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An affinely connected space defined by L. Berwald [1, 2] is also called a Berwald
space, which is defined as the Finsler space such that Berwald’s connection coefficients
depend on position alone. If we obey the Cartan connection [3], such a space is also
the one in which Cartan’s connection coefficients I'* /7, depend on position alone, and is
characterized by the well-known condition C;j;,;=0. V. Wagner [16] has generalized.
the notion of a Berwald space, and has called a Finsler space as a generalized Berwald
space if it is possible to introduce a genmeralized Cartan connection, with torsion
(*T'j*—*I';1;%0), in such a way that the connection coefficients *I';i; depend on
position alone. And in a two-dimensional case he has shown that a Finsler space is
a generalized Berwald space if and only if 24/26 is a function of 4, where 4 and 6
are the main scalar and the Landsberg angle respectively (Berwald [2]). It would
seem that an aim of his study is to search the geometrical class to which the
two-dimensional Finsler space with the interesting metric ds=(a,-]-k(x)dx"dxfdxk)1/3
belongs. In fact, for this metric it holds 24/66=-342-3/2, and so a generalized
Berwald space is thought to be an important model of a Finsler space.

In his recent paper [6], M. Hashiguchi, one of the authors, has investigated in detail
various axioms imposed on a Finsler connection, to clarify a meaning of the generalized
Cartan connection used by Wagner, and to characterize Wagner’s generalized Berwald
spaces of general dimensions. For the purpose of these considerations, a generalized
Berwald space is defined in a broader sense than Wagner’s, while Wagner’s generalized
Berwald space is called a Wagner space. The generalized Cartan connection used by
Wagner is thought to be a semi-symmetric metrical connection without deflection,
which is called a Wagner connection. And it is shown that a Finsler space is a
Wagner space if and only if it is possible to introduce a Wagner connection satisfying
the condition C;jz;=0 formally similar to the one for a Berwald space.

The purpose of the present paper is to give examples of a Berwald space, a gen-
eralized Berwald space and a Wagner space (§3). Y. Ichijyd, the other author, has
given an effective method as shown in §2 to obtain such spaces, which comes from
the study [8] about Finsler spaces modeled on a Minkowsks space. Our examples rise
naturally from his theory by recalling the (@, f)-metric introduced by M. Matsumoto
[13].

On the other hand, the conditions that a Finsler space becomes a generalized
Berwald space in the broader sense have already been given in [6]. It was pointed
out by Y. Ichijyo that one complicated condition (3.5) in [6] may be replaced by a
trivial condition (4.6) in the present paper. As additional remarks we shall provide
§4 to improve some results obtained in [6].

Throughout the present papsr we shall use the terminologies and notations
described in M. Matsumoto [12] and M. Hashiguchi [6]. For convenience’ sake we
shall devote §1 to sketching the materials necessary for our discussions.

The authors wish to express here their sincere gratitude to Prof. Dr. M.
Matsumoto for the invaluable suggestions and encouragement.
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§1. Preliminaries.

1.1. Given a differentiable manifold M, we denote by L(M) and T(M) the
linear frame bundle and the tangent bundle respectively. The standard fibre V is
assumed that a base {e,} is fixed. The Finsler bundle F(M) is defined as the induced
bundle r-1L(M)=/{(y, 2)eT(M) X L(M)|r(y)=7(z)}, where = and 7 are the projections
of T(M) and L(M) respectively. _

Since a point of F(M) is a pair of a tangent vector y and a linear frame z=(z,) at a
point z of the base manifold M, a coordinate system (z‘) in M induces a coordinate
system (2%, ¥, 2,') in F(M) by y=vy'(3/3z’), and z,=2,/(3/02°),. As a coordinate
system in F(M) we shall use such a one in the following.

1.2. The Finsler connection of M is by the third definition of M. Matsumoto a
triad (I'y, N, I'*) of a V-connection I'y in L(M), a non-linear connection N in T(M) and
a wertical conmection I'* in F(M).

