy,

r—1 ,

where Xf:l is the Df_z—complex analytic variety, pp—1 := Vr—1Dy | X{1e ==

* r—1 ,.__ : . r—1\v mr—1 - : :
Dy — X{g, =D, _, in(2.2),_1, v : (X], — X{, is the normalization
of X{7', D,, is the discriminant of v, D} := v7'(D,,), and p, 1= v, ps is

the restriction of v, to Dy, .

2.7 Definition. In the above procedure we assume that the normalization
(X771) is always non-singular for every r > 1, where we understand X7, = X.
Then, after finite steps, say n-th step, the reduction

Zo = rd(XzaXfa X:l)

of the sequence { X}, X2 --- X7} of O -complex analytic varieties X (1 < r <
n) gives an augmented n-cubic hyper-resolution of X . If this is the case, we say
that a cubic hyper-resolution of X is obtained by successive normalizations.

2.8 Definition. We say a complex analytic varity Z is with normal cross-
ing if, at each point of Z, it is locally isomorphic to the germ of a subvariety
{(z0,-++ ,2n) € C" |2y -z, = 0} at the origin of C"*! for somer (0 < r < n).

2.9 Proposition. For a compler analytic variety with normal crossing 1ts
cubic hyper-resolution s obtained by successive normalizations.

Proof. Since the problem is local, it suffices to show that, for the subvariety Z in
C"t1 defined by zp -+ -z, = 0 (0 < r < n) its cubic hyper-resolution is obtained
by successive normalizations. Furthermore, we may assume that r = n, because
the subvariety {(zo,---,2zn) € C"T!|z -+ 2, = 0} is isomorphic to the product
{(z0,-++ ,2zr) € C"T |z -z, = 0} x C"~". In fact, we shall prove the following
by double induction on n and k.
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Claim. For the analytic subvariety

Z = {(:07 73n) € (Cn_‘_llZU e Zp = 0}7

we define

Zizgzigzi, o) = A(2) €C 2 = oo = 25, = 0} (0<dg < -+ < ig <)
and

Z,(cn) = Uocip<<ingnd(zgenziyti, oz) (0 <k <n) (asubvariety of C*F1)

Then a cubic hyper-resolution of Z,(Cn) (0<n,0<k<n)is obtained by succes-
s1we normalizations.
Proof of the claim.

(I) In the case of n = k = 0: ZSO) is non-singular (a single point), so there -
is nothing to be proved.

(IT) In the case of n > 1: we assume that the claim is true for ng) with
0<m<n—-1land0</?¢<m. Z,S”) is non-singular (a single point), so there is
nothing to be proved. Next we shall show that if the claim is true for Z lF”) with
0 <k < <n, then it is also true for Z,(cn). We consider the 2-resolution

Dx s (Z{My

D, — z"
21
in (2.2); for Z{"™. Then

(Z’En))u — H0$i0<___<l-k£n Z(ZO_..in...fz.k.._zn) (disjoint sum)

D, = Z,(Ci)], and

Dul - Hugio<---<ik§n Ul?flo,'“,lkZ(Zo---éio---"‘ Eieezp)
0<i<n
Here we consider
(2.3) Uiztig, ik Z(ZO...gio...gik Fieezn)
0<i<n ‘

as a subvariety of Z( 251, <z, z,)- BY the induction hypothesis, a cubic hyper-
resolution of D, = Z,Ej_)l is obtained by successive normalizations, which we
denote by vi4 : D)4 — D,, (an augmented O _ x_1-0bject of complex analytic
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_ : : C .. . n—k—1
varieties). Since the complex analytic variety in (2.3) is isomorphic to Z[()‘ : )
for every (79, -+ ,2x) with 0 < 79 < --- < 73 < n, by the induction hypothesis,
a cubic hyper-resolution of D} is also obtained by successive normalizations,
which we denote by vj, : D}, — D, (an augmented D;:_ x_1-0hject of complex
analytic varieties). Obviously, there naturally exists a homomorphism pi,e :
D* — D, ., of [0,_;_1-objects of complex analytic subvarieties such that the
Ve le
following diagram commutes:
Ve

D*  —% D=

vye 121

e | [

D

Vie ” V1

Vlie

of which we think as a [J,_j4+1-object of complex analytic varieties. This is
nothing but the cubic hyper-resoluion of the 07 -complex analytic variety p; :

- D} — D,, by successive normalizations. Therefore,

D* Jiovy, (Zén))u

vie
llll lm
D, —— 2z
Vie . k>
110V,

is the cubic hyper-resolution of Z ,En) by successive normalizations. This com-
pletes the proof of the claim.

Since Z = Zén), the proposition follows from this claim.

Q.E.D.

2.10 Proposition. A cubic hyper-resolution of a complex analytic variety

with ordinary singularities of dimension < 3 1s obtained by successive normal-
1zations.

