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Abstract

Let G be any simple and connected graph, i(G) be the intersection number of G in
the sense of Mckee et al. [6], and 6#;(G) be the minimum number of cliques {Q;} of G by
which the edge set E(G) is covered. In this paper using the fact that i(G) = 6;(G) we
shall determine the intersection number for the graphs as follows: split graphs, the complete
r-partite graphs, the (n — 2)-regular graphs of order n, and the complementary graphs of the
cycle Gy, of order n respectively.

Key words: intersection number, edge clique cover, split graph, the complete r-partite
graph, regular graph.

1 Introduction and Preliminary

Throughout this paper any graphs are assumed always to be finite, simple and connected.
The terminology and notion concerning graphs follow Chartrand et al. [5] unless otherwise
stated. Let G be a graph with the vertex set V(G) and the edge set E(G), and put ¢(G) =
|E(G)|. We begin with the definition of set representations and edge clique covers of G. A set
representation of G is a mapping ¢ of V(G) to the set of non-empty finite sets of positive integers
with the following property:

(1.1)  For any u,v € V(G), u and v are adjacent if and only if ¢(u) Ne(v) # 0.

For any set representation ¢ of G,S5(¢) = U{o(u);u € V(G)} is called the range of ¢, and
|o| = |S(¢)| is the rank of ¢. We note that any graphs have set representations. For example
let E(G) = {e1,ez,€3, - ,€,}, where ¢ = ¢(G), and for any u € V(G) we put ¢(u) = {j;e; is
incident with u}. Then this ¢ is a representation of G with |¢| = ¢(G). The intersection number
i(G) of G is the minimum number of |¢| for any set representations ¢ of G. Any representation
¢ of G is said to be minimal if |¢| = i(G).

By the above example of a set representation of G, we have {(G) < ¢(G). A subset W of V(G)
is called an independent set of G if any distinct two vertices in W are not adjacent. For any
independent set W and set representations ¢ of G, the sets ¢(w), w € W, are mutually disjoint
by (1.1). So we have an estimation of i{(G) as follows:

(12)  BolG) < i(G) < ¢(G),
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where the fo(G) is the vertex independent number of G, i.e. the maximum cardinal number of
independent sets of G.

Any complete subgraph of G is called a clique, and especially is mazclique if it is not properly
contained in another cliques. A family of cliques F = {Q;;7 = 1,2,---,m} of G is called an edge
[resp. wvertez] clique cover of G if E(G) C UTL, E(Q;) [resp. V(G) C UTL,V(Q;)]. For example
the edge set F(G) and the set MC(G) of all maxcliques of G are edge clique covers of G.

Here we introduce the following three kinds of numbers for G defined by:

(1.3)  64(G) = the minimum cardinal number of |F| for any edge clique covers F of G,
(1.4)  60(G) = the minimum cardinal number of |F| for any vertex clique covers F of G,

(L5)  0,.(G) = |MC(G)|.

We say that any edge [resp. vertex] clique cover F of G is minimal if |F| = 61(G) [resp.6o(G)).
By the definitions above we have
(1.6)  Bo(G) < 60(G) < 61(G) < (G).

The aim of this paper is to determine the intersection numbers for some graphs. In section
2 we state the relationship between set representations and edge clique covers of G following
[6]. By the relationship we have i(G) = 61(G). We note also the conditions for G to be
i(G) = ¢(G),1(G) = 0,(G) and ¢(G) = Po(G) respectively.

In section 3, the relations of ¢(G) and fBo(G) are established for any split graphs G, and the
intersection number of the complete r-partite graphs is given. The intersection numbers of the
(n — 2)-regular graph of order n and the complementary graph of the cycle C, are determined
respectively in the final section.

For any graph G we use the following notation:

(1.7)  Nfu] = N(u)U {u} for u € V(G), where N(u) is the neighborhood of u.
(L.8)  E(G,u) is the set of all edges of G incident with u € V(G).

(1.9) < W >= the induced subgraph of G from W C V(G).
L10) < Wy, Wy, Wi >=< U W, >,

Throughout this paper any symbols of variables, say i,7,k,m,n and so on, denote any
positive integers unless otherwise stated. For any m,n with m < n, [m,n] is the set of the
consecutive numbers from m to n, and especially [n] = [1,n].

