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Abstract

Let G be any simple and connected graph, i(G) be the intersection number of G in

the sense of Mckee et al. [6], and Oi(G) be the minimum number of cliques {Qj} ofG by

which the edge set E(G) is covered. In this paper using the fact that i(G) = 0¥(G) we

shall determine the intersection number for the graphs as follows: split graphs, the complete

r-partite graphs, the (n - 2)-regular graphs of order n, and the complementary graphs of the

cycle Cn of order n respectively.

Key words: intersection number, edge clique cover, split graph, the complete r-partite

graph, regular graph.

1 Introduction and Preliminary

Throughout this paper any graphs are assumed always to be finite, simple and connected.

The terminology and notion concerning graphs follow Chartrand et al. 【5] unless otherwise

stated. Let G be a graph with the vertex set V(G) and the edge set E(G), and put q(G) -

|｣(G)|. We begin with the definition of set representations and edge clique covers of G. A set

representation ofG is a mapping ¢ of V(G) to the set ofnon-empty finite sets of positive integers

with the following property:
●

(1.1) Foranyu,v∈ I′′(G), u andv are adjacent ifandonly if ¢(u) ∩¢(V)≠臥

For any set representation ¢ of G,S(¢) - ∪〈¢(u);u ∈ V(G)} is called the range of ¢　and

刷- |5(¢ is the rank of ¢　We note that any graphs have set representations. For example

let E{G) - {^1,62,^3,�"�"�",eg},whereq- q(G),andforany　∈ V(G′) weput紳リ- {i;ej is

incident with u}. Then this ¢ is a representation ofG with刷- q(G). The intersection number

i(G) of G is the minimum number of圃for any set representations ¢ of G. Any representation

¢ofGis said to be minimalif圃- i(G､).

By the above example of a set representation of G, we have i(G) < q(G). A subset W of V(G)

is called an independent set of G if any distinct two vertices in W are not adjacent. For any

independent set l′V and set representations ¢ of G, the sets ¢(w)jW ∈ W, are mutually disjoint

by (1.1). So we have an estimation of i(G) as follows:

(1.2) βo(､G)≦i(G)≦q(G),
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where the (3o(G) is the vertex independent number of G, i.e. the maximum cardinal number of

independent sets of G.

Any complete subgraph ofG is called a clique, and especially is maxclique if it is not properly

contained in another cliques. A family of cliques F - {Q3¥j - 1,2,�"�"�",m) ofG is called an edge

ll･esp. vert司clique coverof G if E(G) ⊆ U,?≡xE{Qj) resp. V(G) ⊆ U,?≧iV(Qj)]. For example

the edge set E(G) and the set MC(G) of all maxcliques of G are edge clique covers of G.

Here we introduce the following three kinds of numbers for G de爺ned by:
●

(1.3)　0¥(G) - the minimum cardinal number of卜F for any edge clique covers F ofG,

(1.4)　Oq(G) - the minimum cardinal number of |F| for any vertex clique covers F ofG,

(1.5)　em(G)-¥MC(G)卜

We say that any edge 【resp. vertex】 clique covei･ F of G is minimalif IFI = 9x(G) resp.6>o(G).

By the definitions above we have

(1.6) βo(G)≦90{G)≦OAG)<OmlG).

The aim of this paper is to determine the intersection numbers for some graphs. In section

2 we state the relationship between set representations and edge clique covers of G following
I

By the relationship we have i(G) = 9¥{G). We note also the conditions for G to be

i(G) = q(G),i(G) = em(G) and i(G) - (30{G) respectively.

In section 3, the relations of i(G) and /3q(G) are established for any split graphs G, and the

intersection number of the complete.-partite graphs is given. The intersection numbers of the
●

(n - 2)-regular graph of order n and the complementary graph of the cycle Cn are determined

respectively in the爺nal section.
●

For any graph G we use the following notation:
●

(1.7)　N[u} - N(u)∪{u¥ foi･u∈ V(G), where N(u) is theneighborhood ofu.

(1.8)　E(G,u) is theset ofalledges ofGincident with ue V(G).

(1.9)　< W>- theinducedsubgraphofGfrom Wc V(G).

二1.10) <Wi,W2,- ,wk>-<UUwi>�"

Throughout this paper any symbols of variables, say i,j,k,m,n and so on, denote any

positive integers unless otherwise stated. For any m,n with m ≦ n, [ra,n] is the set of the

consecutive numbers from m to n, and especially [n] = [l,ft].

