CUBIC SPLINE INTERPOLATION AND TWO-SIDED DIFFERENCE METHODS TO TWO-POINT BOUNDARY VALUE PROBLEMS

著者	SAKAI Manabu
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	9
page range	31-38
別言語のタイトル	スプライン関数と2点境値問題の両側近似について
URL	http://hdl.handle.net/10232/00010031

ep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) No. 9 pp. 31-38, 1976

CUBIC SPLINE INTERPOLATION AND TWO-SIDED DIFFERENCE METHODS TO TWO-POINT BOUNDARY VALUE PROBLEMS

By

Manabu SAKAI* (Received August 2, 1976)

Abstract

In the present paper we consider the two-sided approximations by the use of cubic spline function. A selection of numerical results is presented in the Tables 1-5.

1. Introduction

We shall consider here the two-sided approximations of the solution of the following nonlinear two-point boundary value problem:

$$y'' = f(x,y), \qquad 0 \le x \le 1$$
 (1)

with boundary conditions

$$a_0 y(0) - b_0 y'(0) = c_0 , \qquad (2)$$

$$a_1 y(1) + b_1 y'(1) = c_1 , (3)$$

where f(x, y) is three-continuously differentiable with respect to x and y in the closed bounded domain D of xy-space intercepted by two-lines x=0 and x=1.

We assume that the problem (1)-(3) has an isolated solution $\hat{y}(x)$ satisfying the internality condition

$$U = \{(x, y) | |y - \hat{y}(x)| \le \delta, x \in [0, 1]\} \subset D \quad \text{for some } \delta > 0$$

By the use of B-spline $Q_4(x)$, we shall consider the cubic spline function

$$y_h(x) = \sum \alpha_i Q_4(x/h - i) \qquad (nh = 1) \tag{4}$$

such that

$$y_{h}^{"} = P_{k}f(x, y_{h}), \qquad 0 \le x \le 1,$$
 (5)

$$a_0 y_k(0) - b_0 y'_k(0) = c_0 , \qquad (6)$$

$$a_1 y_h(1) + b_1 y'_h(1) = c_1 . (7)$$

Here the operator $P_k(k=1,2)$ is defined as follows:

^{*} Department of Mathematics, Kagoshima University.

M. SAKAI

(i)
$$(P_1f)(x) = \sum f(x_i)L_i(x)$$

with the piecewise linear function $L_i(x)$ such that

$$L_i(x_j) = L_i(jh) = \delta_{ij} ,$$

(ii) $(P_2f)(x) = \sum \beta_i L_i(x)$

such that the coefficient $\beta_i(i=0,1,\dots,n)$ is determined by

$$\begin{aligned} &(2\beta_0+\beta_1)/6 = (2f(x_0)+f(x_1))/6,\\ &(\beta_{i+1}+4\beta_i+\beta_{i-1})/6 = f(x_i), \quad (i=1,2,\cdots,n-1),\\ &(2\beta_n+\beta_{n-1})/6 = (2f(x_n)+f(x_{n-1}))/6. \end{aligned}$$

For the operator P_1 , equation (5) becomes

$$\begin{aligned} (y_{i+1}-2y_i+y_{i-1})/h^2 \\ &= (f(x_{i+1},y_{i+1})+4f(x_i,y_i)+f(x_{i-1},y_{i-1}))/6, \qquad (i=1,2,\cdots,n-1). \end{aligned}$$

If ristricted on $[x_0,x_1]$, $y_h(x)$ is the polynomial of degree 3. Therefore $y_h(x_0)$, $y_h(x_1)$, $y'_h(x_0)$, $y''_h(x_0)$, and $y''_h(x_1)$ cannot be linearly independent, *i.e.*, there is a unique linear relation

$$(y_1 - y_0)/h - y_0' = h(2y_0'' + y_1'')/6$$
 ,

from which follows

$$(y_1 - y_0)/h - y'_0 = h(2f(x_0, y_0) + f(x_1, y_1))/6.$$
(9)

Similarly we have

$$-(y_n - y_{n-1})/h + y'_n = h(2f(x_n, y_n) + f(x_{n-1}, y_{n-1}))/6.$$
⁽¹⁰⁾

For the operator P_2 , equation (5) becomes

$$(y_{i+1}-2y_i+y_{i-1})/h^2 = f(x_i,y_i), \quad (i = 1,2, \cdots, n-1),$$

with (9) and (10).

