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Abstract

The frequency and temperature dependences of the complex dielectric constants, the
Cole-Cole plots and the dielectric loss tangents of extended order-disorder type ferroelectrics
are calculated with the aid of a new dispersion formula. The different types of the real
dielectric constant versus temperature such as NaNO,, Ca,Sr (C,H;CO,)s and KD,PO, are
elucidated by the monodispersive formula with a parameter ¢ which gives a measure for
deviation from the Debye type. The results agree with experiments, and the comparisons
between the formula and other formulas are made also.

I. Introduction

In recent years there has been an increasing interest in the dynamical aspects of the
critical phenomena. In this paper, we have studied the frequency and temperature
dependences of the complex dielectric constant of extended order-disorder type ferroelectrics.
The complex dielectric constants €=¢&—€” are classified into three types by empirically:
(A) the real part of the constant ¢’ has a dip near the Curie temperature T, and & (7,)c0
such as the case of NaNO,%2; (B) the & has a dip near 7, and €'(7;)>0 such as the case of
Ca,Sr(C,H;C0,)¢3; (C) the € has a peak near T, such as the case of KD,PO,.%5 In 1947,
Mason® investigated the dielectric relaxation phenomena in Rochelle salt with the aid

of Eyring’s” theory of absolute reaction rates who have obtained the complex dielectric
constant as

g = G0
8((&)) € 1+’I;O)T 9 (1)
where
8}
Eg—E0 = —r P 2
0 I T'— TCI ( )
Toc(€g—Ew) exp (AU[ET), 3)

here w is the angular frequency, 7 is the relaxation time, C is the Curie constant, AU is the
potential barrier between two stable orientations of the dipole, and €x and &, are the
dielectric constants in high and low frequency limits, respectively. Usually, the value of
C in the ferroelectric phase is the one half of the paraelectric phase’s value. This Debye
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type dispersion formula holds good for the type (A). The Mason theory has only one
relaxation time, then the theory is called a monodispersive theory, the Cole-Cole polt of
which is the Debye circle.

Hill and Ichiki have measured the complex dielectric constant of KD,PO,%5 and TGS®
and interpreted their results assuming a Gaussian distribution of relaxation times. Their
complex dielectric constant takes the form

P 4]
&(w)—Eoo jo Sr—dr, (4)
where the distribution function y(v) takes a Gaussian type such as
y() = A exp {—(7/70)?}; (A: a constant), (5)
with
7o = 1/a(T—-T¢), (6)

where a is the proportionality constant which is determined empirically. If we put w=0
with A=200/V' 7 in (4), then we have the Curie-Weiss law (2). The real part of this complex
dielectric constant has a peak at the Curie temperature which consist with the type (C).
They have interpreted that the distribution of the relaxation times would arise from a
distribution of clusters of different sizes where dipoles tend to have a particular orientation.
Although this explanation of polydispersion is very interesting, we can not understand
why the theory can not account for the type (A) or (B) and recent experiments®® show
that the results of TGS can be well explained by a monodispersive theory rather than the
polydispersive theory.

The first attempt to deal with the three types in a unified manner has been made by
Matsubara and Yoshimitsu,1%12 their phenomenological theory gives a Cole-Cole!® type:

———.———)-5— ; (0<Pur<l), (7)

where Sy is the polydispersive parameter. The case fuy=1 reduces to the Mason theory,
the case 0<fyy<1/2 is similar to the type (C) and the case 1/2<fyy<1 corresponds to the
type (B). The incline angle 8 of the Cole-Cole plot circle is expressed as

6 =—g— (1—Buy) , (8)

which can be determined by experiment.

Nakamura et al.}* have pointed out that the Cole-Cole plot curves of Hill and Ichiki’s
data are not circular arcs but lemniscates. Ishibashi, Sawada and Takagi!® found that the
data are well explained by the Davidson-Cole!® dispersion formula

Eo—Eoo

which gives a lemniscate-like Cole-Cole plot. This dispersion formula has been derived from
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the response function of e-*/7¢*~1 by them.l5 Ishibashi and Takagi” have criticized Hill and
Ichiki’s assumption of Gaussian distribution of relaxation times according to the investiga-
tion of the relation between the distribution and the dispersion formula (9).

Another empricial formula has been given by Nakamura and Ishidal® who have pointed
out that the observed complex dielectric constants can not be represented by (7) and they
have showed that the observed values conform to the empirical formula such as

——T—-—————T— ; (0<Bmitl). (10)

Very recently Gesi!® has indicated that this dispersion formula can be obtained by replacing
7 in (1) by a complex one 7#*=7 exp (i) with the phase factor ¢p=7/2(1—-fxi).
One of the authorst has proposed the dispersion formula of the form

)

é@) = 1+iw(r—y’) ’ (1)

where 9’ is assumed as
YV =v/IT-Tc|. (12)

Here y; is the positive parameter and for simplicity the high frequency limit dielectric
constant €x has been neglected. We can classify the three types (A), (B) and (C) by the
theory with the parameter y,.

