On Set Representations and Intersection Numbers of Some Graphs

著者	SAKAI Koukichi
journal or	鹿児島大学理学部紀要=Reports of the Faculty of
publication title	Science, Kagoshima University
volume	33
page range	39-46
URL	http://hdl.handle.net/10232/00010014

Rep. Fac. Sci., Kagoshima Univ., No. 33, pp. 39 \sim 46 (2000)

On Set Representations and Intersection Numbers of Some Graphs

Koukichi SAKAI *

(Received August 11, 2000)

Abstract

Let G be any simple and connected graph, i(G) be the intersection number of G in the sense of Mckee et al. [6], and $\theta_1(G)$ be the minimum number of cliques $\{Q_j\}$ of G by which the edge set E(G) is covered. In this paper using the fact that $i(G) = \theta_1(G)$ we shall determine the intersection number for the graphs as follows: split graphs, the complete r-partite graphs, the (n-2)-regular graphs of order n, and the complementary graphs of the cycle C_n of order n respectively.

Key words: intersection number, edge clique cover, split graph, the complete *r*-partite graph, regular graph.

1 Introduction and Preliminary

Throughout this paper any graphs are assumed always to be finite, simple and connected. The terminology and notion concerning graphs follow Chartrand et al. [5] unless otherwise stated. Let G be a graph with the vertex set V(G) and the edge set E(G), and put q(G) =|E(G)|. We begin with the definition of set representations and edge clique covers of G. A set representation of G is a mapping ϕ of V(G) to the set of non-empty finite sets of positive integers with the following property:

(1.1) For any $u, v \in V(G)$, u and v are adjacent if and only if $\phi(u) \cap \phi(v) \neq \emptyset$.

For any set representation ϕ of $G, S(\phi) = \bigcup \{\phi(u); u \in V(G)\}$ is called the range of ϕ , and $|\phi| = |S(\phi)|$ is the rank of ϕ . We note that any graphs have set representations. For example let $E(G) = \{e_1, e_2, e_3, \dots, e_q\}$, where q = q(G), and for any $u \in V(G)$ we put $\phi(u) = \{j; e_j \text{ is incident with } u\}$. Then this ϕ is a representation of G with $|\phi| = q(G)$. The *intersection number* i(G) of G is the minimum number of $|\phi|$ for any set representations ϕ of G. Any representation ϕ of G is said to be *minimal* if $|\phi| = i(G)$.

By the above example of a set representation of G, we have $i(G) \leq q(G)$. A subset W of V(G) is called an *independent set* of G if any distinct two vertices in W are not adjacent. For any independent set W and set representations ϕ of G, the sets $\phi(w), w \in W$, are mutually disjoint by (1.1). So we have an estimation of i(G) as follows:

 $(1.2) \quad \beta_0(G) \le i(G) \le q(G),$

^{*} Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

where the $\beta_0(G)$ is the vertex independent number of G, *i.e.* the maximum cardinal number of independent sets of G.

Any complete subgraph of G is called a *clique*, and especially is *maxclique* if it is not properly contained in another cliques. A family of cliques $\mathbf{F} = \{Q_j; j = 1, 2, \dots, m\}$ of G is called an *edge* [resp. *vertex*] *clique cover* of G if $E(G) \subseteq \bigcup_{j=1}^m E(Q_j)$ [resp. $V(G) \subseteq \bigcup_{j=1}^m V(Q_j)$]. For example the edge set E(G) and the set MC(G) of all maxcliques of G are edge clique covers of G.