2 Key Lemma and its Consequences

First following [6] we state the relationship between set representations and edge clique
covers of any graphs G. Let ¢ be any set representation of G. For any k € S(¢) we define a
subgraph Q@ by:

(2.1) Qr =< {u € V(G);kEd(u)} >.
Then by (1.1) it is seen easily that Qy is a clique and Fy = {Qx;k € S(¢)} is an edge clique
cover of G.

Conversely for some m let F = {Q;;7 € [m]} be any edge clique cover of G. For any
u € V(G) we define a non-empty subset ¢(u) of [m] by:

(22)  @(u) ={j € [m];ve V(Q;)}.
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Then ¢ is a set representation of G, which is denoted by ¢p. We note that
(2.3) || = |Fy| and |F] = ||

Summarizing the above discussion we have our Key lemma.

Key Lemma. Let G be any graph. Then
(1) For any set representation ¢ of G there corresponds an edge clique cover ¥, of G defined
by (2.1) with |§] = [Fy|,
(2) For any edge clique cover F of G there corresponds a set representation ¢p of G defined
by (2.2) with |F| = |¢F]|. O

Key lemma teaches us that the study on set representations of G is equivalent to the study on
edge clique covers of G. The next is an immediate consequence of Key lemma (cf. [6], Slater [8]).

Theorem 2.1. (G) = 6,(G) for any graphs G. O

From (1.2), (1.6) and Theorem 2.1 we have
(24)  Bo(G) < i(G) = ,(G) < 8 (G) < 4(G).

Here we collect some theorems concerning #(G), which are immediate consequences of Key
Lemma. If G is triangle-free, then MC(G) = E(G) and E(G) is only one edge clique cover of
G. Hence we have

Theorem 2.2. For any graph G,i(G) = ¢(E) if and only if G is triangle-free. ]

An edge e of G is said to be proper if there is a unique maxclique @ such that ¢ € E(Q).
A maxclique is also said to be proper if it has at least one proper edge, and otherwise to be
non-proper. If any maxcliques of G are proper, then MC(G) is the only one edge maxclique
cover of G. In this case we have {(G) = 0,,,(G). Conversely If G has a non-proper maxclique @,
then MC(G)\ {Q} is an edge maxclique cover of G. Therefore we have

Theorem 2.3. For any graph G,i(G) = 0,,(G) if and only if every mazcliqgue of G is

proper. o

On graphs G with ¢(G) = 0,,(G) it is investigated in Wallis et al.[10], in which such graph is
called a mazimal clique irreducible graph. In the author’s paper [7] some non-proper maxcliques
in regular graphs are considered.

We recall that a subset S of V(G) is a dominating set of G if V(G) = U{N|[s];s € S}.

Theorem 2.4. For any graph G let W = {v1,v2,...,v,,} be an independent set of G, where
m = Bo(G), and put Z = V(G)\ W.Then the following conditions for G are mutually equivalent.

(1) i(G) = Bo(G),
(2) W is a dominating set of G, and for any u,v € Z,u and v are adjacent if and only if
N@)Nn N(v)nW #£0,
(3) For every v; € W,Q; :=< N[v;] > is a« maxcliqgue and the family {Q;;j € [m]} is an edge
mazclique cover of G.
Proof. It suffices to see (1) => (2). Let ¢ be a set representation of G with |¢| = Bo(G).
¢) =

Then we may assume that S( [m] and ¢(v;) = {j} for 7€ [m]. Hence for any u € Z
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we have ¢(u) = {k € [m];vr € N(u)} and for any u,v € Z,0(u) N ¢(v) # 0 if and only if
N(u)N N(v)NnW # 0 by (1.1). So (2) follows from (1). (3) = (1) is obvious from (2.4). O

In Brigham et al.[3] any graphs G with «(G) = 0(G) are characterized in terms of vertex
clique covers of G as follows.