In the present paper, we shall prove the following asymptotic expansion

$$e_k(x) = \hat{y}(x) - y_k(x) = (-1)^k h^2 \psi(x) / 12 + O(h^3) \ (h o 0) \qquad (k = 1, 2) \ ,$$

where $y_k(x)$ is the solution of (5)-(7), and $\psi(x)$ is the solution of the variation equation of (1)-(3):

$$arPsi^{\prime\prime}=\!f_{y}\!\left(x,y
ight)\!\psi\!+\!D^{2}f\!\left(x,\hat{y}\!\left(x
ight)
ight)$$
 , $0\leq x\leq 1$,

with boundary conditions

$$a_0\psi(0) - b_0\psi'(0) = 0$$
,
 $a_1\psi(1) + b_1\psi'(1) = 0$.

2. Asymtotic Expansion of Error Function $e_k(x)$ (k=1,2)

In [2],[3] we have shown the following theorem.

THEOREM. In a sufficiently small neighbourhood of the isolated solution $\hat{y}(x)$, there

32

exists the approximate solution $y_k(x)$ (k=1,2) of (5)-(7) such that

 $|D^{j}(\hat{y}(x)-y_{1}(x))| = O(h^{2}) \ (h \to 0) \ (j = 0,1,2)$

and

$$|D^{j}(\hat{y}(x)-y_{2}(x))| = O(h^{2}) \ (h \to 0) \ (j = 0,1,2).$$

Before we proceed with analysis, we shall require

LEMMA. If g(x) is twice continuously differentiable, then we have

$$\|(I - P_k)g\| \le ch^2 \|g''\| \qquad (k = 1, 2),$$

where c is a constant independent of h and for any continuous function $\varphi(t)$ we denote its maximum norm by $\|\varphi\|$.

Combining Theorem and this Lemma, we have

$$e_{k}^{"} = f_{y}(x,\hat{y})e_{k} + (I - P_{k})f(x,\hat{y}) + O(h^{4}), \qquad (11)$$

$$a_{0}e_{k}(0) - b_{0}e_{k}^{'}(0) = 0, \qquad (11)$$

$$a_{1}e_{k}(1) + b_{1}e_{k}^{'}(1) = 0.$$

Since $\hat{y}(x)$ is isolated, there exists the Green function H(x, t) such that

$$e_{k}(x) = \int H(x,t)(I - P_{k})g(t)dt + O(h^{4}), \qquad (12)$$
$$g(t) = f(t,\hat{y}(t)).$$

with

By Taylor series expansion, we have

$$(I-P_1)g(t) = g''(x_i)(t-x_i)(t-x_{i+1})/2 + O(h^3) \text{ on } [x_i, x_{i+1}]$$
(13)

from which follows

$$\begin{split} \int H(x,t)(I-P_1)g(t)dt &= 1/2 \sum \int H(x,t)g''(x_i)(t-x_i)(t-x_{i+1})dt + O(h^3) \\ &= 1/2 \sum H(x,\eta_i)g''(x_i) \int (t-x_i)(t-x_{i+1})dt + O(h^3) \\ &= -h^3/12 \sum H(x,\eta_i)g''(x_i) + O(h^3) \\ &= -h^2/12 \int H(x,t)g''(t)dt + O(h^3) \, . \end{split}$$

