COMPACT T1-SPACE AND THE FAMILY OF FINITE TOPOLOGICAL SPACES

著者	SHIRAKI Mitsunobu		
journal or	鹿児島大学理学部紀要.数学・物理学・化学		
publication title			
volume	9		
page range	1-5		
別言語のタイトル	コンパクトT1-空間と有限位相空間の族		
URL	http://hdl.handle.net/10232/00010029		

Rep. Fac. Sci Kagoshima Univ., (Math. Rhys. Chem.) No. 9 pp. 1-5, 1976

COMPACT T_1 -SPACE AND THE FAMILY OF FINITE TOPOLOGICAL SPACES

By

Mitsunobu SHIRAKI* (Received Sep. 28, 1976)

§1. Introduction.

We first note that given a finite open covering of a topological space, there is a finite T_0 -space corresponds to the covering. And if we consider all finite open coverings of the space, we have a family of finite T_0 -spaces. From the family we can obtain an inverse system by defining an order relation on the family. These shall be given in §2. In §3 we shall show that any T_0 -space can be embedded in the inverse limit space of the associated inverse system. Moreover in §3 it will be proved that any compact T_1 -space is homeomorphic to a subsapce in the inverse limit space which will be called the maximal inverse limit space here.

§2. The family of finite T_0 -spaces.

Let (X, τ) be any T_0 -space and suppose $\{\mathcal{\Delta}_{\alpha} | \alpha \in M\}$ is the family of all finite open covering of (X, τ) , where $\mathcal{\Delta}_{\alpha}$ is an open covering of X for all $\alpha \in M$. For $\mathcal{\Delta}_{\alpha}$ let τ_{α} be the topology on X for which $\mathcal{\Delta}_{\alpha}$ is a subbase. Then we have the family $\{(X, \tau_{\alpha}) | \alpha \in A\}$ of topological spaces.

Now let us consider a topological space (X, τ_{α}) of the family. We define the following relation \sim on X with respect to τ_{α} : for $x, y \in X$, let $x \sim y$ mean that $G \in \tau_{\alpha}$ and $G \cap (x \cup y) \neq \phi$ imply $G \supset (x \cup y)$. Then the relation \sim is a equivalence relation.

In fact, $x \sim x$ and $x \sim y \Rightarrow y \sim x$ are immediate consequence of its definition.

To prove that \sim is transitive, let $x \sim y$ and $y \sim z$, and suppose that $G \in \tau_{\alpha}$ and $G \cap (x \cup z) \neq \phi$. If $G \ni x$, then $G \ni y$ since $y \sim z$. Hence $G \ni z$, so that $G \supset (x \cup z)$. If $G \ni z$, then $G \ni y$ since $y \sim z$. Hence $G \ni x$ since $x \sim y$. Hence $G \supset (x \cup z)$. Thus $x \sim z$, whence \sim is transitive.

By the equivalence relation \sim we may obtain the quotient space $(X, \tau_{\alpha})/\sim$ of (X, τ_{α}) with respect to \sim , which we denote by $(Y_{\alpha}, \sigma_{\alpha})$ (or merely Y_{α}). Then the space $(Y_{\alpha}, \sigma_{\alpha})$ is a finite T_0 -space.

In fact, let $p: (X, \tau_{\alpha}) \to (Y_{\alpha}, \sigma_{\alpha})$ be the natural projection, and $y_1, y_2 \in Y_{\alpha}, y_1 \neq y_2$. Then $p^{-1}(y_1) \cap p^{-1}(y_2) = \phi$ since $y_1 \neq y_2$, so taking $x_i \in p^{-1}(y_i)$ $(i=1, 2), x_1$ is not \sim related to x_2 . Hence there exists an open set $G \in \tau_{\alpha}$ such that either $x_1 \in G$ and $x_2 \notin G$ or

^{*} Institute of Mathematics, Faculty of Science, Kagoshima University Kagoshima, Japan.

 $x_1 \notin G$ and $x_2 \in G$. Now suppose that $x_1 \in G$ and $x_2 \notin G$. Then $y_1 = p(x_1) \in p(G)$ and $y_2 = p(x_2) \notin p(G)$. On the other hand, p(G) is open in $(Y_{\alpha}, \sigma_{\alpha})$ since $p^{-1}(p(G)) = G$. Therefore $(Y_{\alpha}, \sigma_{\alpha})$ is a finite T_0 -space.