- If a Finsler connection is given, the A- and v-basic wector fields B*(v) and B*(v)
(veV) are defined in F(M). They are expressed by

(1.1) B(v) = v2,%(3/0x* — N* 2 [yf — 2 F ;12 [02,7)
and
(12) B”(v) = 'v“zak (b/byk——zbjO,-"ka/az,,")

respectively, where v=ve,, and F;’;, N, and O}, are called the coefficients of the
Finsler connection.

Let K be a Finsler tensor field. The %- and v-covariant derivatives of K are defined
by B*v)K and BY(v)K respectively. If K is assumed, for instance, to be of type
(1, 1), ie.,

(1.3) K =72 "2/K'e,¢€,
where (2/;%)=(z,’)-1, and {e?} is the dual base of {e,}, their components are expressed
as follows:

(1.4) Kij, = 8K';[oa* + K™, F,},—K' . F ™,

(1.5) K'j|, =K' [oy*+ K™;C,' s — K", Ci™s,
where §/dxF=2/dxF—N",0/dy™.

1.3. Now, we shall treat Tinsler spaces. Let L(z, y) be the fundamental
function, whose metric tensor field is defined by

(1.6) 9:; = (L) oy2y.

As a famous TFinsler connection of a Finsler space there exists the Cartan
connection, which is uniquely determined by the following four axioms due to M.
Matsumoto.

(C1) The Finsler connection is metrical, i.e.,
(C1h) gijix =0, (Clv) gijlx=0.
(C2) The deflection tensor field D vanishes identically, i.e.,
Di, = y/F;i,—N';, =0, equivalently ¢, = 0.
(C3) The (h)h-torsion tensor field T vanishes identically, i.e.,
Tjik =Fjik—Fkij =0.
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(C4) The (v)v-torsion tensor field S! vanishes identically, i.e.,
: 8ty = Cfik_okij =0.

1.4. To investigate Wagner’s generalized Berwald space, M. Hashiguchi [6]
has tried to replace the axioms (C2) and (C3) by some weaker conditions. To suit
our convenience we shall restate the definitions.

DeriniTioN 1. A Finsler connection satisfying the axioms (CI) and (C4) is called
a generalized Cartan connection.

As shown in [6], given a Finsler (1, 1)-tensor field D and a skew-symmetric Finsler
(1,2)-tensor field 7 in a Finsler space, there exists a unique generalized Cartan
connection with the given D and 7' as the respective deflection and (k)k-torsion tensor
fields. So, various generalized Cartan connections are introduced in a Finsler space.

The C}'; is uniquely determined by the axioms (Clv) and (C4), and it follows

(1.7) i =112 g% g /oy",

where (¢**)=(g;,)-2. Thus, a Finsler connection with the above O, is a
generalized Cartan connection if and only if g¢;;,,=0. Some treatments proceed
smoothly even if we use a generalized Cartan connection, because each covariant
differentiation commutes with the raising and lowering of indices, and the so-called
Cy-condition yiC;',=0 is satisfied. However, since the condition y’;,=0 is attractive,
a non-linear connection is ordinarily chosen such that the axiom (C2) is satisfied, i.e.,
Niy=y/F .

On the other hand, as an axiom giving a typical Finsler connection with torsion
T}s, we know
(C3*) The Finsler connection is semi-symmetric, i.e.,

Tiy=Fi,—Fy; =8;s,—8's;

for some covariant vector field s,.

Thus, for some covariant vector field s, we have a typical generalized Cartan
connection used by Wagner as follows.

‘DerFintTION 2. A Finsler connection satisfying the axioms (C1), (C2), (C3*) and
(C4) is called a Wagner connection.

1.5. A Finsler space is called a Berwald space if the coefficients F;/,=rI*;, of
the Cartan connection depend on position alone. Corresponding to Definitions 1 and
2 we have the following generalizations of a Berwald space.

DerFiniTION 3. A Finsler space is called a generalized Berwald space if it is
possible to introduce a generalized Cartan connection in such a way that the
coefficients F,*, depend on position alone.