Proof. The proof is straightforward caluculation in terms of local coordinates.
We shall show only in the case of dimension 3. First we fix notation as follows:

T : a threefold with ordinary singularities,

S : the singular locus of T,

A the singular locus of S,

Yq : the set of ordinary quadruple points of T,

Ys : the set of stationary points of T.
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Notice that A is non-singular outside ¥¢ and that, at each point of Lg, A is
isomorphic to the union of four coordinate axes of C! at the origin. It suffices
to prove the proposition for each hypersuface in C* in (2.1). The proofs for the
hypersurfaces (ii), (iii), (iv) in (2.1) are included in Proposition 2.9.

(v) In the case of zy* — 2* = 0(cuspidal point):

Let us take the 2-resolution of 7' by normalization in (2.2);:
D;, T

(2.4) mlo |

D, —T.

Then T% ~ C? and the normalization vy : T¥ — T C C* is given by (r,s,t) —
(r?,s,rs,t) = (v,y,z,w), where (r,s,t) is the coordinate on C* and (z,y, 2z, w)
is that on C*. Hence D,, = S :y = z = 0 and D} :s = 0, which are non-
singular. Therefore the 2-resolution of T' by normalization in (2.4) gives a cubic
hyper-resolution of T.

(vi) In the case of w(zy? — 2?) = 0 (stationary point):

T and S have the following irreducible decompositions:
T=Ty+T., To: w=0, T.: zy*> —2* =0,
S=81+5¢, Sq: y=2=0, S;: w::cyz—z2:0.
Notice that S; = the singular locus of 7,5 = TyNT, and A = S3NS. = SaNTy

= z = w = 0. The reduced ideal of S is (zy* — 2%, wy, wz). The 2-resolution
of T by normalization in (2.2); is explicitly described as follows:

g * * * * J v v e
‘Xlll = Du1 = Qo H(Slc + Sd) = T HTc = A(}l

Xly:=Dy :=85=51+5 —T=Ty+T. = Xj,

vy 2 Iy~ C* — Ty C C4(r,s,t) — (r,5,1,0) = (z,y, 2z, w),
vy 2 T =~ C* — T CcC(r', s t) — (r"?, s, r's 1) = (2,y, z,w).

b= {rs’ =12 =0} C Ty,
Sto={t =0} CT" S%:={s'=0}CT".

The 2-resolution of a (0] -complex analytic variety p; : D; — D,, by normal-
ization in (2.2),
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Dy =X
H20
D,,, =X

J21

* . V2 )
Dy, = Xin Xi11
M A
2 J20 H21 -9
110 AUIU V21
— X2 i21 20 72 . v1 . *

DV21 - AlUl AUUl T ‘Yll T Dy1
2 2 oyl .
100 i20 XO(J(J - ‘Xl() T DV1

1s explicitly described as follows:

(D

2

X1 :=Sall S¢ . (Sge)” LISt L S7) =2 X¢14

V20l lVZI

XKoo =5 =51+ S = Sic (ST + 53) = XGous

(Sp ) = S ~ SF ~C3) Sy~ 8% ~C3;
d

V0|5, + Sa — Sa C S : identity map,

vaoisy © 5S¢ — Sc C §: normalization map,
V21|(Sz.)Y (S5.)Y — Sp. C X2,, : normalization map,
Vo118, © 91 — 91 C X2, : identity map,

varjsy + Sy — Sj C Xy ¢ identity map;
Ty ~TycCt
U U

piysy, Sg. — S @ identity map,

TV - T.CC*
U U
pagsy, @ Ste = Se, (7,51,0) = (r"2,8',0"8,0) = (2,y, 2, w):

normalization map,
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TV — T, CC*

¢

u U
sy o S — Sa, (71,0,¢") — (7%,0,0,1") = (z,y,2,0):

double covering

fir(sx )" 2 (S5e)” — S¢ + natural isomorphism,
fi)sy, © S{c — S¢ ¢ natural isomorphism,

w7 . * . 3 . . * .
fi1ss © Sy — Sa: the same double covering as py)s2 : S7 — Sg;

(1) Sa S¢ (S5 STe Sy
u U U U U
' * A * * *
Afm::AHA ‘""(A H(A HA ):5X1211

Mzol l#m

Xigo =4 \ AT A" = Xy
N n n
S =25+ 54 Soe St + 57

Here A* are the inverse images of A by the normalization maps vyg|sv : S¢ — S,
var)(sy)r ¢ (Sge)” — Sge = Se, paysr, + Sic — Se, respectively, which are non-
singular. This shows that a cubic hyper-resolution is obtained by successive
normalizations for a stationary point.

Q.E.D.

By Proposition 2.9 and Proposition 2.10 we obtain the following theorem.

2.11 Theorem. Taking successive normalizations fiberunse, we obtain a
simultaneous cubic hyper-resolution of a locally trivial family of the following
kinds of complex analytic varieties :

(i) complez analytic varieties with ordinary singularities of dimension < 3,

(1) complez analyitc varieties with normal crossing of any dimension.