2　Key Lemma and its Consequences

First following [6] we state the relationship between set representations and edge clique

covers of any graphs G. Let め be any　　　　　　　　　　　　　　　　∈ S(¢) we de五ne a

subgraph Qk by:

(2.1) Qk=<{u∈V(G)-k∈¢(ォ)}>�"

Then by (1.1) it is seen easily that Q^ is a clique and F¢ = {Qk;k ∈ S(¢)} is an edge clique

coverofG.

Conversely for some m let F = ¥Q3',j ｣ [m]} be any edge clique cover of G. For any

u ∈ V(G) we de免ne a non-empty subset ¢(u) of【m] by:

(2.2) ¢(ォ)={j∈ 【77症′U∈V(Qj))-
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Then ¢ is a set representation ofG, which is denoted by ¢p. We note that

(2.3)刷=tF¢Iand困-伽J･
Summai･izing the above discussion we have oui･ Key lemi-la･

●

Key Lemma. Let G be any graph. Then

(1) For any set representation ¢ ofG there corresponds an edge clique cover F¢ ofG defined

by(2.1)with ¢　I"(frl")

(2) For ai-y edge clique cover F ofG there corresponds a set representation Op ofG defined

by(2.2) with |F| = ¥</>F暮.　　　　　　　　　　　　　　　　　　　　　　　　　　　□

Key lemmateaches us that the study on set representations ofG is equivalent to the study on
●

edge clique covers ofG. The next is an immediate consequence of Key lemma (cf. 【6】, Slater 【8】).

Theorem 2.1. i(G) - Oi(G) for any graphsG.　　　　　　　　　　　　　　　　　□

From (1.2), (1.6) and Theorem 2.1 we have

(2.4) βo(G)<i(G)-SAG)≦em(G)≦q(G).

Here we collect some theorems concerning i(G), which are immediate consequences of Key

Lemma. If G is triangle-free, then MC(G) - E(G) and E(G) is only one edge clique cover of

G. Hence we have

Theorem 2.2. For any graph G,i(G) - q(E) if and only ifG is triangle-free.　　　ロ

An edge e ofG is said to be properifthere is a unique maxclique Q such that e ∈ E(Q).

A maxclique is also said to be proper if it has at least one proper edge, and otherwise to be

non-proper. If any maxcliques of G are proper､ then MC(G) is the only one edge maxclique

cover ofG. In this case we have i(G) = 0m(G). Conversely If G has a non-proper maxclique <5,

then MC{G) ＼ {Q} is an edge maxclique cover of G. Therefore we have

Theorem 2.3. For any graph G,i(G) - 9m(G) if and only if every maxclique ofG is

p roper.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　口

On graphs G with i(G) - 0m(G) it is investigated in Wallis et al.[10J, in which such graph is

called a maximal clique irreducible graph. In the author's paper [7】 some non-proper maxcliques

in regular graphs are considered.

We recall that asubset S ofV(G) is a dominating setofG ifVIG) - U{N[s¥;s G 5).

Theorem 2.4. For any graph G let W - {^1,^2,...,v-} be an independent set ofG, where

m - βo(G), andput Z - V(G)＼W.Then the following conditionsforG are mutually equivalent.

(1) i(G)=βOG),

(2) W is a dominating set ofG, and for any u,v G Z,u and v are adjacent if and only if

N(u)nN(v)nW≠砂,

(3) Foreveryv3 ∈ W,Qj :-< N[Vj] > is a rnaxclique and the family {Qj¥j ∈回} is an edge
maxclique cover of G.

Proof. It su侃ces to see (1) ⇒ (2). Let ¢ be aset i･epresentation ofG with伺- βO G).

Then wemay assume that S((f)) - [ml and軒vj) - U) for3∈ 【ml. Hence for any u ∈ Z
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we have d(ォ) - {k ∈回;vk ∈ N('u)} and for any ′翫t, ∈ Z,<j>{u)∩妬,､) ≠ ¢ if and onlyif

N(u)nN(v)nw≠¢by(1.1). So(2)follows from(1). (3) ⇒ 1)isobviousfrom(2.4).　□

In Brigham et al. 3 any graphs G with i(G) - Oo(G) are characterized in terms of vertex

clique covers of G as follows.

Theorem 2.5. The followiilg conditions';�"for any graph G are mutually equivalent:

(i) i(G) -eo(G),

(2) Every minimal vertex clique cover ofG is a minimal edge clique cover.