Here we introduce the following three kinds of numbers for G defined by:

- (1.3) $\theta_1(G)$ = the minimum cardinal number of |**F**| for any edge clique covers **F** of G,
- (1.4) $\theta_0(G)$ = the minimum cardinal number of $|\mathbf{F}|$ for any vertex clique covers \mathbf{F} of G,

(1.5)
$$\theta_m(G) = |MC(G)|.$$

We say that any edge [resp. vertex] clique cover \mathbf{F} of G is minimal if $|\mathbf{F}| = \theta_1(G)$ [resp. $\theta_0(G)$]. By the definitions above we have

(1.6) $\beta_0(G) \le \theta_0(G) \le \theta_1(G) \le \theta_m(G).$

The aim of this paper is to determine the intersection numbers for some graphs. In section 2 we state the relationship between set representations and edge clique covers of G following [6]. By the relationship we have $i(G) = \theta_1(G)$. We note also the conditions for G to be $i(G) = q(G), i(G) = \theta_m(G)$ and $i(G) = \beta_0(G)$ respectively.

In section 3, the relations of i(G) and $\beta_0(G)$ are established for any split graphs G, and the intersection number of the complete r-partite graphs is given. The intersection numbers of the (n-2)-regular graph of order n and the complementary graph of the cycle C_n are determined respectively in the final section.

For any graph G we use the following notation:

- (1.7) $N[u] = N(u) \cup \{u\}$ for $u \in V(G)$, where N(u) is the neighborhood of u.
- (1.8) E(G, u) is the set of all edges of G incident with $u \in V(G)$.
- (1.9) $\langle W \rangle =$ the induced subgraph of G from $W \subset V(G)$.

$$(1.10) \quad \langle W_1, W_2, \cdots, W_k \rangle = \langle \bigcup_{i=1}^k W_i \rangle.$$

Throughout this paper any symbols of variables, say i, j, k, m, n and so on, denote any positive integers unless otherwise stated. For any m, n with $m \leq n$, [m, n] is the set of the consecutive numbers from m to n, and especially [n] = [1, n].

2 Key Lemma and its Consequences

First following [6] we state the relationship between set representations and edge clique covers of any graphs G. Let ϕ be any set representation of G. For any $k \in S(\phi)$ we define a subgraph Q_k by:

(2.1) $Q_k = \langle \{ u \in V(G); k \in \phi(u) \} \rangle.$

Then by (1.1) it is seen easily that Q_k is a clique and $\mathbf{F}_{\phi} = \{Q_k; k \in S(\phi)\}$ is an edge clique cover of G.

Conversely for some m let $\mathbf{F} = \{Q_j; j \in [m]\}$ be any edge clique cover of G. For any $u \in V(G)$ we define a non-empty subset $\phi(u)$ of [m] by: (2.2) $\phi(u) = \{j \in [m]; v \in V(Q_j)\}.$ Then ϕ is a set representation of G, which is denoted by $\phi_{\mathbf{F}}$. We note that (2.3) $|\phi| = |\mathbf{F}_{\phi}|$ and $|F| = |\phi_{\mathbf{F}}|$. Summarizing the above discussion we have our Key lemma.

Key Lemma. Let G be any graph. Then

- (1) For any set representation ϕ of G there corresponds an edge clique cover \mathbf{F}_{ϕ} of G defined by (2.1) with $|\phi| = |\mathbf{F}_{\phi}|$,
- (2) For any edge clique cover \mathbf{F} of G there corresponds a set representation $\phi_{\mathbf{F}}$ of G defined by (2.2) with $|\mathbf{F}| = |\phi_{\mathbf{F}}|$.

Key lemma teaches us that the study on set representations of G is equivalent to the study on edge clique covers of G. The next is an immediate consequence of Key lemma (cf. [6], Slater [8]).

Theorem 2.1.
$$i(G) = \theta_1(G)$$
 for any graphs G.

From (1.2), (1.6) and Theorem 2.1 we have (2.4) $\beta_0(G) \leq i(G) = \theta_1(G) \leq \theta_m(G) \leq q(G).$

Here we collect some theorems concerning i(G), which are immediate consequences of Key Lemma. If G is triangle-free, then MC(G) = E(G) and E(G) is only one edge clique cover of G. Hence we have

Theorem 2.2. For any graph
$$G, i(G) = q(E)$$
 if and only if G is triangle-free. \Box

An edge e of G is said to be *proper* if there is a unique maxclique Q such that $e \in E(Q)$. A maxclique is also said to be *proper* if it has at least one proper edge, and otherwise to be *non-proper*. If any maxcliques of G are proper, then MC(G) is the only one edge maxclique cover of G. In this case we have $i(G) = \theta_m(G)$. Conversely If G has a non-proper maxclique Q, then $MC(G) \setminus \{Q\}$ is an edge maxclique cover of G. Therefore we have

Theorem 2.3. For any graph $G, i(G) = \theta_m(G)$ if and only if every maxclique of G is proper.