On the other hand, we have

$$\begin{split} e_2(x) &= \int H(x,t)(I-P_2)g(t)dt \\ &= \sum \int \{H(x,x_i)L_i(t) + H(x,x_{i+1})L_{i+1}(t)\} \ \{g(t) - \beta_i L_i(t) - \beta_{i+1}L_{i+1}(t)\} \ dt + O(h^3) \\ e_i(t) &= \sum \beta_i L_i(t) \ . \end{split}$$

with $(P_2g)(t) = \sum \beta_i L_i(t)$ Therefore we have

$$\begin{split} e_{2}(x) &= \sum_{i=1}^{n-1} H(x,x_{i}) \left\{ \int g(t)L_{i}(t)dt - h(\beta_{i+1} + 4\beta_{i} + \beta_{i-1})/6 \right\} \\ &+ H(x,x_{0}) \left\{ \int g(t)L_{0}(t)dt - h(2\beta_{0} + \beta_{1})/6 \right\} \\ &+ H(x,x_{n}) \left\{ \int g(t)L_{n}(t)dt - h(2\beta_{n} + \beta_{n-1})/6 \right\} + O(h^{3}) \\ &= \sum H(x_{1}x_{i}) \left\{ \int g(t)L_{i}(t)dt - hg(x_{i}) \right\} \\ &+ H(x,x_{0}) \left\{ \int g(t)L_{0}(t)dt - h(2g(x_{0}) + g(x_{1}))/6 \right\} \\ &+ H(x,x_{n}) \left\{ \int g(t)L_{n}(t)dt - h(2g(x_{n}) + g(x_{n-1}))/6 \right\} + O(h^{3}) \\ &= h^{3}/12 \sum H(x,x_{i})g''(x_{i}) - h^{3}/24 \{H(x,x_{0})g''(x_{0}) + H(x,x_{n})g''(x_{n})\} + O(h^{3}) \\ &= h^{2}/12 \int H(x,t)g''(t)dt + O(h^{3}) \,. \end{split}$$

Thus we have

$$e_k(x) = (-1)^k h^2 / 12 \int H(x,t) g''(t) dt + O(h^3) \qquad (k = 1,2) .$$
(15)

Next we consider the following two-point boundary value problem

$$y'' = f(x, y, y'), \qquad 0 \le x \le 1$$
 (16)

with boundary conditions

$$\varphi_l(y(0), y'(0), y(1), y'(1)) = 0 \qquad (l = 1, 2).$$
(17)

For this problem (16) and (17), we consider the cubic spline function

$$y_h(x) = \sum \alpha_i Q_4(x/h-i)$$

such that

with

$$y_{h}^{"} = P_{k}f(x, y_{h}, y_{h}^{'}), \quad 0 \le x \le 1$$
 (18)

$$\varphi_l(y_k(0), y'_k(0), y_k(1), y'_k(1)) = 0 \qquad (l = 1, 2).$$
⁽¹⁹⁾

In a similar way as in the case when $f(x, y, y') \equiv f(x, y, 0)$, we can prove the asymptotic expansion

$$e_k(x) = (-1)^k h^2 \psi(x) / 12 + O(h^3) \quad (h \to 0) \qquad (k = 1, 2)$$

where $\psi(x)$ is the solution of the following equation

$$\psi'' = f_{y}(x,\hat{y},\hat{y}')\psi + f_{y'}(x,\hat{y},\hat{y}')\psi' + D^{2}f(x,\hat{y}(x),\hat{y}'(x))$$

subject to boundary conditions

$$egin{aligned} arphi_{l1}(\hat{y}(0),\hat{y}'(0),\hat{y}(1),\hat{y}'(1))\psi(0)+&\cdots\ &+arphi_{l4}(\hat{y}(0),\hat{y}'(0),\hat{y}(1),\hat{y}'(1))\psi'(1)=0 & (l=1,2)\ &arphi_{lk}(x_1,x_2,x_3,x_4)=rac{\partialarphi_l}{\partial x_k}\,. \end{aligned}$$

with

3. Numerical Examples

Example 1. As our first example, we consider the following linear problem:

$$y'' = 100 y$$
, $0 \le x \le 1$,
 $y(0) = y(1) = 1$.