Proof. Let m : X — M be a locally trivial family of above kinds of complex
analytic varieties, parametrized by a complex space M. Taking relative normal-
ization vy : X¥ — X of X over M (cf. [16, Theorem 3.6]), we obtain the “relative
2-resolution” of the family = : ¥ — M, which we denote as follows:
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1. oy Ny oyl
X =9 i — X =1 X

(2.5) ml lm

1 . —. ¥l
%10 T @1/1/3'1' _“) % _' :{UO:
21

where B, /5y denotes the “relative discriminant” of the map vy : X¥ — X over
M and D\, = Ul—l(@yl/M). All maps in the diagram (2.5) are over M.
Notice that D, /y and D /M Aare locally trivial families of complex analytic
varieties over M, since m : X — M 1is locally trivial. Next, we take the “relative
normalizations” of the families ®,, /p; and D, /M respectively, which we denote
as follows:

jir
(@ul/M>I/ — (@il/M)”

(2.6) von | [

*
Dy /M - MIYe

where f1; stands for the “fiberwise” lifting of the map u;. Here the “fiberwise”
lifting means that, for every t € M, jiy4 : (D:l/M,t)” — (Dy, jar,)? is the lifting
of the map pqy : szl/M,t — Dy, /1, between fibers of the families (9:1/1\4)’/ and
D7, /n over M. This is possible due to the fact that (D,, /)" and (D} ,p,)"
are the “relative normalizations of @,, /s and D}, M respectively. In fact,
f1 := {jt1t}tenm is a holomorphic map from (Z)jl/M)” to (D,,/m)", since the
family py : @jl/M — 9, /m of holomorphic maps over M is locally trivial.
Therefore we conclude that the diagram (2.6) gives a “relative normalization”
of the O0f -object X1, := {u : O Dy, /m} of locally trivial families of
complex analytic varieties over M in (2.5). Using this “relative normalization”,
we obtain the “relative 2-resolution” of the Of -object X1, := {u; : ;. 12y S
D, /M}; which we denote as follows:

Y2 pyx 20l v . 2
Xije = voo /M — (¥X1.)" =: X{14

2 1 . y2
9610- - 91/2./1\1 — ?El‘o = Aou.v
2

where vy, : (¥],)” — X{, is the relative normalization of X}, in (2.6), D,,, /a

is the “relative discriminant” of the map 1, : (X],)" — Xi,, D% M=

Vye (D, /01), and pae is the restriction of 144 to D, /ar- The procedure of
taking this “relative normalization” can be continued similarly like the absolute
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case and obtain a sequence XU = X, X1 X2... X7 ... of O -objects X7 of lo-
cally trivial analytic families of complex analytic varieties, parametrized by M,
such that X7 is the 2-resolution of X, ' by “relative normalization” for every
r > 0. Then, after finite steps. say n-th step, the reduction

rt+ oo Al A2 72

fo T TCI(%.,, e 7:¥o ,)7
which can be defined in the same manner as in the absolute case, gives a “rela-
tive” cubic hyper-resolution of X, i.e., if we write X7 as

(2.7) X 2 x5 M,

where ¥, is the “0J,,7-part of XF, then the fiber ae; : ¥of — X; is a cubic
hyper-resolution of X; for every t € M. The analytical “local triviality” of the
family in (2.7) is obvious, because the original family = : X — M is so. That is,
by defintiton, the family in (2.7) is a simultaneous cubic hyper-resolution of the
family 7 : X — M.

Q.E.D.

§3 Cohomological descent

The relative version of “cohomological descent” holds for a simultaneous
cubic hyper-resolution of a locally trivial analytic family of complex projective
varieties. In order to state this fact we refer to some notation and terminology
from [10]. Let ®, : Xo — X be an n-cubic topological space with an aug-
mentation to a topological space X, i.e., X, is a contravariant functor from the
n-cubic category [, to the category of topological space (Top) and ®, is a nat-
ural transformation from the functor X, to the one X over the trivial functor
O, — OF,, where X is considered as a (T -object of the category (Top) (cf.
Definition 1.1, Definition 1.3 and Remark 1.4).

3.1 Definition. For a commutative ring R with identity elemeny 1, an R-
module preshef F'* on an n-cubic topological space X, : [, — (Top) is defined
to be a contravariant functor from the total category tot(X,.) to the category
of R-modules, where we identify a topological space with the category of open
subsets of it. We say an R-module presheaf F'* on an n-cubic topological space
X, is an R-module sheaf if the presheaves F'* on X, defined by F'*, are sheaves
for all @ € O,,. For R—module (pre)sheaves F'* and G* on X,, a morphism from
F* to G* is defined to be a natural transformation from F* to G*.

We denote by M(X,, R) and M(X, R) the categories of R-module sheaves
on X, and X, respectively, where R is a commutative ring with identity element
1. For an R-module sheaf F on X we define its inverse image ®5F € M(X,.,R)
in a natural way. The functor ®} : M(X,R) — M(X,, R) has a right adjoint
Py : M(Xo, R) — M(X, R). Since the functor ®} is exact, it defines a functor

(3.1) @:: D*(X,R) — D¥(X.,R),
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where DT (X, R) and DT (X,, R) denote the derived categories of lower bounded
complexes of R-module sheaves on X and X,, respectively. The functor in (3.1)
has a right adjoint

R®,,: DY(X,,R) —» DT (X, R).