On graphs G with $i(G) = \theta_m(G)$ it is investigated in Wallis et al.[10], in which such graph is called a *maximal clique irreducible graph*. In the author's paper [7] some non-proper maxcliques in regular graphs are considered.

We recall that a subset S of V(G) is a *dominating set* of G if $V(G) = \bigcup \{N[s]; s \in S\}$.

Theorem 2.4. For any graph G let $W = \{v_1, v_2, ..., v_m\}$ be an independent set of G, where $m = \beta_0(G)$, and put $Z = V(G) \setminus W$. Then the following conditions for G are mutually equivalent.

- (1) $i(G) = \beta_0(G)$,
- (2) W is a dominating set of G, and for any $u, v \in Z, u$ and v are adjacent if and only if $N(u) \cap N(v) \cap W \neq \emptyset$,
- (3) For every $v_j \in W, Q_j := \langle N[v_j] \rangle$ is a maxclique and the family $\{Q_j; j \in [m]\}$ is an edge maxclique cover of G.

Proof. It suffices to see (1) \Rightarrow (2). Let ϕ be a set representation of G with $|\phi| = \beta_0(G)$. Then we may assume that $S(\phi) = [m]$ and $\phi(v_j) = \{j\}$ for $j \in [m]$. Hence for any $u \in Z$ we have $\phi(u) = \{k \in [m]; v_k \in N(u)\}$ and for any $u, v \in Z, \phi(u) \cap \phi(v) \neq \emptyset$ if and only if $N(u) \cap N(v) \cap W \neq \emptyset$ by (1.1). So (2) follows from (1). (3) \Rightarrow (1) is obvious from (2.4). \Box

In Brigham et al.[3] any graphs G with $i(G) = \theta_0(G)$ are characterized in terms of vertex clique covers of G as follows.

Theorem 2.5. The following conditions for any graph G are mutually equivalent:

- (1) $i(G) = \theta_0(G)$,
- (2) Every minimal vertex clique cover of G is a minimal edge clique cover,
- (3) $\beta_0(G) = \beta_1(G),$

where $\beta_1(G)$ is the maximum number of edges of G having the property that no two are in the same clique.

Combining Theorems 2.3 and 2.4 we have

Theorem 2.6. Under the same notation as in Theorem 2.4, the following conditions for G are mutually equivalent:

(1)
$$i(G) = \beta_0(G) = \theta_m(G),$$

(2) For every $v_j \in W, Q_j := \langle N[v_j] \rangle$ is a maxclique and $MC(G) = \{Q_j; j \in [m]\}$. \Box

Examples 2.7. The following are examples of graphs as in the above theorems:

- (1) i(G) = q(G) for G = any trees or bipartite graphs.
- (2) $i(G) = \theta_m(G)$ for G = the wheel graphs $W_n, n > 3$, the interval graphs (cf. [10]), or 3-regular graphs (cf.[7], [9]).
- (3) $i(G) = \beta_0(G) < \theta_m(G)$ for G = the 3-sun (Hajos-graph) S_3 (cf. [2]).
- (4) i(G) = β₀(G) = θ_m(G) for G = the complete graphs, or the intersection graphs Ω(P([m])) for any m ≥ 2. Where P([m]) is the family of all non-empty subsets of [m], Ω(P([m]) is the graph with the vertex set P([m]) such that any distinct S_j, S_k ∈ P([m]) are adjacent if and only if S_j ∩ S_k ≠ Ø.

In [7] any r-regular graph G with $i(G) < \theta_m(G)$ is characterized for r = 4 and 5. For example any 4-regular graph G, $i(G) < \theta_m(G)$ if and only if G contains the 3-sun graphs as induced subgraphs.