Its exact solution is $y(x) = \cosh(10x-5)/\cosh 5$.

x	$e_1(x)$	$e_2(x)$	$\hat{y}(x)$	$(y_1+y_2)/2$
0.1	3.93(-3)	-3.85(-3)	0. 36799	0.36790
0.2	2.89(-3)	-2.80(-3)	0. 13566	0. 13562
0.3	1.64(-3)	-1.60(-3)	0.05070	0.15068
0.4	0.88(-3)	-0.91(-3)	0. 02079	0. 02079
0.5	0.71(-3)	-0.69(-3)	0.01348	0.01347

Tabl	e 1.	(h =	1/	/20)
------	------	------	----	------

Example 2. (Stetter [4]). We now take as our next example the boundary value problem as follows:

$$y'' = 6\sqrt{y - x - 1}, \qquad 0 \le x \le 1$$

subject to the boundary conditions

$$y'(0) - y^2(0) = 7/16$$
, $y'(1) - 54/y(1) = 0$.

Sample values obtained for h=1/20, 1/40, 1/100 are shown in the Tables 2.1 and 2.2.

x	h = 1/20	h = 1/40	h=1/100			
0 0.2 0.4 0.6 0.8 1	1. 334(-4) 1. 913(-4) 2. 309(-4) 2. 485(-4) 2. 395(-4) 1. 909(-4)	3. 33(-5) 4. 78(-5) 5. 77(-5) 5. 21(-5) 5. 99(-5) 4. 95(-5)	5.3(-6)7.7(-6)9.2(-6)9.9(-6)9.6(-6)7.9(-6)			
	Table 2.2 $(e_2(x))$					
x	h = 1/20	h = 1/40	h = 1/100			
0 0.2 0.4 0.6 0.8 1	$\begin{array}{r} -1.167(-4) \\ -1.770(-4) \\ -2.166(-4) \\ -2.326(-4) \\ -2.203(-4) \\ -1.743(-4) \end{array}$	$\begin{array}{r} -3.13(-5) \\ -4.60(-5) \\ -5.59(-5) \\ -6.01(-5) \\ -5.75(-5) \\ -4.65(-5) \end{array}$	$\begin{array}{r} -5.2(-6) \\ -7.5(-6) \\ -9.1(-6) \\ -9.8(-6) \\ -9.4(-6) \\ -7.7(-6) \end{array}$			

Table 2.1 $(e_1(x))$

M. Sakai

Example 3. Let us consider the following nonlinear problem:

 $y'' = 1.5y^2$, $0 \le x \le 1$,

with y(0) = 4 and y(1) = 1.

This problem has two isolated solutions such that

$$y(0.5) = 16/9$$
 and $y(0.5) = -10.53$.

x	h=1/20	$\hbar \!=\! 1/40$	h = 1/100
$\begin{array}{c} 0. \ 1 \\ 0. \ 2 \\ 0. \ 3 \\ 0. \ 4 \\ 0. \ 5 \\ 0. \ 6 \\ 0. \ 7 \\ 0. \ 8 \\ 0. \ 0 \end{array}$	$\begin{array}{c c} -8.\ 2329 (-4) \\ -1.\ 1376 (-3) \\ -1.\ 2001 (-3) \\ -1.\ 1350 (-3) \\ -1.\ 0037 (-3) \\ -8.\ 3682 (-4) \\ -6.\ 4876 (-4) \\ -4.\ 4581 (-4)$	$\begin{array}{c} -2.\ 0495 (-4) \\ -2.\ 8336 (-4) \\ -2.\ 9903 (-4) \\ -2.\ 8289 (-4) \\ -2.\ 5023 (-4) \\ -2.\ 0865 (-4) \\ -1.\ 6179 (-4) \\ -1.\ 1119 (-4) \\ -5.\ 7214 (-5) \end{array}$	$\begin{array}{c} -3.\ 2754\ (-5)\\ -4.\ 5291\ (-5)\\ -4.\ 7801\ (-5)\\ -4.\ 5224\ (-5)\\ -4.\ 0006\ (-5)\\ -3.\ 3360\ (-5)\\ -2.\ 5868\ (-5)\\ -1.\ 7779\ (-5)\\ 0.\ 1044\ (-2)\\ \end{array}$
0.9	-2.2977(-4)	-5.7314(-5)	-9.1644(-6)