Theorem 2.5. The following conditions for any graph G are mutually equivalent:
(1) #(G) = 60(G),
(2) FEvery minimal vertex clique cover of G is a minimal edge clique cover,
(3) Bo(G) = Bi(G),

where $1(G) is the maximum number of edges of G having the property that no two are in the
same clique. O

Combining Theorems 2.3 and 2.4 we have

Theorem 2.6. Under the same notation as in Theorem 2.4, the following conditions for
G are mutually equivalent:

(1) #(G) = Bo(G) = Om(G),
(2) For every v; € W,Q; :=< Nvj] > is a mazclique and MC(G) = {Q;;j € [m]}. O

v

Examples 2.7. The following are examples of graphs as in the above theorems:

(1) {(G) = ¢(G) for G = any trees or bipartite graphs.

(2) 1(G) = 0,(G) for G = the wheel graphs W,,n > 3, the interval graphs (cf. [10]), or
3-regular graphs (cf.[7], [9]).

(3) 1(G) = Bo(G) < 0,(G) for G = the 3-sun (Hajos-graph) S5 (cf. [2]).

(4) i(G) = Bo(G) = 0, (G) for G =the complete graphs, or the intersection graphs Q(P([m]))
for any m > 2. Where P([m]) is the family of all non-empty subsets of [m], Q(P([m]) is
the graph with the vertex set P([m]) such that any distinct S;,Sx € P([m]) are adjacent
if and only if 5; N Sy # 0.

In [7] any r-regular graph G with {(G) < 0,,(G) is characterized for » = 4 and 5. For

example any 4-regular graph G, i(G) < 0,,(G) if and only if G contains the 3-sun graphs as
induced subgraphs.

Theorem 2.8. For any given n > 1 the set of the intersection numbers i(G) of graphs G
of order n is the integer interval [L%J]

Proof. In Erdds et al.[4] it is proved that (G) < [%J for any graph G of order n, and
that i{(Go) = ]_%J for the complete bipartite graph Go = K(k,k) or K'(k + 1,k) according as
even n = 2k or odd n = 2k + 1. Note that any bipartite graph is triangle-free. So removing
repeatedly a cycle edge from Go until its spanning tree, for every k € [n — 1, L”TOJ] we get a
bipartite graph G with (G) = k.

On the other hand, let p € [2,n — 1], and define a graph G}, of order n as follows: V(G,) =
{v1,02,++, Vp—1. Upy Upt1s - - o5 U } such that Q :=< vp,vpp1.---, v, > is the complete subgraph
Kn_pt1 and E(G,) = E(Q) U {vjvn;j € [p— 1]}. Then i(G,) = p by Theorem 2.4. Obviously
i(I,) = 1. This completes the proof. O
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3 Intersection numbers of split graphs and the complete
r-partite graphs

Let G be any connected split graph, i.e., V(G) is partitioned into two sets D and S such
that < D > is a clique and S is an independent set. Let & = |D| and s = |S|. Note that
< N[s] > is a clique for every s € S and (o(G) is equal to s or s + 1. Dividing the following
three cases (a)-(¢c) we determine «(G). '

Case (a): There is a v € D with deg(v) = k — 1.

Then N[v] = D and W = SU {v} is the maximal independent set. Moreover the family
{< N[w] >;w€ W} of cliques is an edge clique cover of G. Hence i(G) = fo(G) = s + 1 by
Theorem 2.4.

Case (b): For any distinct u,v € D there exists an s € S for which u,v€ N(s).

Then S is the maximal independent subset of V(G) and the family {< N[s] >;s € S} is an edge
clique cover of G. Hence i(G) = (o(G) = s. In this case note that deg(u) > k for all u € D.

Case (c): deg(u) > k for all w € D and there is at least one edge of < D > which is not
covered by any cliques < N[s] >,s € S.

Then S is the maximal independent subset of V(G) and {< D >} U {< N[s] >;s € S} is the
minimal edge clique cover of G. Hence i(G) = s+ 1 and fo(G) = s

Summarizing we have

Theorem 3.1. Let G be a connected split graph and let F= Uses E(< N[s] >) under the
above notation. Then the following holds:
(1) U(G) = Bo(G) = |S| + 1 if and only if S is not a dominating set of G.
(2) UG) = Bo(G) = |S]| if and only if E(< D >) CF.