Theorem 2.8. For any given n > 1 the set of the intersection numbers i(G) of graphs G of order n is the integer interval $\left\lfloor \lfloor \frac{n^2}{4} \rfloor \right\rfloor$.

Proof. In Erdös et al.[4] it is proved that $i(G) \leq \lfloor \frac{n^2}{4} \rfloor$ for any graph G of order n, and that $i(G_0) = \lfloor \frac{n^2}{4} \rfloor$ for the complete bipartite graph $G_0 = K(k,k)$ or K(k+1,k) according as even n = 2k or odd n = 2k + 1. Note that any bipartite graph is triangle-free. So removing repeatedly a cycle edge from G_0 until its spanning tree, for every $k \in [n-1, \lfloor \frac{n^2}{4} \rfloor]$ we get a bipartite graph G with i(G) = k.

On the other hand, let $p \in [2, n-1]$, and define a graph G_p of order n as follows: $V(G_p) = \{v_1, v_2, \dots, v_{p-1}, v_p, v_{p+1}, \dots, v_n\}$ such that $Q := \langle v_p, v_{p+1}, \dots, v_n \rangle$ is the complete subgraph K_{n-p+1} and $E(G_p) = E(Q) \cup \{v_j v_n; j \in [p-1]\}$. Then $i(G_p) = p$ by Theorem 2.4. Obviously $i(K_n) = 1$. This completes the proof.

3 Intersection numbers of split graphs and the complete *r*-partite graphs

Let G be any connected split graph, *i.e.*, V(G) is partitioned into two sets D and S such that $\langle D \rangle$ is a clique and S is an independent set. Let k = |D| and s = |S|. Note that $\langle N[s] \rangle$ is a clique for every $s \in S$ and $\beta_0(G)$ is equal to s or s + 1. Dividing the following three cases (a)-(c) we determine i(G).

Case (a): There is a $v \in D$ with deg(v) = k - 1.

Then N[v] = D and $W = S \cup \{v\}$ is the maximal independent set. Moreover the family $\{\langle N[w] \rangle; w \in W\}$ of cliques is an edge clique cover of G. Hence $i(G) = \beta_0(G) = s + 1$ by Theorem 2.4.

Case (b): For any distinct $u, v \in D$ there exists an $s \in S$ for which $u, v \in N(s)$.

Then S is the maximal independent subset of V(G) and the family $\{\langle N[s] \rangle; s \in S\}$ is an edge clique cover of G. Hence $i(G) = \beta_0(G) = s$. In this case note that $deg(u) \ge k$ for all $u \in D$.

Case (c): $deg(u) \ge k$ for all $u \in D$ and there is at least one edge of $\langle D \rangle$ which is not covered by any cliques $\langle N[s] \rangle, s \in S$.

Then S is the maximal independent subset of V(G) and $\{\langle D \rangle\} \cup \{\langle N[s] \rangle; s \in S\}$ is the minimal edge clique cover of G. Hence i(G) = s + 1 and $\beta_0(G) = s$.

Summarizing we have

Theorem 3.1. Let G be a connected split graph and let $\mathbf{F} = \bigcup_{s \in S} E(\langle N[s] \rangle)$ under the above notation. Then the following holds:

- (1) $i(G) = \beta_0(G) = |S| + 1$ if and only if S is not a dominating set of G.
- (2) $i(G) = \beta_0(G) = |S|$ if and only if $E(\langle D \rangle) \subset \mathbf{F}$.
- (3) $i(G) = |S| + 1, \beta_0(G) = |S|$ if and only if S is a dominating set of G and $E(\langle D \rangle) \setminus \mathbf{F} \neq \emptyset$.

Next we consider the intersection number of the complete r-partite graphs with $r \ge 2$. For the complete r-partite graph $G = K(m_1, m_2, \dots, m_r)$ assume $m_1 \ge m_2 \ge m_3 \ge \dots \ge m_r \ge 1$ and denote by $V_j(G)$ the j-th partite set with $|V_j(G)| = m_j$ for $j \in [r]$.