Table 3.1 $(e_1(x) \text{ for } \hat{y}(0.5) = 16/9)$

Table 3.2 $(e_2(x) \text{ for } \hat{y}(0.5) = 16/9)$

x	h = 1/20	h = 1/40	h = 1/100
0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9	$\begin{array}{c} 8.\ 1414 (-4) \\ 1.\ 1265 (-3) \\ 1.\ 1189 (-3) \\ 1.\ 1258 (-3) \\ 9.\ 9629 (-4) \\ 8.\ 3100 (-4) \\ 6.\ 4450 (-4) \\ 4.\ 4303 (-4) \\ 2.\ 2839 (-4) \end{array}$	$\begin{array}{c} 2.\ 0438 (-4)\\ 2.\ 8266 (-4)\\ 2.\ 9837 (-4)\\ 2.\ 8231 (-4)\\ 2.\ 4976 (-4)\\ 2.\ 0829 (-4)\\ 1.\ 6152 (-4)\\ 1.\ 1101 (-4)\\ 5.\ 7228 (-5)\\ \end{array}$	$\begin{array}{c} 3.\ 2740 (-5) \\ 4.\ 5273 (-5) \\ 4.\ 7818 (-5) \\ 4.\ 5209 (-5) \\ 3.\ 9994 (-5) \\ 3.\ 3351 (-5) \\ 2.\ 5861 (-5) \\ 1.\ 7774 (-5) \\ 9.\ 1622 (-6) \end{array}$

Table 3.3 $(y_1(x) \text{ for } 9(0.5) = -10.53)$

h = 1/20	h = 1/40	h = 1/100
0.4610 8789	0.474 4466	0.478 1951
-3.036 0000	-3.015 1148	-3.0092359
-6.3595030	-6.338 1672	-6.332 1475
-9.059 3094	-9.043 7869	-9.039 4076
-10.547647	-10.539087	-10.536684
-10.418460	-10.41 2260	-10.41 0524
-8.7092591	-8.700 5180	-8.698 0532
-5.8757206	-5.864 6259	-5.8614933
-2.5030694	-2.494 4919	-2.4920752
	$\begin{array}{c ccccc} h = 1/20 \\ \hline 0.4610 & 8789 \\ -3.036 & 0000 \\ -6.359 & 5030 \\ -9.059 & 3094 \\ -10.54 & 7647 \\ -10.41 & 8460 \\ -8.709 & 2591 \\ -5.875 & 7206 \\ -2.503 & 0694 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Links The second second second			
x	h = 1/20	h = 1/40	h = 1/100
0.1	0.496 8104	0.483 3772	0.479 6240
0.2	-2.9799213	-3.0010952	-3.0069927
0.3	-6.3020388	-6.3238017	-6.3298490
0.4	-9.0175047	-9.033 3360	-9.0377354
0.5	-10.52 4745	-10.53 3361	-10.535768
0.6	-10.40 1925	-10.408126	-10.409862
0.7	-8.0857360	-8.6946371	-8.6971123
0.8	-5.8548110	-5.857 2487	-5.8602970
0.9	-2.4800101	-2.4887272	-2.491 1529

Table 3.4 $(y_2(x) \text{ for } \hat{y}(0.5) = -10.53)$

Example 4. We consider the following van der Pol's equation:

$$y'' = (1-y^2)y'/2-y/4$$
, $0 \le x \le 1$,

with y(0)=0 and y(1)=2.