(3) βo(G)-β (G);

where p¥{G) is the maximum number of edges ofG having the property that no two are in the

same clique.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　□

Combining Theorems 2.3 and 2.4 we ha一,e

●

Theorem 2.6. Under the same rlotation as in Theorem 2.4, the following conditions for

G are mutually equivalent.

(1) i(G) =βb(G)-em{G),

(2) ForeveryVj ∈W,Qj :-< N[vj] > is a maxclique and MC(G) - {Qj',j ∈ ml}.　　□

Examples 2.7. The following are examples of graphs as in the above theorems:
●

(1) i(G) - q(G) for G - any trees or bipartite graphs.

(2) i(G) - 0m(G) for G - the wheel graphs l′Vnyn > 3, the interval graphs (cf. [10]), or

3-regular graphs (cf.[7l, 9 ).

(3) i(G) =βo(G) < 6m(G) for G = the 3-sun (Hajos-graph) S3 (cf.. 2 ).

(､4) i(G) = βo(G) - 6m(G) for G -the complete graphs, or the intersection graphs $l(P([m]))

for any m ≧ 2. Where P([???.]) is the family of all non-empty subsets of [m], Q(P([m¥) is

the graph with the vertex set P([m]) such that any distinct Sj,Sk J P([m]) are adjacent

ifandonlyifSjnSk ≠ O･

In [7] any r-regular graph G with i(G) <　示G) is characterized for r - 4 and 5. For

example any 4-regular graph G, i(G) < 0m(G) if and only if G contains the 3-sun graphs as

induced subgraphs.

Theorem 2.8. For aily given n > 1 the set of the intersection 一umbers i(G) of graphs G

of order n is the integer interval [|_割]･
Proof. In Erdos et al.[4] it is proved that i(G) ≦ L誓｣ for any graph G of order n, and

that i(Go) - [誓｣ for the complete bipartite graph Go - K(k,k) or K(k + l,fc) according as
even n - 2k or odd n - 2k + 1. Note that any bipartite graph is triangle-free. So removing

repeatedly a cycle edge from Gq until its spanning tree, for every k G [n - 1, [irj] weァe^ a

bipartite graph G with i(G) - k.

On the other hand, let p ∈ P,サい1], and define agraph Gp of order n as follows: lr(Gp) =

{^1^2,-,′蝣tfp-1'l､p?VP+1,･-,vn} such that Q :-< vp,vp+i*>-　> is the complete subgraph

A'n-p+1 and E(Gp) = E(Q) ∪ {vjVnJ ∈ [p- 1]}. Then i(Gp) - p by Theorem 2.4. Obviously
i(Kn) - 1. This completes the proof.　　　　　　　　　　　　　　　　　　　　　　　　□
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3 Intersection numbers of split graphs and the complete

/ -partite graphs

Let G be any connected split graph, i.e., V{G) is partitioned into two sets D and 5 such

that < D > is acliqueand Sisanindependent set. Let k - ¥Dl and s - ¥S¥. Note that

< N[s] > is a clique forevery s ∈ 5 and βo(G) is equal to s Ol･ 5+ 1. Dividing the following

three cases (a)-(c) we determine i(G).

Case(a): Thereisav∈D with deg(v) -A:-1･

Then N[v] - D and W - 5∪ {v} is the maximal independent set. Moreover the family

{< N[w] >;w∈ W} of cliques is an edge clique cover ofG. Hence i(G) - βo(G) - s+ 1 by

Theorem 2.4.

Case (b): For any distinct u,v J D thereexists an s E Sfor which u,vG N(s).

Then 5 is the maximal independent subset ofV(G) and the family {< N[s] >;s J S} is an edge

clique cover ofG. Hence i(G) -βo(G) = s. In this case note that deg(u) ≧ k for all u ∈ D･

Case (c): deg(u) ≧ kforall u ∈ D and there is at least oneedgeof< D > which is not

covered by any cliques < N[s] >,s ∈ S･

Then 5 is the maximalindependent subset ofV(G) and {< D >}U{< N[s] >;s G 5} is the

minimal edge clique cover ofG. Hence i{G) -占+ 1 and βo(G) = s.

Summai･izing we have

Theorem 3.1. Let G be a connected split graph and let F= us∈sE(< N[s] >) under the

above notation. Then the following holds:

(1) i(G)-βo(G)- 51+1 ifa,-donly ifS is not a dominatingset ofG.