From the above observations it follows that there exists the family $\{(Y_{\alpha}, \sigma_{\alpha}) | \alpha \in \Lambda\}$ of finite T_0 -spaces associated with a given topological space (X, τ) . Now we shall show that the family $\{(Y_{\alpha}, \sigma_{\alpha}) | \alpha \in \Lambda\}$ can be made into a inverse system in a natural way.

We first define the order relation on Λ as follows: for $\alpha, \beta \in \Lambda, \beta \leq \alpha$ if and only if $\tau_{\beta} \subset \tau_{\alpha}$. Then (Λ, \leq) is a directed set. Because for $\alpha, \beta \in \Lambda$, taking the topology τ_{γ} for which $\varDelta_{\alpha} \cup \varDelta_{\beta}$ is a subbase, clearly $\tau_{\alpha} \subset \tau_{\gamma}$ and $\tau_{\beta} \subset \tau_{\gamma}$. Hence $\alpha \leq \gamma$ and $\beta \leq \gamma$.

We next define a mapping $f_{\alpha\beta}: Y_{\beta} \to Y_{\alpha}$ for each pair $\alpha, \beta \in \Lambda$ such that $\alpha \leq \beta$. Let $i_{\alpha}: (X, \tau) \to (X, \tau_{\alpha})$ be the identity mapping and $p_{\alpha}: (X, \tau_{\alpha}) \to (Y_{\alpha}, \sigma_{\alpha})$ be the natural projection. Then putting

$$f_{\alpha} = p_{\alpha} \cdot i_{\alpha}$$

 $f_{\alpha}: (X, \tau) \to Y_{\alpha}$ is clearly continuous onto. We now define $f_{\alpha\beta}: Y_{\beta} \to Y_{\alpha}$ by the following manner: for $y_{\beta} \in Y_{\beta}$ we take $x \in X$ such that $f_{\beta}(x) = y_{\beta}$ and put

$$f_{\alpha\beta}(y_{\beta}) = f_{\alpha}(x)$$
,

$$f_{\alpha\beta}(f_{\beta}(x)) = f_{\alpha}(x) .$$

This mapping is well defined. In fact, suppose that $f_{\beta}(x_1) = f_{\beta}(x_2)$, then there exists the open set G_{β} in (X, τ_{β}) such that G_{β} is the minimal neighborhood of x_1 and also of x_2 . Hence $x_1 \sim x_2$ that is $U \in \tau_{\beta}$ and $U \cap (x_1 \cup x_2) \neq \phi$ imply $U \supset (x_1 \cup x_2)$. But $\tau_{\alpha} \subset \tau_{\beta}$ since $\alpha < \beta$. Accordingly, if $V \in \tau_{\alpha}$ and $V \cap (x_1 \cup x_2) \neq \phi$, then $V \in \tau_{\beta}$ and $V \cap (x_1 \cup x_2) \neq \phi$, so that $V \supset (x_1 \cup x_2)$. Hence $x_1 \sim x_2$, that is $f_{\alpha}(x_1) = f_{\alpha}(x_2)$. Thus $f_{\alpha\beta}(f_{\beta}(x_1)) = f_{\alpha\beta}(f_{\beta}(x_2))$, which show that $f_{\alpha\beta}$ is well defined.

Futher it follows immediately from the definition that these mappings satisfy

(i) $f_{\alpha\alpha}$ is the identity mapping for each $\alpha \in \Lambda$

and

ii) $f_{\beta\alpha}f_{\beta\gamma} = f_{\alpha\gamma}$ whenever $\alpha < \beta < \gamma$.

In summary, we have seen that $\{Y_{\alpha}, f_{\alpha\beta}\}$ is the inverse system of finite T_0 -spaces.

§3. Embedding of a T_0 -space.

Let (X, τ) be a T_0 -space and let suppose $\{Y_{\alpha} | \alpha \in \Lambda\}$ be the inverse system of finite T_0 -spaces associated with (X, τ) , described above. And we denote by Y_{∞} the inverse limit space of this system. Then we have the following theorem.

THEOREM 1. A T_0 -space (X, τ) can be embedded in Y_{∞} .

PROOF. Define $f: X \to Y_{\infty} \subset \prod Y_{\alpha}$ by

$$f(x) = \{f_{\alpha}(x)\}_{\alpha \ni A} .$$

Since $\{f_{\alpha}(x)\} \in Y_{\infty}$, we have $f(X) \subset Y_{\infty}$.