Let F* be a lower bounded complex of R-module sheaves on an n-cubic
topological space X,. We take the factorization

¢2t X

(3.2) Xo 2% X x O,
of &,: X, — X, where X x 0, is the n-cubic object of (Top) defined by (X x
0, )(a) := X for @ € O,, @1, is the natural transformation defined by @4, :=
b, for o € O, and Py, the one defined by ®9, := 1dx for « € O,. By
definition @4+ F* = {®14+F*}acob(, ), to which we associate a simple complex
5(®1e4 F'*) of R-module sheaves on X. To explain this we give the definition of
an n-ple compler of an abelian category. Let A be an abelian category. We
denote by C*(A) the category of lower bounded complexes of A. Let n be an
integer> 1. We denote by e; the i-th vector of the canonical basis of Z", i.e.,
e; =(0,---,1,---,0) (1 is at the ¢-th place) for 1 < < n.

3.2 Definition. With the notation above, an n-ple complex of A consisits
of the following entities:

(i)a Z"-graded object {K*}4ezn of A, and

(i1) a family {d;}1<i<n of differentials of K'* such that d; is of defree e; and
they commute each other.

We denote by n-CT(A) the category of n-ple complexes of an abelian cate-
gory A.

3.3 Definition. For K € n-C*(A) its associated simple compler s(K) €
C*(A) is defined to be as follows:

S(K)P:= Y KPP peZ and
2 Pi=p
the differential d of s(K) is defined by

d= Z(—l)gjdj on KPvPn
i=1

where £; =37, . pi.

Let A be a (07 )°-object of lower bounded complexes of R-module sheaves
on a topological space, say Y, i.e., a functor A : (OF)° — CT(Y,R), where
C*(Y,R) is the category of lower bounded complexes of R-module sheaves on
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Y. We denote A(a) € CT(Y, R) by A** for each o € Ob([0;7). We associate to
such A an object K(A) of (n+2)-CT(Y, R), i.e., an (n + 2)-ple lower bounded
complex of M(Y, R) as follows:

A% if o € Ob(O})
0 if a e Z™ — Ob(O});
the (7 4+ 1)-th differential is the one induced by the morphism a — a + ¢; in O}
for 0 <7 < n, and (n + 2)-th differential is the one of the complex A%*. For the
sake of simplicity we denote s(K(A)) by s(A).

We think of @1¢+ F'* = {@1axF* }acon(o,) as a (07 )°-object of lower bound-

ed complexes of R-module sheaves on X by defining F(° % = {0} for (0,--- ,0)
€ O0F, and form $(P1exF*). Then we have

L]

K (A0 = {

R®y0r(B100 F*) 22 5(P10, F*)[1]

in Dt (X, R), where [1] stands for the shift of the degree of complexes to the left
by 1, ie., s(P1ex F*)[1]P = 5(P1e4 F*)PT!. Then we have

(3.3) R, F* = 5(30, F*)[1]

in DT (X, R). This description of R®,,F'"* is necessary for our arguments in the
following. For more details we refer to [10, Exposé I].

The following is the relative version of the cohomological descent for R-
module sheaves.

3.4 Theorem. Let X, =% X 5 M be a simultancous n-cubic (n > 1)
hyper-resolution of a locally trivial analytic family of complex projective vari-
eties,parametrized by a complex space M. Then, for an R-module sheaf A on X,
the adjunction map

A — Ra.*af.A
is an 1somorphism in DT (X, R).

Proof. In order to prove the theorem, it suffices to show that for any point = € X,
the homomorphism

is a quasi-isomorphism of complexes of R-modules. We put t := n(z), X¢ :=
77 (#), Xet := w1 () and

b.t = OeX,, - Xet — Xy

Since bes : Xoy — Xy is a a cubic hyper-resolution by the assumption, it follows
from its cohomological descent property that the homomorphism

(35) (A|Xt)1 — (Rb.t*bftAIXt)r
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is a quasi-isomorphism. Therefore, since A, = (Ax, )., it suffices to show that
the canonical map

(3.6) (RagagA)y — (Rbresbis Al x, )z,

is a quasi-isomorphism in order to prove that the homomorphism in (3.5) is a
quasi-isomorphism. We use the following lemma which is a consequence of the
proper base change formula of Godement ([7, I1.4.11]), and of [10, Exposé 1,5.13]:

3.5 Lemma. Let Ty be a cubic paracompact topological space, S a para-
compact space, and fo : Te — S a proper augmentation. For all compleze of
sheaves F* on Ty and all s € S, the fibre at s of the complex of sheaves Rfg F* 1s
quasi-isomorphic to the hypercohomology H(T,, Fi’f-s) of the fiber Tyy := f1(s).

Then one obtains the following quasi-isomorphisms,

(RaewagA)s = Hiag ' (2), a0 A, 21 ,)
(Rbct*bitA‘Xt)Iv = H(b:tl (w)ﬂ bft(A|Xt )|b:t1(2:))

and the obvious identity a;!(z) = by, (z), from which one deduces that (3.6) is

_ a quasi-isomorphism as required.

Q.E.D.