2 i(G)-βO G　-凶ifandonlyifE{<D>)⊂F･

(3) i(G) = ¥S¥+l,βo(G)-凶ifandonlyifS is a dominatingsetofG andE(< D >)＼F≠ 0･
⊂コ

Next we consider the intersection number of the complete r-partite graphs with r ≧ 2. For

the complete r-partitegraph G - K(rn¥,ra2,�"�"�",mr) assume m¥ > vn-i ≧ m3 ≧ -･ ≧ m, ≧ 1

and denote by VAG) thej-th partiteset with ¥Vj(G)I - m forj ∈ r.

Lemma 3.2.

(1) i(K(mi,m2))- mim2.

(2) e(Ar(rai,TO2,---,rar-i,1)) = i(K(jnura2,�"�"�",mr-i)).

(3) i(K(mi,?n2,�"�"�",mr_i,rar+1)) = i(K{mi,･m2,･-,rar_i,mr))+mi.

Proof. (1) follows from Theorem 2.2. To see (2), we put G - K(mi,ni2i-,mr-i),G′ -

K(mi,m2,--,ml･-i,l) with Vr(G') = {v}, and let {Qj;j ∈ [s]} be a minimal edge clique

cover ofG, where s - i(G). Then for every j ∈ 's],Rj :-< ′v.Qj > is a maxclique ofG′

and the family {R3¥j G [s]} is an edge maxclique cover of G'. Hence we have i(G ) - i(G).

beca･use N(v) - ｡^Z¥Vj(G) and i{G) ≦ i(G'). To see (3) put G - K(muで2.,-,mr), G′ -
K(mi,ra2,�"�"�",mr+1) with Vr(G′) - Vr[G)∪{v}, and let {Qj'J ∈回} be aminimaledgeclique

cover ofG, where s - i(G). We regard G as a subgraph ofG'. since Vr(G ) is an independent
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set ofG", any clique covering the edges in E(G ,v) does not cover any edges in E{G,w) for any

wE Vr(G). Further since V¥(G') is an independent set ofG , there are at least m¥ maxcliques of

G′ which covers E(G′,v). Actually we can負nd a family {Qj¥j ∈ [s + 1,6- + mi]} ofmaxcliques

of G'which covers E(G′,サ). Therefore {Qj-J ∈ 【s + mi]} is a minimal maxclique cover ofG′

and i(G') - i(G)+mb

The next result is derived inductively from the above lemma.

Theorem 3.3. i(K(m¥,ni2,�"�"�",mr)) - ^i(5Tj=2mj - r+2)-

[コ

4 Intersection numbers of some regular graphs

First we consider a minimal set representation of the (n - 2)-regular graph Gn of order

even n = 2m. Since G2m is the complementary graph of the 1-regular graph mA we label

V{G2m) = {uj,vj-J ∈ 【m]} such that foi･ every j ∈ 【mレuJ [l･esp. ･Uj] is adjacent to all another

vertices except Vj [resp. uj¥. As G4 = C4, we have i(G'4) - 4 from Theorem 2.2. In what follows

let m > 2. Since there are many maxcliques in G-im, precisely Om(G-2m) = 2m, in order to

determine i(G2m) we consider not edge clique covers but set representations of G2m- For some

t, the construction of any set representation <j> of G^m with刷- t is reduce to give a family

Fm = {Sj;j ｣ [to]} of mutually distinct subsets in [t] with the following the properties:

(4.1) 5,-nSk≠¢ neitherSj⊂SknorSk⊂Sj foranydistinctj,k∈回,

(4.2) |5;|≦Lを｣forany?∈回･

Indeed for such ¢ we may assume without loss of generality that for every j ∈ 【m],S3 := </>(uj}

is a non-empty subset of [t] and the family {5?;j ∈ 【m]} satisfies (4.1) and (4.2). Conversely

for any Fm - {Sj-J ∈ 【m]} in the above, weput </>(uj) - Sj and ¢(vj) - [t]＼Sj forj ∈回･

Then for any distinct j,k ∈ 【m], ¢(サ;) ∩ ¢{uk) and <j>(vj) ∩ 4>(vk) are non-empty by (4.1) and

(4.2) respectively. Hence 0 is a set representation of G-im with刷- t. Here we denote ¢ Fm)

by the set representation ¢ deRned from Fm. Any family F - {Sj} of subsets of [申s called an
intersecting Sperner family if it satisfies the condition (4.1). The determination of i(G2m) is to

find the smallest positive integer t such that in [t] there exists an intersecting Sperner family

F,|FI = m, with (4.2). We note that from any non-empty sub family F′ with IF'I = m of any

intersecting Sperner family F, |F| - m, with (4.2) thei･e corresponds a set l･epresentation ¢(F')

of G2m'' So our problem is reduced to a combinatorial problem to find the largest cardinal

number of any intersecting Sperner family with (4.2) in [t] for any given t. The answer for this

problem is derived from some results stated in Bollobds [II.