Lemma 3.2.

- (1) $i(K(m_1, m_2)) = m_1 m_2$.
- (2) $i(K(m_1, m_2, \cdots, m_{r-1}, 1)) = i(K(m_1, m_2, \cdots, m_{r-1})).$
- (3) $i(K(m_1, m_2, \dots, m_{r-1}, m_r + 1)) = i(K(m_1, m_2, \dots, m_{r-1}, m_r)) + m_1.$

Proof. (1) follows from Theorem 2.2. To see (2), we put $G = K(m_1, m_2, \dots, m_{r-1}), G' = K(m_1, m_2, \dots, m_{r-1}, 1)$ with $V_r(G') = \{v\}$, and let $\{Q_j; j \in [s]\}$ be a minimal edge clique cover of G, where s = i(G). Then for every $j \in [s], R_j := \langle v, Q_j \rangle$ is a maxclique of G' and the family $\{R_j; j \in [s]\}$ is an edge maxclique cover of G'. Hence we have i(G') = i(G), because $N(v) = \bigcup_{j=1}^{r-1} V_j(G)$ and $i(G) \leq i(G')$. To see (3) put $G = K(m_1, m_2, \dots, m_r), G' = K(m_1, m_2, \dots, m_r+1)$ with $V_r(G') = V_r(G) \cup \{v\}$, and let $\{Q_j; j \in [s]\}$ be a minimal edge clique cover of G, where s = i(G). We regard G as a subgraph of G'. Since $V_r(G')$ is an independent

set of G', any clique covering the edges in E(G', v) does not cover any edges in E(G, w) for any $w \in V_r(G)$. Further since $V_1(G')$ is an independent set of G', there are at least m_1 maxcliques of G' which covers E(G', v). Actually we can find a family $\{Q_j; j \in [s + 1, s + m_1]\}$ of maxcliques of G' which covers E(G', v). Therefore $\{Q_j; j \in [s + m_1]\}$ is a minimal maxclique cover of G' and $i(G') = i(G) + m_1$.

The next result is derived inductively from the above lemma.

Theorem 3.3. $i(K(m_1, m_2, \dots, m_r)) = m_1(\sum_{j=2}^r m_j - r + 2).$

4 Intersection numbers of some regular graphs

First we consider a minimal set representation of the (n-2)-regular graph G_n of order even n = 2m. Since G_{2m} is the complementary graph of the 1-regular graph mK_2 , we label $V(G_{2m}) = \{u_j, v_j; j \in [m]\}$ such that for every $j \in [m], u_j$ [resp. v_j] is adjacent to all another vertices except v_j [resp. u_j]. As $G_4 = C_4$, we have $i(G_4) = 4$ from Theorem 2.2. In what follows let m > 2. Since there are many maxcliques in G_{2m} , precisely $\theta_m(G_{2m}) = 2^m$, in order to determine $i(G_{2m})$ we consider not edge clique covers but set representations of G_{2m} . For some t, the construction of any set representation ϕ of G_{2m} with $|\phi| = t$ is reduce to give a family $\mathbf{F}_m = \{S_j; j \in [m]\}$ of mutually distinct subsets in [t] with the following the properties:

- (4.1) $S_j \cap S_k \neq \emptyset$, neither $S_j \subset S_k$ nor $S_k \subset S_j$ for any distinct $j, k \in [m]$,
- (4.2) $|S_j| \leq \lfloor \frac{t}{2} \rfloor$ for any $j \in [m]$.