We are now going to define the cohomological relative de Rham complex
DRy € DT(X,C) for an analyitc family 7 : ¥ — M of complex analyitc
varieties, parametrized by a complex space M. For this end we take a system
of relative local embeddings U := {(U],U;), v, (Y, Vi, 7i)} of 7 : £ — M which

consists of the following entities:

(1) {U!}, {U;} are open coverings of X with if; being a relatively compact
open subset of U! for every 1,

il) V! = D; x n(U!), where D; are polycylinders in complex number spaces
i i polycy p

.
Ccr,

ere ™5 g . .
(iii). Y — w(U;) are smooth families of complex manifolds, parametrized

by w(U;) such that
(a) V; are relatively compact open subsets of V!, and

(b) the following diagrams commute:
Vi —— W

ﬂ;i lprw(ztf)

m(Ui) —— =(Uy),
(iv) ¢; : U! — V! are closed embeddings over w(U!) such that ¢;(U;) = V.
(I’ 2 3 g 3 (fo \
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For each (ip + 1)-tuple (¢) = {1y < 1y < --- < i} we consider an open set
Z/I(' n = Ui, ‘N and a relative closed embedding

1 "

(i Y0

= (D,jo X T ) Xﬂ-(IA" ) (DH X 72-(Z/{(z))) X”(u('i))
Xﬂ'(l/('i))(DiP X W(U{i)»

over W(L{('i)), where X)) denotes the fiber product over W(Z/{(’i)); and define
. YR .
Q5 ) MGy =0 S /T B )
k

where (23, IR is the relative de Rham complex of the smooth family Prﬂ(u(rl))
(+) () (i
iy — m(U(,) of comlex manifolds and Iu(/,) is the ideal sheaf of U; in
the structure sheaf Oyr of y('{). We call 03, (! )/|\Z/I('i) the completion of
' (#) (¥
Qs3, alon Z/I Then we consider a complex of sheaves of C-vector
Yioy /mU) & P
spaces on X
;)
(@ UGy
where ) is the inclusion of ?/I(i) into X and U;y = U, N -+~ NU;,. Here, putting
0 outside U;), we consider C?, as a complex of sheaves of C-vector spaces on
(1) (i) p : ‘
X. Now for any 0 < j < p, let (') = {io, -+ ,1;,--- ,%p} (omit ¢;). Then we
have a natural inclusion Z/{(’i) — Z/{(’i,)7 which maps ;) into U(;; and a natural
inclusion )/’('.z.) — y('i,) over ’/T(Z/{(’l-)) — W(Z/{(’i,)), which maps ), into Yy over
m(Uiy) — m(Uery). Hence there is a natural map

C(.i) J*(Qy( [m(U

. . YL
9y, 1=, i L A TLUCE
and a morphism of complexes on X
6t Cliy = €y

Notice that, by the construction, for two integers 0 < 7 < k < p, the correspond-
ing four ¢ maps are compatible with each other. Hence we can define a double

complex C(U) by H
P c*
()

[t]=p

where |z| is defined to be p for i = (ig,--- ,1,), and

p
o7~ i= T D185 : C@P™ — ey

lil=p j=0
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We denote by @;/M (U) the associated single complex of C(U). TfV = {(V},V;),
5, (2%, Z,7;)} is a refinement of a system of relative local embeddings ¥/,
then there is a natural map of double complexes ¢ : C(U) — C(V) and, as in
the absolute case, we can see that the map Q% ,,(U) — Q% (V) of simple
complexes associated to ¢ is a quasi-isomorphism (cf. [11, p.29]). Therefore we
conclude that Q% /M(Z/[ ) defines an element of DT(X,C), which is independent
of the choice of U.

3.6 Definition. We call such an element of DT (X,C) determined by the

ﬁ;e/M(Z/l) the cohomological relative de Rham compler of the familyn : X — M
and denote by DR;E/M.

Let X4 — X 5 M be a simultaneous n-cubic hyper-resolution of a locally
trivial analytic family of comlex projective varieties, parametrized by a complex
space M. For each o € L, we denote by % /M the relative de Rham complex
of a smooth family 7 o ay : X4 — M of complex manifolds. Then Q;a./M =
{Qs /M}(,Egn is obviously a complex of sheaves of C-vector spaces on a [J,-
complex manifold X,. The rest of this section will be devoted to proving the
following theorems and a corollary.

3.7 Theorem. (Cohomological descent of relative de Rham complezes)
Under the same setting as above, there naturally exists an.-isomorphism

DR.%/M >~ Raex .x./M

in DT(X,C).

3.8 Theorem. (Relative formal analytic Poincaré lemma) Under the same
setting as above, Q;e/M(Z/{) yrelds a resolution of the sheaf 7 (Opr) for a system
of relative local embeddings U = {(U!,U;), 0i,( V!, Vi, i)} of ®: X — M, where

7 (Onr) denotes the topological inverse of the structure sheaf of M by the map
T: X — M.

3.9 Corollary. There exist 1somorphisms
H'(X, 7'(On)) = H'(RT(X, s(a10:2%, /a0)[1])

~ HY(RT(X., Q% 1) (1< < 2dimc).