 $\mathbf{2}$

We shall show that f is embedding.

(i) f is continuous. This is obvious since f_{α} is continuous for all $\alpha \in \Lambda$.

(ii) f is one to one. To prove this, let $x, y \in X$ such that $x \neq y$. Since (X, τ) is a T_0 -space, there is an open neighborhood U of at least one, say x which does not contain the other y. Let now

$$\boldsymbol{\tau}_{\alpha} = \{\boldsymbol{\phi}, \boldsymbol{U}, \boldsymbol{X}\} ,$$

then $\alpha \in \Lambda$. Clearly

$$f_{\alpha}(x) \neq f_{\alpha}(y) .$$

in the space Y_{α} , whence

$$\{f_{\alpha}(x)\} \neq \{f_{\alpha}(y)\},\$$

that is

$$f(x) \neq f(y) \; .$$

(iii) f is open. To prove this, it suffies to show that $\{f_{\alpha}\}_{\alpha \in A}$ distinguishes points and closed sets. Suppose that F is closed in X and $x \notin F$. Since X is T_0 there is an open nbd V of x such that $V \cap F = \phi$. We now take the topology

$$au_{\gamma} = \{\phi, V, X\}$$
.

and consider the space Y_{ν} , then clearly

$$f_{\gamma}(x) \notin f_{\gamma}(F) = \overline{f_{\gamma}(F)}$$
.

Thus (i), (ii) and (iii) have been established. Therefore by the embedding lemma f is embedding. [1].

§4. Embedding of a compact T_1 -space.

We first observe that every finite T_0 -space can be made into a partially ordered set by defining a suitable order relation on this space. [2].

Let $Y = \{y_1, y_2, \dots, y_n\}$ be a finite topological space and $\{U_1, U_2, \dots, U_n\}$ be the system of minimal basic neighborhoods, where U_i is the minimal neighborhood of y_i .

We define an order relation \leq on Y, by saying

$$y_1 \leq y_i$$
 whenever $U_i \subset U_i$.

Then it follows that Y is a T_0 -space if and only if (Y, \leq) is a partially ordered set.

Next let (X, τ) be a topological space, $\{Y_{\alpha}, f_{\alpha\beta}\}$ be its associated inverse system and Y_{∞} be the inverse limit space of the family.

We define an ordering on the product space $\prod_{\substack{\alpha \in \Lambda}} Y_{\alpha}$ as follows: for $\{x_{\alpha}\}, \{y_{\alpha}\} \in \prod_{\substack{\alpha \in \Lambda}} Y_{\alpha}$ let $\{x_{\alpha}\} \leq \{y_{\alpha}\}$ mean that $x_{\alpha} \leq y_{\alpha}$ in (Y_{α}, \leq) for all $\alpha \in \Lambda$. Then $(\prod_{\substack{\alpha \in \Lambda}} Y_{\alpha}, \leq)$ is a partially ordered set.

Here the subspace

$$M(Y_{\infty}) = \{\{z_{\alpha}\} \in Y_{\infty} | \{z_{\alpha}\} \text{ is maximal in } Y_{\infty}\}$$

M. SHIRAKI

will be called the maximal inverse limit space of the inverse system $\{Y_{\alpha}, f_{\alpha\beta}\}$.

THEOREM 2. A compact T_1 -space (X, τ) is homeomorphic to $M(Y_{\infty})$.

PROOF. Let (X, τ) be a compact T_1 -space. The notation of Theorem 1 will be used. Let $f: X \to Y_{\infty}$ be as in Theorem 1. Then it suffies to show that

(1) $f(x) \in M(Y_{\infty})$ for all $x \in X$.

and

(2) $f: X \to M(Y_{\infty})$ is onto.

(1) Suppose that there exists $x \in X$ such that $f(x) \notin M(Y_{\infty})$. Since (X, τ) is $T_1, \{x\}$ is closed in (X, τ) , so that $U = X - \{x\}$ is open. Then taking the topology

$$\boldsymbol{\tau}_{\boldsymbol{\beta}} = \{\boldsymbol{\phi}, \boldsymbol{U}, \boldsymbol{X}\} \; ,$$

we consider the finite T_0 -space Y_β . Since $f(x) \notin M(Y_\infty)$, $f(x) = \{f_\alpha(x)\}$ is not maximal in Y_∞ , whence there exists $\{z_\alpha\} \in Y_\infty$ such that $\{f_\alpha(x)\} < \{z_\alpha\}$, that is, there exists Y_γ such that $f_\gamma(x) < z_\gamma$.