DeriniTiON 4. A Finsler space is called a Wagner space if it is possible to
introduce a Wagner connection in such a way that the coefficients F;’, depend on
position alone.

1.6. In the following it is usually assumed that a Finsler connection satisfies the
axiom (C2) and its coefficients F;*, depend on position alone. With respect to such
a Finsler connection it is easily verified that the A-covariant differentiation commutes
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with the partial differentiation by the supporting element y. Hence, we have
9ij1x=0%LL,;)/oy'dy’ from (1.6). On the other hand, it holds 2LL,,=g;;,4'y’ because
of L?=g,;%'y’, and so we have '

Prorosrrion 1. Assumed that a Finsler connection satisfies the axiom (C2) and
its coeffictents Fj', depend on position alone. Then, ¢;;,,=0 if and only if L,;=O.

§2. The Finsler connection associated with a linear connection.

2.1. On a Finsler space M we have especially interested in the Finsler
connection (I'y, N, I'’) such that the coefficients F,%, depend on position alone, that
is, the corresponding V-connection I'y falls into a linear connection in the linear frame
bundle L(M). Conversely, let a linear connection I" be given in L(M). Denoting the
coefficients by I'j’;, a Finsler connection *I" of M is introduced by '

(2.1) Fi,=rj, Ny=yFj, Cf,=1/2g¢"g;oy"
We shall call this connection the Fensler connection associated with the linear connection
r.

2.2. We shall first notice a feature of the A-covariant differentiation of a tensor
field K.. If K is assumed, for instance, to be of type (1,1), the A-covariant derivative
with respect to the *I" is expressed by

(2.2) Kijy =K fon* + K™ T v— KT ™.

If K’; depend on position alone, 8K;/d0x* become dK*;/oz* and it holds
(2.3) Ki =V, K,

where v, denotes the covariant differentiation with respect to I', i.e.,
(24) VkKij = aK’]/awk—{-K’”]I’m’k—K’mI’,mk

Thus we have

ProrosiTioN 2. Let a linear connection I' be given. For a tensor field depending
on position alone, the h-covariant differentiation with respect to the associated Finsler con-
nection *I" coincides with the covariant differentiation with respect to the given I.

2.3. Next, we shall examine the various axioms stated in the previous
section. The axioms (Clv), (C2) and (C4) are always satisfied by the *I". Since F/,
depend on position alone, Proposition 1 tells us that the axiom (C1h) is satisfied if and
only if L,;=0. On the other hand, it is easily seen that the axiom (C3) is satisfied if
and only if I' is symmetric, i.e., I'f;—I",/;=0, and the axiom (C3*) is satisfied if and
only if I is semi-symmetric, i.e., I'j,—Is'; = 8;'s,—8;'s; for some covariant vector
field s;(z). Thus we have

TreorEM 1. Let a linear connection I' be given 1in a Finsler space M. The
Finsler connection *I" associated with I'" is a generalized Cartan connection of M if and
only if L,;=0.

In this case, if the linear conmection I' is symmetric (resp. semi-symametric), the
Finsler connection *I" is the Cartan connection (resp. a Wagner connection) of M.

2.4. Since F, depend on position alone, we have from Theorem 1

TueorEM 2. Let a linear connection I' be given in a Finsler space M. If 1t
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holds that L,,=0 with respect to the Finsler connection *I" assoctated with I, the Finsler
space M 1is a generalized Berwald space.

In this case, if the linear commection TI' vs symmetric (resp. semi-symmetric), the
Finsler space M s a Berwald space (resp. a Wagner space).

§3. Special (a, §)-metrics.