(for the notation aje see (3.2))

To prove these theorems the following two theorems are essential.
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3.10 Theorem. (Mayer-Vietories sequence for relative de Rham complezes)
Let m 1Y — M be a flat family of analyitc varieties, parametrized by a complex
space M. Suppose that m : ) — M s relatively embedded in a smooth famaily
7' X — M of complez manifolds, parametrized by the same complex space M,
and further suppose that Q) s a union of two closed subvarieties Ly and )y of
X. Then there 1s an exact sequence of relative de Rham complezes

0 — 95 /Mm—’Q /M@l%Qx/Ml@z — 3 /M|‘~D109J)—>0

where Q;e/MT@ 15 the completion of the relative de Rham complex QS&/M along
) and so on.

3.11 Theorem. Let f : X' — X be a poper morphism of analytic vari-
eties. Let Y be a closed analyitc subvariety of X, and let Y' := f~1(Y). Assume
that f maps X' —Y' isomorphically onto X —Y . Suppose we are given coherent
sheaves F on X and F' on X', and an injective map F — f,F', whose restric-
tion to X — Y 1s an isomorphism. Then the single compler associated to the
Df—object of lower bounded complexes of sheaves of C-vector spaces on X

A~

R(7o f).F' —— RfF'

T

WF  e—— F

is acyclic in DT (X, C), where ¢ 1s the closed immersion Y — X and ™ denotes
the completion along Y, or Y', respectively.

The proof of Theorem 3.10 for the absolute case, i.e., M is a single point,
can be found in [11, p.89, Proposition(1.4)]. Since Qge/M are locally free sheaves

over Ox, and since all of QQ/MT@, QI;E/MTQ_),-(Z' =1,2) and Q‘S’e/MTﬁjl N9, are
completions with respect to some ideal sheaves of Ox, the same arguments as
in the absolute case also go well for the relative case. Hence we obtain Theorem
3.10. Theorem 3.11 is an analytic analogue of Proposition(4.3) in [11]. The
key point of the proof of Proposition(4.3) in [11] is “fundamental theorem of a
proper morphism” ([9, 4.1.5]), which tells us that, with the same notation as in
Theorem 3.11, though all things should be replaced by algebraic ones,

RfF ~(RfFY (i>0),

where (R' f,F'}is the completlon of Rif,F' along Y, and R’f*}"’ the i-th h1ghe1
direct image sheaf of F! by the morphism of formal scheames f C X - X
induced by f, from the completion X' of X' along Y’ to that of X along Y.
Fortunately, we have an analytic analogue of the “fundamental theorem of a
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proper morphism” due to C. Banica and O. Stanasila ([1, p.225, VI, Cor.4.5).
Using this theorem, we can carry out the same arguments as in the proof of
Proposition(4.3) in [11]. Hence we obtain Theorem 3.11.

To prove Theorem 3.7 we shall use the following theorem, which is an ana-
lytic analogue of Theorem(4.4) in [11, p.44].

3.12 Theorem. Let 7' : X' — M and 7 : X — M be two flat families of
analytic varieties, parametrized by the same compler space M. Let f: X' — X
be a proper morphism of analytic varieties over M, ) a closed subvariety of

X9 = 7)., end h = fi : Y — Y the restriction of f to Y. We

assume the following:
(1) f maps X' — %) isomorphically onto X — 9,
(1) there exist

(a) smooth families of complex manifolds ' : 3" — M and 7 : 3 —
M, parametrized by the complex space M,

(b) closed immersions X' — 3’ and X — 3 over M, and
(¢) a proper morphism ¢ : 3 — 3 over M
such that gjxr = f and g maps 3' — g~ (Q)) isomorphically onto 3—9).

Then the single compler associated to the following (17 -object of lower bounded
complezes of sheaves of C-vector spaces on X

R(T0 7).y 1 —— RAQLY, 3 |X

T | T

1825 /M 2 — /M X

is acyclic in DT (X, C), where 1+ Y — X 1s the inclusion map.

Since the proof of Theorem 3.12 is almost identical with that in the algebraic
case ([11, p.44, Chapter II, Theorem(4.4)), we omit it, just mentioning that we
essentially use Theorem 3.10 and Theorem 3.11 to prove it.

3.13 Proposition. Let 7 : Q) — M be a flat family of analytic varieties,
parametrized by a complex space M, which 1s relatively embedded in a smooth
famaly ="+ X — M of complex manifolds, parametrized by the same complex
space M. Suppose Q) 1s a union of finite closed subvarieties 9y, -+ ., Pn(n > 2).
Let © : Do — 2 be the n-cubic object of analytic varieties, augmented to ),
effected by the finite closed cover {Dr}i<r<n of Y (¢f. Example 1.6). Then we

have a quasi-isomorphism

D — Q% 01D,
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where ~ -
933/M D = {‘Q%/MIQJG}Q/GD.”

18 a complex of sheaves of C-vector spaces on e obtained by the completion of
Q"{/M along Do for every a € [,.

Proof. We use induction on n. The case n=2 is nothing but Theorem 3.10. In
the case n > 3, the argument is almost identical with that of Proposition 1.4 in
[10, p.61] for the absolute and algebraic case. Hence we omit it.