(3) «(G) = |S|+1,60(G) = |S| if and only if S is a dominating set of G and E(< D >)\F# 0.
a

Next we consider the intersection number of the complete r-partite graphs with » > 2. For
the complete r-partite graph G = K(my, mg,---,m,) assume m; > my > maz > -+ > m, > 1
and denote by V;(G) the j-th partite set with |V;(G)| = m; for j € [r].

Lemma 3.2.

(1) (K (my,mq)) = myma.
(2) «(K(my,my, -, mpe_1,1)) = (K (my,ma, -, my_1)).
(3) WK (my,may - ymp_y,my + 1)) = (K (my, ma, -, mp_1,my)) + my.

Proof. (1) follows from Theorem 2.2. To see (2), we put G = K(mj,ma,--+,m,_1),G’" =
K(my,mg,---,m,_y1,1) with V,.(G") = {v}, and let {Q;;j € [s]} be a minimal edge clique
cover of G, where s = i(G). Then for every j € [s],R; :=< v,Q; > is a maxclique of G’
and the family {R;;j € [s]} is an edge maxclique cover of G’. Hence we have i(G') = i(G),
because N(v) = U;;iVJ(G) and i(G) < (G’). To see (3) put G = K(my,mq,---,m,), G' =
K(my,mq, -, m, +1) with V,.(G") = V,(G)U{v}, and let {Q;; € [s]} be a minimal edge clique
cover of G, where s = i(G). We regard G as a subgraph of G’. Since V,(G’) is an independent



44 Koukichi SAKAI

set of G’, any clique covering the edges in F(G’,v) does not cover any edges in E(G,w) for any
w € V,(G). Further since V1(G’) is an independent set of G’, there are at least m; maxcliques of
" which covers E(G’,v). Actually we can find a family {Q;;j € [s + 1,s + m]} of maxcliques
of G’ which covers E(G’,v). Therefore {Q;;j € [s + m;]} is a minimal maxclique cover of G’
and {(G’) = «(G) + my. o

The next result is derived inductively from the above lemma.

Theorem 3.3. i(K(my, ma,---,m,)) = mi(P =y m; — 1+ 2). O

4 Intersection numbers of some regular graphs

First we consider a minimal set representation of the (n — 2)-regular graph G, of order
even n = 2m. Since Gy, is the complementary graph of the 1-regular graph mAk’,, we label
V(Gam) = {uj,v;;j € [m]} such that for every j € [m],u; [resp. v;] is adjacent to all another
vertices except v; [resp. u;]. As G4 = C4, we have i(G4) = 4 from Theorem 2.2. In what follows
let m > 2. Since there are many maxcliques in Gy, precisely 6,,(G2mn) = 2™, in order to
determine (G5, ) we consider not edge clique covers but set representations of Gy,,,. For some
t, the construction of any set representation ¢ of Gy, with |¢| = t is reduce to give a family
F,. = {S;;7 € [m]} of mutually distinct subsets in [t] with the following the properties:

(4.1)  S; N Sk # 0, neither S; C Sy nor S C S; for any distinct j, k€ [m],
(4.2) |5;] < |5] for any j € [m)].

Indeed for such ¢, we may assume without loss of generality that for every j € [m], S; := ¢(u;)
is a non-empty subset of [t] and the family {S;;j € [m]} satisfies (4.1) and (4.2). Conversely
for any F,, = {S;;7 € [m]} in the above, we put ¢(u;) = S; and ¢(v;) = [t]\ S; for j € [m].
Then for any distinct j,k € [m], ¢(v;) N $(uk) and ¢(v;) N ¢(vx) are non-empty by (4.1) and
(4.2) respectively. Hence ¢ is a set representation of G, with |¢| = t. Here we denote ¢(F,,)
by the set representation ¢ defined from F,,. Any family F = {5} of subsets of [t] is called an
intersecting Sperner family if it satisfies the condition (4.1). The determination of {(Gzp,) is to
find the smallest positive integer ¢ such that in [t] there exists an intersecting Sperner family
F,|F| = m, with (4.2). We note that from any non-empty subfamily F’ with |F'| = m’ of any
intersecting Sperner family F,|F| = m, with (4.2) there corresponds a set representation ¢(F')
of Gop. So our problem is reduced to a combinatorial problem to find the largest cardinal
number of any intersecting Sperner family with (4.2) in [t] for any given ¢. The answer for this
problem is derived from some results stated in Bollobds [1].