An interpolation dispersion formula for order-disorder [type (A)], extended order-disorder
[types (B) and (C)] and displacive ferroelectrics has been proposed heuristically by one of
the authors.? This formula takes the form:

En— € 1+?:0.) T 1—‘7:(.0 T
() —e. — S0 +1Wp1Tp — WWpiTpy
(@)=4 2 [ 1+i{w+wp)rp 1+’b(w_wp1)“'p1}
w 14+ twp,r 1—twpyT ‘
+d [ FWpsTp2 — WWpsTps ’ 13
. lw] U 1+%w+wps)Tps 1+ 4(w—wps)7ps }] (13)

where 7 5, and 7,, are the relaxation time, w4, and w,, are the imaginary part of the reciprocal
complex relaxation time (for the extended order-disorder type) or the frequency (for the
displacive type), and d is the parameter which measures the deviation from the displacive
type. This formula (13) contains various cases as follows:
[I] wp=0 and ws=>0, or wy=0 and d=0; order-disorder type. This case reduces to the
Debye type or Mason’s dispersion formula (1). ’
[II] d=1, 75=" and wy=w,,y; extended order-disorder type.
When w>0 the dispersion formula (13) reduces to:

Eo—Ew)(14 twpTp)

o) e —
Hw)—te T+i(w+wp)rp

(14)

t M. Inoue: Annual Meeting of the Physical Society of Japan, April, 1972.



40 M. INouE AND K. FURURKAWA

[III] d=0; displacive or resonance type.
This case reduces to the resonance type dispersion formula.?

The dispersion formula (10) and (11) satisfy the Kramers -Kronig relation but they
contradict with a symmerty relation of £*(w)=¢(-w). .On the other hand, the dispersion
formula (13) satisfies both the relations. In section IT we study in detail the frequency
and temperature dependences of the complex dielectric constants, the Cole-Cole plots and

dielectric loss tangents for the case [II]. Section III is devoted to discussions and some
remarks.

II. Frequency and Temperature Dependences of the Complex Dielectric Constant

Some essential aspects of critical phenomena are characterized by the critical indexes
and considerable studies of the indexes has been made in magnetic systems. However,
studies of the indexes for ferroelectrics are still at a rather rudimentary stage compared
to that of magnetics. One of the reasons is that the Curie-Weiss law can be applied to the
region of near the ferroelectric transition point, namely in ferroelectrics the width of the
critical region is very narrow. ‘

In our case the quantities €, 7, and w, usually behave anomalously near the Curie
temperature 7, then we introduce the critical indexes y, 4 and 4’ such that

(Eg—Eo0)CT 7 [(T—T¢)[Tc |- 5 y>0, (15)
T |(T'—Tc)/Tc |4 ; 4>0, » (16)
wp2wpo |(T—Te)[Tc | ; >0, (17)

where 759 and w,, are some constants which usually proportional to C and C-, respectively.

In this section, we confine ourselves to the case [II], namely extended order-disorder
type, and w>0, therefore the general dispersion formula (13) reduces to (14). According
to the experiments!-5, we can safely assume that the critical index of the denominator is
equal to that of the numerator in both the real and imaginary parts of the right hand side
of the formula (14), therefore, we obtain

y=A=4. (18)
In this case, we can classify the three types by a parameter ¢ such that
c=0 ; type (4), (19)
0<c<1 ; type (B), (20)
c=1 ; type (C), (21)
where the parameter ¢ is defined by
¢ = wpTe . (22)

The real dielectric constant and the imaginary dielectric constant of (14) versus
temperature at several values of ¢ with fixed wr,, are shown in Fig. 1 and 2, respectively.
Figure 1 shows that the real dielectric constant sensitively depends on the value of ¢ and



Dielectric Relaxation in Ferroelectrics 41

c=1.2

Fig. 1.

oL
-0.05

005
(T-TV/Te

The real dielectric constant versus

temperature at several values of c.

Te(€-€w)

01

TE”
C
w‘l‘rg=0,04
c=0
20 '
c=02

i \\ =10

\ c=05

10
c=20
80""(’)""0'05""0
-005 . 1
(T-TV T

Fig. 2. The imaginary dielectric constant
versus temperature at several values
of c.

TE”

C
201

005"
(T-T)/Te

a
o
T

&H
o
T

N
o
T

-—
o
]

PSS U S RN S SR S SR W S
-0.05 0 0.05

—~———

(1T

Fig. 4. The imaginary dielectric constant
versus temperature at several values of

w‘Tpo .