Q.E.D.

3.14 Proposition. Let X be a compler projective variety embedded in a
smooth complex projective variety Y, and let ae : Xo — X be an n-cubic hyper-
resolution of X in the category of complex projective varieties. We denote by Xy,
and Yy the corresponding compler analytic varieties, and by ane : Xpe — X
the corresponding n-cubic hyper-reosolution of Xp in the category of complex
analytic varieties. Let p be a point of Xp. We take an open neighborhood V of p
in Yy and define U := VN Xy and Uy := a; ' (U) for each o € O,,. We consider
an n-cubic object of the product families of complex analytic varieties

e X1dps 1 Ue X M — U x M

where M s a complexr space and idys s the identity map on M. Then we have
a quasi-1somorphism

(3.7) Q{/XM/M[U x M — R(as % idM)*QZr.xM/M-

Proof. By the same argument used in the proof for the absolute case of Theorem
3.1 (cf. [10, p.41, Théoreme 6.9]), we can reduce the proof to the case of n=2.
Hence it suffices to prove (3.7) for the following [0 -object of complex analytic
varieties: '

UG xM —— Uy x M

l J/ﬂ.()lxid]u

U]U xM —— UUU x M

|
UxMCV x M,

which is a cartesian square, where Uy is a smooth analytic variety, agy : Upy —
Upo a proper morphism (hence so is agy Xidas : Ugy x M — Ugo x M), U1y — Uy
and Ujg — Upg are closed immersions, such that ag; x idas @ (Upo x M)\
(Uyy x M) — (Upy x M)\ (Uyp x M) is an isomorphism. Furthermore, using
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Proposition 3.13, we can reduce the proof to that for the case where Ujy; and
Uy are irreducible (for the details of this procedure we refer to the proof of
Théoréme 1.5 in [10, p.62]). Now we shall check the proof for this case.

We write X, X', Y Y’ Z and f instead of Uyg,Up1, Uso,Us1,V and ap1,
respectively. Since X, X' are open subsets of complex projective varieties, by
the result of Hironaka (Elimination of points of indeterminancy of a rational
mapping, [12]), there exists a commutative diagram

X =X

(3.8) x lf\

X'—*’J?X<—>Z

such that (i)fi, f3 are the composits of blowmg ups along non-singular centers,
(ii) X, X" are non-singular, and (iii) f,, f4 are proper morphisms. Blowing up Z
along the same centers as those of f; : X — X, we have the following diagram

Y X Z
(3.9) | |5 [
Yy — Z
where YV := l—l(Y)md. Forming direct product of each term in the diagram

(3.9) with M, we come to the same setting as in Theorem 3.12. Hence, by
that theorem, we conclude that the simple complex associated to the following
07 -object of lower bounded complex of sheaves of C-vector spaces on X x M

R(hy x idpr)eQy |V X M —— R(fi xidy)u05  |X x M

T T

(0% idar )2y g [V X M —— Q% 11X x M,

where hy := fi 07, is acyclic in DT (X x M,C). If we define s(X x M/Y x M),
s(X x M/Y x M) to be the single complexes associated to the morphisms of
complexes

QY| X X M = (1 X idar)s Qs ]Y X M and

IX X M — (7 x idar)«Q l} x M,

ZM' Z\[
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respectively, then the above statetement is equivalent to that the morphism
(fi xidp)* : s(X x MY x M) — s(X x M/Y x M) induced by f; x idys is a
quasi- isomorphism. Here we should notice that, since X', X’ are non-singular,
s(X'x M/Y' x M) and s(X' x M/Y" x M) are defined as the single complexes

assciated to the morphisms of complexes

Q;{'Xﬂf/]\/[ (L' X idﬂ])*QB('x]\f/]\f|}” X j\’]’ a‘nd

Q;{’x]\/l/M (! deu) JASS

] y
X7 M/M x M,

respectively, where Y7 := f;l(-}"')red = fg_l(Y').red and / :Y' — X', /Y —
X" are natural inclusions. We consider the following diagram derived from (3.8)

(3.10)

idp)*

S(X7 x MV x MY <2 (5 % MY x M)

. fl Xid]u)*
. (foxidar)*
(faxidar)

s(X'x M/Y' x 1M)<TS(X' X M/Y'x M)

By the same reasoning as for (fi X idyr)*, we conclude that (fs x idar)*,
(fa+ x idpr)* are quasi-isomprphisms on X, X' | respectively. Hence by the
commutativity of the diagram in (3.10), we conclude that (fo X tdpr)* is a quasi-
isomorphism on X' and so is (f X idp)*. This completes the proof of the
proposition.

Q.E.D.

We are now in a position to prove Theorem 3.7 and Theorem 3.8.

Proof of Theorem 3.7: By the assumption, we can take a system U =
{UL U, 0, (Vi, Vi, mi)} of relative local embeddings of X which satisfies the

following conditions:

(3.11)

For each : there exists a point p; € if; and an embedding ¢; : X,y — Y,
of X1 (p:) (the fiber of X over 7(p,)) into a smooth complex projective variety
Y}, such that

a , _
elaT Ly T!