3.1. To obtain an example for the theorems stated in the previous section, we
shall treat the Finsler space with an (a, B)-metric, which is defined as follows.
DerinttioN 5. A Finsler space is called to be with an (a, f)-metric when the
fundamental function L=L(a, B) is positively homogeneous of degree one in
a = (a:j(z)y’y’)'/? and B = bi(z)y’,
where a is a Riemannian metric and b; is a non-zero covariant vector field.
Well-known examples are the Randers metric L=a- [15] and the Kropina metric
L=0a2/8 [9, 10].
 3.2. A Finsler space M with an (a, f)-metric L(a, B) has two metrics. The one
is the Finsler metric L(a, §) itself, and the other is the Riemannian metric a. A
linear connection I of M is called to be metrical if it is metrical with respect to the
latter, i.e., ‘
(3.1) Vilhi; = aaii/awk_amjrimk"‘“im " =0.
Now, let the vector field b; be parallel with respect to a metrical linear connec-
tion I, i.e.,
(3.2) v:b; = ob;/ox*—b,,I";™, = 0.
With respect to the Finsler connection *I" associated with I, we have a,;,=0, (,,=0,
because it holds a;j,,=v;a;=0, b;,=v;b;=0 from Proposition 2, and ¢’ ;=0 from
(C2). Thus, we have L,,=(3L/oa)a,,+(0L/3B)B»=0, and from Theorems 1 and 2 we
obtain
Examere 1. Let a Finsler space M be with an (a, B)-metric L(a, B), where B=by".
If the covariant vector field b; vs parallel with respect to some metrical linear connection I’
of M, a generalized Cartan connection is introduced by
(3.3) Fiy=rj, Ny=yFi, O, =1/29"g;/3y",
where I'jy denote the coefficients of T, and the space M becomes a generalized Berwald
space.
3.3. Especially, if the metrical linear connection I" is symmetric, that is, I" is
the Riemannian connection, we obtain
ExampLE 2. Let a Finsler space M be with an (a, B)-metric L(a, ), where f=
by'. If the covartant vector field b; is parallel with respect to the Riemannian conmnec-
tion determined by the Riemannian metric a, the Cartan connection 1s given by
(3.4) Fiv= {4}, Niopy=yFi, Cf=1/29""3g,./04",
where {j'y} denote the Christoffel symbols formed with respect to a, and the space M is a
Berwald space.
It should be remarked that the Cartan connection in the above example is
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obtained from the geometrical axioms without any artificial techniques. If we
calculate F;’, from the fundamental function L(a, §) directly, we might be at once
lost in a maze. ’

3.4. We shall lastly give examples for a Wagner space. We may easily conclude
that the semi-symmetric linear connection I', with I'jiy—TI'"y ;=38,"s;—8’s;, is metrical
if and only if I';’;, has a form

(3.5) Tiv= (2} +as'—s;84,
where (¢'™)=(a,;)~! and s'=a‘"s,. With respect to such a linear connection I", b;
is parallel if and only if

(36) b;,k = a;kbms”‘—s,-bk, .
where we use the comma to denote the covariant differentiation with respect to the
Riemannian connection, i.e., ‘

(3.7) b,,,=0b;/0x* —b,, {4}
We shall call a covariant vector field b,(z) satisfying (3.6) for some s;(z) to be sems-
parallel. If a semi-parallel field b; is given, the linear connection I'" defined by (3.5)
is semi-symmetric and metrical, and b; becomes parallel with respect to I. Thus we
obtain

Exampre 3. Let a Finsler space M be with an (a, B)-metric L(a, B), where a=
(a;59'y" 112, B=byt. If the covariant vector field b; s semi-parallel by satisfying (3.6)
for some s,(x), « Wagner connection of M is introduced by

(3.8) Fiiv= (1} +as—s8, Niy=yiFjy, Cie=1/2¢"g,1/0y",
and the space M becomes o Wagner space.

Putting s;=Ab, for some scalar field A(z), (3.6) becomes

(39) b;,k == )\(d,'kbmbm—b,'bk),
where b”=ai”b,, and we have an example of a semi-parallel field. In this case b,
has a constant length b=(a;;b'6’)}/? and the unit vector field u,=b;/b satisfies

(3.10) Ui,p = P(@ir—Uity),
where p=Ab, and so such a field b; is nothing but the torse-forming one due to K.
Yano [17], which was also treated by C.M. Fulton [4] and M. Hashiguchi [5] to
characterize Riemannian spaces of negative constant curvature. Thus we obtain

ExampLE 4. Let o Finsler space M be with an (a, B)-metric L(a, B), where a=
(a@;jy'y))V2, B=by'. If the covariant vector field b; is torse-forming by satisfying (3.9)
for some A(x), a Wagner connection is introduced by

(3.11) Fjik = {jik}-l")\(ajkbi—bjski), Nik = ijjik, O]_ik = I/Zgi”agj,,/ayk,
and the space M becomes a Wagner space.