For any given t > 1 let Xt - [t] and use the notation concerning family of subsets ofXt as

follows:

Xt(≦r)-{S;S⊂Xl,凶≦r¥foranyrwithl≦r<t,

Xt(r)={S;S⊂Xt,151=r}foranyrwithl ≦r<t,

Xt({j})- {S;j ∈ S⊂ Xt} foranyfixedj∈ Xt,

Xt(r,{j}) = XAt) nXt({j}).

Under these notation we have the next lemma, which is due to 【1, Theoi･em13.2】･
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Lemma 4.1. Let F be any intersecting Spernerfamily ii沃モ(≦ L書I). Then

(4.3) ∑.46F品r<i.
Especially the equality holds in (4.3) if and only ifF - Xt{r,{j}) forsome r <喜,i ∈ Xt ort is

even ai-d F contains precisely one of each pair {A,XハA} in a?-y A ∈ Xi(喜)･　　　　□

From IJemma･ 4.1 it follows that the largest cardinal number A拍) of intersecting Sperner
families in Xt(≦書is given as follows:

(4.4) M(t)-(｣),wherep- LfJ,
and Ft :- Xt(p,{!}) is amaximal intersecting Sperner family in ∫ with |Ft = M(t). Therefore

for any m with 2 ≦ m ≦ A/(t),G'2m has a set representation ¢with刷- t, and for any m′ with

m > M(t),i(G2m) > t. Consequently we have

Theorem 4.2. Under the notation (4.4) for ai-y m > 2,?'(G2m) - /, where t is determined

by the inequalities: Miト1) < m ≦ M(t).　　　　　　　　　　　　　　　　　　　　　　口

Forexamples i(Ge)-4,i(Gg) - 5, a･nd i(C?2m) - 6for4 < m ≦ 10･

Here we consider the intersection number of the complementary graph Gn of the cycle Cn

with n ≧ 5, which is a (n - 3)-regular graph of order n. The vertex set {^i,2/2,^3,**�",vn}

of Gn and Cn are labeled as UjUj+i ∈ E(Cn) for any j ∈　　　Now for convenience we

use the label j of Uj in the sense of modulo n, say ^n+i should be understood as u¥. So

N(uj) - {uJ+k;k ∈ [2,n-2]} for any Uj. We note that for any subset Woflノ'(｣サ) , < I,V >

is a clique in Gn if and only if W is an independent set in Cn. So enumerating the maximal

independent sets in Cn for the case n - odd, we have

Lemma 4.3. For the case n - 2??㍗- l,ra ≧ 3,AIC(Gn) is the family {Qf,j ∈回} given

as follows: Qj -< Wj >, where

Wj = W,Uj+2,UJ+4,�"�"�",UJ+2m-4} for QJ-yj ∈ :ォ]蝣

In this case for everyj ∈回the edge ujUj+2m-4 isp和per.

Let n - 2m,m ≧ 3. Thenwenotethat Gn_i - Gn-{v2m}-{′u¥U2m-i}'So usingthisfact

we can get MC¥Gn) from MC(Gn-i) by a slight modification. Under the notation in Lemma

4.3, we add {t>2m-i} to Wi, add {v2m} to W2, and for W3 add {v2m} and delete {v2m-1)･
Therefore we have

Lemma 4.4. For the case n - 2m,m > 3,MC(Gn) is the family {Qj',j ∈ [n- 11} given

as follows: Qj-<Wj >forany j∈回　where

lVi - {uuu3,U5,-,U2m-3,U2m-i}

W2 - {u2,U4,U6>-",u2m-2,U2m}

lt-3 - {w3,W5,tt7,-- ^2m-3^2m}

WJ - {wj,Wj+2,Wj+4,�"'�",%+2r7い4}for anyj ∈ [4,n- ll.

In this case the edges叩*2m-li･U2U2m,U3U2m and the edge-jUj+2m-4 for every j ∈ [4,n - 1]
are proper.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ロ

From Lemma.s 4.3-4.4 and Theorem 2.3 we have
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Theorem 4.5. For the complementary graph Gn of the cycle Cn with n ≧ 5,*(<? ) =

l(Gn).andi(Gn)- n ifn isoddandi(Gn)-iい-1 ifn　占紺en.　　　　　　　　　　□
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