01 . Fig. 3. The real dielectric constant versus

temperature at several values of wry,. .

1



42 M. InovE AND K. FURUKAWA

the different types (A), (B) and (C) can be described by the formula (14). On the contrary,
the imaginary dielectric constant slightly depends on ¢ as in Fig. 2. Similarly, the tem-
perature dependence of the real and imaginary parts of the dielectric constant for different

frequencies with ¢ fixed are shown in Fig. 3 and 4, respectively. The maximum value of
T, (¢'—€x)/C is given at

wTpo(1—c) _ wTp(l—e) |
T;Tc __.{ I+e2 2(1+¢?) 3 0=0<1, - (23)
0 ;1<ec,
as '
(14¢?)2wrp ; 0<Zce<1,
[Tc(a'_‘Sw)/O]max = { (24)
¢/wTpg ; 1<ec,

as shown in Fig. 1 and 3. At the Curie temperature, we have [T(£'—<€w)/Cl=c/wT;, and
[T.€"|Cl=1]wT,, as in Fig. 1-4.

Comparison of the experiment of Ca,Sr(C,H;CO,)s® with the formula with ¢=0.308,
€0=3.0 and T,,=2.2X10-1° sec~! is made in Fig. 5.

We can easily find that the Cole-Cole plot of the dispersion formula (14) is the arc of
the circle as

e'
20

°0©
frow o mone 022 300MHZ
0 1 1 '
0 10 20 30
TEMPERATURE (°C)

Fig. 5. Comparison of the experimental values (open circles) of Ca,Sr(C,H;CO,)® and the theory
(solid lines) with ¢=0.308, €»,=3.0 and 7,,=2.2Xx 1010 sec1.
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&' —Eoo 1 } [ e’ c 1+c?
- — _ _+2] = . 25
| f—tw 21 T g—ew T2 ] (25)

The plots for various values of ¢ are illustrated in Fig. 6. The frequency dependences of the
real and imaginary parts of the dielectric constant are shown in Fig. 7 and 8, respectively.
The imaginary dielectric constant €"/(€4<€w) takes maximum value:

(6" [(Ey—Ewo)]max = 1/2(c+V1+¢?), (26)
at the frequency of
oTp = V1+c? (27)

as shown in Fig. 8. It is easy to see that our dispersion formula (14) is formally equivalent
to Nakamura-Ishida’s empirical formula (10) and the relation of them will be given in the
next section. However, wr; dependence of &’ and €”, which are shown in Fig. 7 and 8, are
different from wr dependence of ¢ and & of Nakamura-Ishida’s formula, which have



44 M. InovEk aAnD K. FURURKAWA

tan§

-8
-8

0 : . :
-0.05 0 0.05 0.1
(T-TV/%

Fig. 9. The loss tangent versus temperature at ssveral values of c.

been shown in Fig. 2 of ref. 19, respectively. These differences are attributable to the
difference between 7, and 7. The loss tangent tan §=¢&"/¢’ of the formula (14) is given by

tan § = wp/{l+(w+wp)wpTi}, (28)

where £w has been neglected for simplicity. The loss tangent versus temperature at
several values of ¢ is shown also in Fig. 9. It is interesting that the loss tangent is finite,
namely 1/c, at T, except for c=0 as in Fig. 9.

The calculations in this section, we have used that y=4=4'=1 and the values of C, 74,
and wye~! in the feroelectric phase are respectively the one half of the paraelectric phase’s
values. The paraelectric phase’s values have been written in this section and Figures.

III. Discussion

We have studied the temperature and frequency dependences of the complex dielectric
constant for extended order-disorder type ferroelectrics, employing the dispersion formula
(14). The formal relation between our dispersion formula (14) and Nakamura-Ishida’s
empirical formula (10) can be obtained as

¢c= l/tan(—g—-ﬂm>, (29)

rp = 7/ sin( -1 (30)

By the definition (22), if the condition 4=4" is violated, the parameter ¢ will depend on
temperature.
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The Cole-Cole plot of the dispersion formula (14) is the arc of the cricle (25), and the
incline angle @ of the cricle is given by

6 =tan-lc. (31)
We compare the relation (31) with (8) and obtain
¢ =tan{7(1—Lfuy)/2} . (32)

It should be noted that the incline angle of experiments can be explained by the mono-
dispersive formula (14) with the ¢. This indicates that the incline angle does not always
measure the polydispersion. Recent experiment of NaNO,?? and AgNa(NO,),?® show that
these crystals does not correctly obey the relation of critical indexes (18) but just above the
transition point they conform to the relation of

4=7y+02. (33)

This relation consists with the theory?* of the kinetic Ising model. Below the transition
point, the real dielectric constants of these crystals are small which can not be explamed
by our theory. These problems are under consideration.
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