3.5. The (a, B)-metrics offer good examples of a Berwald space, a generalized
Berwald space and a Wagner space. It is a pair of a Riemannian metric and a
covariant vector field, and so it might contribute to the unified treatments of a
Riemannian metric a and a covariant vector field b;(x) satisfying some properties
with respect to a. Therefore, we should discuss the converse problem, that is, for a
Finsler space with a special (a, f)-metric, what properties the B enjoys with respect
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to the a.

As to the Randers space with L=a+8, it is known by M. Matsumoto [14] that
the space is a Landsberg space if and only if b; is parallel with respect to a, and such
a space becomes a Berwald space. A Landsberg space [11] means here a Finsler space
satisfying the condition Cj,;y’=0 with respect to the Cartan connection, where
Cij»=1/20g;;/oy*. Since a Berwald space is characterized by C;j;;=0, a Landsberg
space is also a generalization of a Berwald space. Thus, the converse of Example
2 holds in the case of the Randers space.

M. Hashiguchi, 8. Hojo and M. Matsumoto [7] gives the conditions that a two-
dimensional Finsler space with an (a, f)-metric becomes a Landsberg space, and
finds the concrete form of the fundamental function L for each of the Landsberg spaces
with the Randers metric, the Kropina metric and the generalized Kropina metric L=
am1[B" (m=0, ~1).

§4. Additional remarks.

4.1. Returning to general Finsler spaces, we shall give some remarks for the
conditions found in [6] that a Finsler space becomes a generalized Berwald space.
It has been a matter of regret that the conditions contain the very troublesome
tensor field 4;;,, defined by

(4.1) 24i0 = (Tija—Tjin+Tirj) i+ (Lijm—Tjim+ T i) Cr™

+&i{(Thim+Tipm+ T rmi)Ci™13,

where T,;:=¢,,T and &;; {....} denotes, for instance, &,;{4;;}=4;j—A4;;. This
Ajn 18, however, easily rewritten in the form

(4.2) 24550 = GimQT " 1/0Y") —9im(OT ™ 1/0y") — grm(@T ;™ 29"),
from which we notice that A,;;;=0 is equivalent to 97,;/oy*=0, because A;z;=0 is
represented by

(4.3) Gim QT ™[3y") = gim(OT"4/24") + gan(3T™:[3y"),
whose left- and right-hand members are skew-symmetric and symmetric with
respect to the indices ¢ and k respectively. Thus, it is better to define the 4;j; by
(4.2) and to restate the first theorem in [6] as follows.

TaeoreM 3. In a generalized Cartan connection the coefficients Fy depend on
position alone if and only if it holds that

(4.4) C’,-]kD’ll =0,

(4.5) Cijriu = Cijm 1 : D™,
and

(4.6) OT 43yt = 0.

4.2. The condition (4.6) means that T, depend on position alone. From
Theorem 3 we have

TaEOREM 4. A Finsler space is a generalized Berwald space if and only of it s
possible to introduce a generalized Cartan connection with torsion T y(x) in such a way
that 4t satisfies the conditions (4.4) and (4.5).
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Especially, a Finsler space ts a generalized Berwald space if it is possible to
introduce a generalized Cartan connection without deflection and with torsion T;4(x)
wn such a way that it satisfies the condition

(4.7) Cijri =0,
If we consider a Wagner connection as a typical generalized Cartan connection,

we have
TrEOREM 5. A Finsler space is a Wagner space if and only if it is possible to
introduce a Wagner connection with respect to s;(x) in such a way that it satisfies the

condition (4.7).
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