Indeed for such ϕ , we may assume without loss of generality that for every $j \in [m], S_j := \phi(u_j)$ is a non-empty subset of [t] and the family $\{S_j; j \in [m]\}$ satisfies (4.1) and (4.2). Conversely for any $\mathbf{F}_m = \{S_j; j \in [m]\}$ in the above, we put $\phi(u_j) = S_j$ and $\phi(v_j) = [t] \setminus S_j$ for $j \in [m]$. Then for any distinct $j, k \in [m], \phi(v_j) \cap \phi(u_k)$ and $\phi(v_j) \cap \phi(v_k)$ are non-empty by (4.1) and (4.2) respectively. Hence ϕ is a set representation of G_{2m} with $|\phi| = t$. Here we denote $\phi(\mathbf{F}_m)$ by the set representation ϕ defined from \mathbf{F}_m . Any family $\mathbf{F} = \{S_j\}$ of subsets of [t] is called an *intersecting Sperner family* if it satisfies the condition (4.1). The determination of $i(G_{2m})$ is to find the smallest positive integer t such that in [t] there exists an intersecting Sperner family $\mathbf{F}, |\mathbf{F}| = m$, with (4.2). We note that from any non-empty subfamily \mathbf{F}' with $|\mathbf{F}'| = m'$ of any intersecting Sperner family $\mathbf{F}, |\mathbf{F}| = m$, with (4.2) there corresponds a set representation $\phi(\mathbf{F}')$ of $G_{2m'}$. So our problem is reduced to a combinatorial problem to find the largest cardinal number of any intersecting Sperner family with (4.2) in [t] for any given t. The answer for this problem is derived from some results stated in Bollobás [1].

For any given t > 1 let $X_t = [t]$ and use the notation concerning family of subsets of X_t as follows:

 $\begin{aligned} X_t(\leq r) &= \{S; S \subset X_t, |S| \leq r\} \text{ for any } r \text{ with } 1 \leq r < t, \\ X_t(r) &= \{S; S \subset X_t, |S| = r\} \text{ for any } r \text{ with } 1 \leq r < t, \\ X_t(\{j\}) &= \{S; j \in S \subset X_t\} \text{ for any fixed } j \in X_t, \\ X_t(r, \{j\}) &= X_t(r) \cap X_t(\{j\}). \end{aligned}$

Under these notation we have the next lemma, which is due to [1, Theorem13.2].

Lemma 4.1. Let **F** be any intersecting Sperner family in $X_t (\leq \lfloor \frac{t}{2} \rfloor)$. Then (4.3) $\sum_{A \in \mathbf{F}} {\binom{t-1}{|A|-1}}^{-1} \leq 1$.

Especially the equality holds in (4.3) if and only if $\mathbf{F} = X_t(r, \{j\})$ for some $r < \frac{t}{2}, j \in X_t$ or t is even and \mathbf{F} contains precisely one of each pair $\{A, X_t \setminus A\}$ in any $A \in X_t(\frac{t}{2})$.

From Lemma 4.1 it follows that the largest cardinal number M(t) of intersecting Sperner families in $X_t (\leq \frac{t}{2})$ is given as follows: (4.4) $M(t) = {t-1 \choose p-1}$, where $p = \lfloor \frac{t}{2} \rfloor$,

and $\mathbf{F}_t := X_t(p, \{1\})$ is a maximal intersecting Sperner family in X_t with $|\mathbf{F}_t| = M(t)$. Therefore for any m with $2 \le m \le M(t), G_{2m}$ has a set representation ϕ with $|\phi| = t$, and for any m with $m > M(t), i(G_{2m}) > t$. Consequently we have

Theorem 4.2. Under the notation (4.4) for any m > 2, $i(G_{2m}) = t$, where t is determined by the inequalities: $M(t-1) < m \le M(t)$.

For examples $i(G_6) = 4$, $i(G_8) = 5$, and $i(G_{2m}) = 6$ for $4 < m \le 10$.