For any given t > 1 let X; = [t] and use the notation concerning family of subsets of X; as
follows:

X(<r)={5;5 C X4,|S| <7} forany r with 1 <r < t,
Xi(r)={5;S C X4,|S| =r} for any r with 1 < r < ¢,
X:({j}) ={S;7 € S C X;} for any fixed j€ X;,
Xo(r,{7}) = Xu(r) 0 Xo({5})-

Under these notation we have the next lemma, which is due to [1, Theorem13.2].
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Lemma 4.1. Let F be any intersecting Sperner family in X,(< |£]). Then

141

(4.3) ZAGF (15‘4[—11) <L

Especially the equality holds in (4.3) if and only if F = Xy(r,{j}) for some r < 5.j € X; ort is
even and F contains precisely one of each pair {A, X, \ A} in any A € X¢(). O

From Lemma 4.1 it follows that the largest cardinal number M(¢) of intersecting Sperner
families in X{(< %) is given as follows:
(4.4) M(t)= (;j) where p = [£],
and Fy := X¢(p, {1}) is a maximal intersecting Sperner family in X; with |F| = M(t). Therefore
for any m with 2 < m < M(t),G2m has a set representation ¢ with |¢| = t, and for any m with
m > M(t),i(Gam) > t. Consequently we have

Theorem 4.2. Under the notation (4.4) for any m > 2,i(Gap) = t, where t is determined
by the inequalities: M(t — 1) < m < M(t). O

For examples i(Gg) = 4,1(Gg) = 5, and i(Gzy,) = 6 for 4 < m < 10.

Here we consider the intersection number of the complementary graph G, of the cycle Cp,
with n > 5, which is a (n — 3)-regular graph of order n. The vertex set {uy,ug,us, -, vn}
of G, and C, are labeled as ujuj+; € E(C,) for any j € [n]. Now for convenience we
use the label j of u; in the sense of modulo n, say u,4+1 should be understood as u;. So
N(u;) = {ujsr;k € [2,n — 2]} for any u;. We note that for any subset W of V(G,) , < W >
is a clique in G, if and only if W is an independent set in C,,. So enumerating the maximal
independent sets in C,, for the case n = odd, we have

Lemma 4.3. For the case n = 2m — 1,m > 3, MC(G,) is the family {Q;;j € [n]} given
as follows: Q; =< W; >, where

W; = {uj,uj42, %544, Uj42m—a} for any j € [n].
In this case for every j € [n] the edge w;ujt2m—a is proper. o

Let n = 2m,m > 3. Then we note that G,,—; = G, — {vam } — {u1uam-1}. So using this fact
we can get MC(G,,) from MC(G,—1) by a slight modification. Under the notation in Lemma
4.3, we add {vam—1} to Wy, add {van} to W, and for W3 add {vz,,} and delete {vom—1}.
Therefore we have

Lemma 4.4. For the case n = 2m,m > 3, MC(G,) is the family {Q;;j € [n — 1]} given
as follows: Q; =< W; > for any j € [n], where
Wi = {u1,us,us, -, u2m—3, Uzm—1}
Wy = {ug, us,ug,** , U2m—2, U2m }
W3 = {us, us, Uz, -+, Ugm—3, Upm }
W; = {uj, uj2, 44, -, Ujyom—a} for any j € [4,n — 1].
In this case the edges uitam—1,UsUom, UsUzm and the edges ujujyom—a for every j € [4,n — 1]

are proper. O

From Lemmas 4.3-4.4 and Theorem 2.3 we have
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Theorem 4.5. For the complementary graph G, of the cycle C,, with n > 5,i((Gp) =

0m(Gr),and ((G,) =n if n is odd and i(G,) =n—1 if n is even. o
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