We now choose the topology τ_{ξ} generated by the subbase $\tau_{\beta} \cup \tau_{\xi}$, then we have

$$\beta, \gamma \leq \xi$$
.

Since $\{f_{\alpha}(x)\} < \{z_{\alpha}\}$ it follows that $f_{\xi}(x) \le z_{\xi}$, hence $f_{\xi}(x) < z_{\xi}$ or $f_{\xi}(x) = z_{\xi}$.

Suppose $f_{\xi}(x) < z_{\xi}$. Now there exists $y \in X$ such that $z_{\xi} = f_{\xi}(y)$, then $x \neq y$ since $f_{\xi}(x) \neq z_{\xi}$. Hence $f_{\beta}(x) \neq f_{\beta}(y)$, so that

$$f_{\beta}(y) < f_{\beta}(x) .$$

Since $z_{\beta} = f_{\beta}(y)$, we have

$$z_{\beta} < f_{\beta}(x) ,$$

which contradicts $\{f_{\alpha}(x)\} < \{z_{\alpha}\}.$

Next suppose $f_{\xi}(x) = z_{\xi}$. Then $f_{\gamma\xi}(f_{\xi}(x)) = f_{\gamma}(x)$ and $f_{\gamma\xi}(z_{\xi}) = z_{\gamma}$, whence

$$f_{\gamma}(x) = z_{\gamma}$$
 ,

which contradicts $f_{\gamma}(x) < z_{\gamma}$.

Therefore

$$f(X) \subset M(Y_{\infty}).$$

(2) If $f(X) = M(Y_{\infty})$, then there is $\{z_{\alpha}\} \in M(Y_{\infty})$ such that $\{f_{\alpha}(x)\} \neq \{z_{\alpha}\}$ for all $x \in X$. Since $\{z_{\alpha}\}$ is maximal, for each $x \in X$ there exists $\beta = \beta(x) \in A$ such that

$$f_{\beta}(x) \geqq z_{\beta}$$
.

Now let U_{β} be the minimal neighborhood of x in (X, τ_{β}) , then there exists $y \in X$ such that $z_{\beta} = f_{\beta}(y)$ and $U_{\beta} \not\ni y$.

Taking the topology

$$\tau_{\gamma} = \{\phi, U, X\}$$

and the finite T_0 -space Y_{γ} ,

4

Compact T_1 -Space and the Family of Finite Topological Spaces

 $\gamma < \beta$.

Also, since $U_{\beta} \not\ni y$, $f_{\gamma}(x) < f_{\gamma}(y)$ and $f_{\gamma}(y) = z_{\gamma}$. Hence

 $f_{\gamma}(x) < z_{\gamma} .$

Now since $\{U_{\beta(x)} | x \in X\}$ is an open covering of X and X is compact, this covering has a finite subcovering, which we denote by

$$D = \{ U_{\beta_1}(x_1), U_{\beta_2}(x_2), \cdots, U_{\beta_n}(x_n) \} .$$

Then let τ_{δ} be the topology on X generated by D, and consider the space Y_{δ} . Then

$$\gamma_i \leq \delta \ (i=1,2,\cdots,n)$$
.

For $z_{\delta} \in Y_{\delta}$, take $y \in X$ such that $f_{\delta}(y) = z_{\delta}$. Since D is a covering of X, there exists $U_{\beta_k}(x_k) \in D$ such that $y \in U_{\beta_k}(x_k)$. Hence

$$f_{\gamma_k}(x_k) \ge f_{\gamma_k}(y)$$

in Y_{γ_k} , also $\gamma_k \leq \delta$, $z_{\gamma_k} = f_{\gamma_k}(y)$, whence

$$f_{\gamma_k}(x_k) \ge z_{\gamma_k}.$$

But this a contradiction.

References

[1]	John L. KELLEY:	General topology.	Van Nostrand, Princeton, (1955).
[2]	P. ALEXANDROFF:	Diskrete Räume.	Mat. Sb. (N.S) Vol. 2, (1937), 501-518.