Here we consider the intersection number of the complementary graph G_n of the cycle C_n with $n \ge 5$, which is a (n-3)-regular graph of order n. The vertex set $\{u_1, u_2, u_3, \dots, v_n\}$ of G_n and C_n are labeled as $u_j u_{j+1} \in E(C_n)$ for any $j \in [n]$. Now for convenience we use the label j of u_j in the sense of modulo n, say u_{n+1} should be understood as u_1 . So $N(u_j) = \{u_{j+k}; k \in [2, n-2]\}$ for any u_j . We note that for any subset W of $V(G_n)$, $\langle W \rangle$ is a clique in G_n if and only if W is an independent set in C_n . So enumerating the maximal independent sets in C_n for the case n = odd, we have

Lemma 4.3. For the case $n = 2m - 1, m \ge 3, MC(G_n)$ is the family $\{Q_j; j \in [n]\}$ given as follows: $Q_j = \langle W_j \rangle$, where

 $W_j = \{u_j, u_{j+2}, u_{j+4}, \cdots, u_{j+2m-4}\} \text{ for any } j \in [n].$ In this case for every $j \in [n]$ the edge $u_j u_{j+2m-4}$ is proper.

Let $n = 2m, m \ge 3$. Then we note that $G_{n-1} = G_n - \{v_{2m}\} - \{u_1u_{2m-1}\}$. So using this fact we can get $MC(G_n)$ from $MC(G_{n-1})$ by a slight modification. Under the notation in Lemma 4.3, we add $\{v_{2m-1}\}$ to W_1 , add $\{v_{2m}\}$ to W_2 , and for W_3 add $\{v_{2m}\}$ and delete $\{v_{2m-1}\}$. Therefore we have

Lemma 4.4. For the case $n = 2m, m \ge 3, MC(G_n)$ is the family $\{Q_j; j \in [n-1]\}$ given as follows: $Q_j = \langle W_j \rangle$ for any $j \in [n]$, where

 $W_{1} = \{u_{1}, u_{3}, u_{5}, \cdots, u_{2m-3}, u_{2m-1}\}$ $W_{2} = \{u_{2}, u_{4}, u_{6}, \cdots, u_{2m-2}, u_{2m}\}$ $W_{3} = \{u_{3}, u_{5}, u_{7}, \cdots, u_{2m-3}, u_{2m}\}$ $W_{j} = \{u_{j}, u_{j+2}, u_{j+4}, \cdots, u_{j+2m-4}\} \text{ for any } j \in [4, n-1].$

In this case the edges $u_1u_{2m-1}, u_2u_{2m}, u_3u_{2m}$ and the edges u_ju_{j+2m-4} for every $j \in [4, n-1]$ are proper.

From Lemmas 4.3-4.4 and Theorem 2.3 we have

Theorem 4.5. For the complementary graph G_n of the cycle C_n with $n \ge 5$, $i(G_n) = \theta_m(G_n)$, and $i(G_n) = n$ if n is odd and $i(G_n) = n - 1$ if n is even.

References

- [1] B. Bollobás: Combinatrics, Cambridge University Press, 1998.
- [2] A.Brandstädt, Van Ban Le, and J.P. Spinrad: *Graph classes. A survey*, SIAM Monographs on Discrete Mathematics and Applications, 1999.
- [3] R.C. Brigham and R.D. Dutton: On clique covers and independence numbers of graphs, Discrete Math., 44 (1963) 139-144.
- [4] P. Erdös, A.W. Goodman, and L.Pósa:. The representation of a graph by set intersections, Canad. J. Math., 18 (1966),106-112.
- [5] L. Chartrand and L. Lesniak: Graphs & Digraphs, Chapmann & Hall, 1996.
- [6] T.A.McKee and F.R.McMorris: *Topics in intersection graph theory*, SIAM Monographs on Discrete Mathematics and Applications, 1999.
- [7] K. Sakai: A note on maxcliques covered by another maxcliques in regular graphs, Rep. Fac. Sci. Kagoshima Univ. 33(2000), 35-38.
- [8] P.J. Slater: A note on pseudointersection graphs, Res. Nat. Bur. Standards Section B 80(1976),441-445.
- [9] M.Tsuchiya: On antichain intersection numbers, total cliques covers and regular graphs, Discrete Math.127 (1994), 305-318.
- [10] W.D. Wallis and Guo-Hui Zhang: On maximal clique irreducible graphs, J.Combin. Math. Combin. Comput., 8(1990), 187-193.