(i) ag ' (U)) U] > w(U4!) is isomorphic to

a4 Xid (! Prﬂu)

( I(Z/{)QAW(},))XWU)————)(U N Xrpiy) X ©(U]) —— =(U])



30 Shoji TsuBol and Francisco GUILLEN

(for the notation see Definition 1.12)
(i1) V! = D} x n(U}) and Y; = D; x ©(U;), where D}, D; are open neighbor-
hoods of the point e;(p;) in Y), with D; C D}, and
(ii1) @i(U]) = (ei(Xr(piy) N DY) x w(U]). and @i(U;) = (ei(Xrp;)) N Di)x
m(U;).
Then by Proposition 3.14 the natural map

Q Ll T Raqa:‘(u;) *Qa:‘(u;)/w(u;) = Raex Xo /MU

is a quasi-isomorphism on !, hence

J'*(Qz'/z;/n(ug)hui — Ju(Raeuf2%, /|

is a quasi-isomorphism on X for every ¢, where j : U] — X is the inclusion map.
From this it follows that for any (i) = {tg < i1 < -+ < p}

Cuy = j*(QI./({T.)/Tr(U(’i))>|M(i) — D@y = j*(R‘I'*Q%./MIH[I-))lu(i)

is a quasi-isomorphism. Similarly as for C(U), we define a double complex D(Uf),
using {D(;y}, which is nothing but Rae.2%, /3s- Therefore we conclude that the
natural map

Q%/M(Z’{) - R0“*956./1\4

is a quasi-isomorphism. Since any system of relative local embeddings of X
has its refinement satisfying the conditions (i),(ii),(iii) in (3.11) we obtain the
theorem.

Proof of Theorem 3.8: Since the poblem is local, we may assume that
7 : X — M is a product family, namely 7 := Prp; : X = X x M — M, where X
is a complex projective variety, M a complex space, and 7 := Prjs the projection
to M. Furthermore we may assume that X is embedded in a smooth complex
projective variety Z. We define 3 := Z x M and 7y :=Pryy :3 =2 x M — M
the projection to M. Under this setting we shall prove that

(3.12) T On — Q%1%

is a quasi-isomorphism on X. In the following we shall confuse complex algebraic
objects and their associated analytic objects, and write them by the same letters.
To prove (3.12) we proceed by induction on dimcX. If dim¢X = 0, there
is nothing to be proved. We assume that (3.12) holds for any X with 0 <
dim¢X < n. By the Hironaka resolution theorem ([12]) there is the following
commutative diagam:
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Vi — - X' 7
(3.13) hl lg lf
y — X Z

with the property g|X/_y; : X' —Y" — X —Y is an isomorphosm, where X'
is a smooth complex projective variety, f : X' — X a proper morphism, Y
a proper closed subvariety of X, Y’ := f~1(Y),eq, and ¢,:" closed immersions.
Taking direct product of each term in (3.13) with M, we obtain the commutative
diagram

@I I %l L_)z,l

(3.14) Hl lc lF

Y — 1 s x3

where X := X x M, X' := X' x M, F := f x idy, etc.. Then, by Theorem 3.12
it follows that

T T

RLOY D —— 03X

is acyclic in DV (X, C). Therefore, for any relatively compact open subset Xy of
X, we have the following long exact sequence of cohomology

(anQ3/M|?€) — H'(%,RLO3 /MIQ.)) ® H' (X0, RG. Q% pr)

(3.15)
— H'(X0,R(I 0 H),! 3€’/M’2) ) — H'HH (X0, Q3% ,1%) —

On the other hand, applying Theorem 3.4 for A = 7° Oy, we derive from (3.14)
that
(Io H)*Wf;g,OM — GOy

T T

I,.<7T[',~D Oar — 7 0Mm

is acyclic in DT (X, C), where 7’ := Prp; : X' = X' x M — M, the projection to
M. Therefore we have the following long exact sequence of cohomology
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— H'(Xy,7 Opn) — H(Xy, I*W@C')M) ® H (X, G Opp)

(3.16)

- HT(*%U*(IO H)*TFEDIO]W) — H’:+1(:£077r'(9h{) e

There naturally exist homomorphisms from (3.16) to (3.15). Among these ho-
momorphisms,

Hi(:{o, I*TFILDO‘IW) - Hi(xﬂa RI*QB/]\[l@)*

H'(%0,(I 0 H)u7lgy Orr) — H' (%0, R(I 0 H), Q% /1D

are isomprphisms on Xy by the induction hypothesis, and

Hi(%0,Gn" Op) — H' (X0, RGuQ%0 /ar)

is also, because 7’ : X' — M is a smooth family ([3, p.15, 2.23.2]). Hence we
conclude that ’

H' (%9, m Oar) — H'(Xo, 23 3/1%)

is an isomorphism on X, which means 7°Op; — Qé / 17| % is a quasi-isomorphism

on X as required. This completes the proof of Theorem 3.8.

@

~I

10.

11.

Corollary 3.9 follows from Theorem 3.7 and Theorem 3.8.
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