Table 4.1 $(y_1(x))$

x	h = 1/20	h = 1/40	h = 1/100
0.1	0. 1989 1973	0. 1988 7210	0.1988 5874
0.2	0.4070 1570	0.4069 3478	0.4069 1206
0.3	0.6228 1925	0.62272447	0.6226 9784
0.4	0.8436 2224	0.8435 3603	0.84351179
0.5	1.0653 913	1.0653 343	1.0653 182
0.6	1.2929 327	1.2829 168	1.2829 123
0.7	1.4903 804	1.4904 034	1.4904 098
0.8	1.6819 670	1.6820 110	1.6820 234
0.9	1.8528 893	1.8529 261	1.8529 364

Table 4.2 $(y_2(y))$

x	h=1/20	h=1/40	h = 1/100
$\begin{array}{c} 0.1\\ 0.2\\ 0.3\\ 0.4\\ 0.5\\ 0.6\\ 0.7\end{array}$	$\begin{array}{c} 0. \ 1987 \ 9234 \\ 0. \ 4067 \ 9909 \\ 0. \ 6225 \ 6532 \\ 0. \ 8433 \ 9105 \\ 1. \ 0652 \ 381 \\ 1. \ 2828 \ 898 \\ 1 \ 4904 \ 419 \end{array}$	0. 1988 4026 0. 4068 8063 0. 6226 6099 0. 8434 7824 1. 0652 960 1. 2829 061 1. 4904 188	0. 1988 5364 0. 4069 0340 0. 6226 8768 0. 8435 0254 1. 0653 121 1. 2829 106 1. 4004 123
0. 8 0. 9	1. 6820 849 1. 8529 877	1. 6820 405 1. 8529 507	$\begin{array}{c} 1.4304 \\ 1.6820 \\ 281 \\ 1.8529 \\ 403 \end{array}$

Example 5 (Ciarlet [1]). As our final example, consider

 $y'' = y^3 - (\cos x + 1)^3 - \cos x$, $0 \le x \le 1$

with y'(0)=0 and $y'(1)=-y^3(1) \sin 1/(\cos 1+1)^3$

The unique solution is $y(x) = \cos x + 1$.

The numerical results are listed in Tables 5.1 and 5.2.

x	h = 1/20	h = 1/40	h = 1/100	exact solution
0	1.9999 832	958	993	2.000 000
0.1	1.9949 874	50 000	50 035	50 042
0.2	1.9800 499	624	659	6 66
0.3	1.9553 200	324	358	365
0.4	1.9210 448	569	603	610
0.5	1.8775 667	786	819	826
0.6	1.8253 203	318	350	356
0.7	1.7648 276	385	416	422
0.8	1.6966 931	7 033	7 062	7 067
0.9	1.6215 977	6 069	6 095	6 100
1	1.5402 916	996	3 019	3 023

Table 5.1 $(y_1(x))$

Table 5.2 $(y_2(x))$

x	h = 1/20	h = 1/40	h=1/100	exact solution
0	2.0000 137	038	006	000
0.1	1.9950 187	081	048	042
0.2	1.9800 816	751	672	666
0.3	1.9553 517	405	371	365
0.4	1.9210 762	649	616	610
0.5	1.8775 975	864	832	826
0.6	1.8253 501	393	362	356
0.7	1.7648 559	457	428	422
0.8	1.6967 193	100	072	067
0.9	1.6216 211	129	105	100
1	1.5403 116	048	027	023

References

- P. CIARLET, M. SCHULTZ and R. VARGA: Numerical methods of high order accuracy for nonlinear boundary value problems. II. Nonlinear boundary conditions. Numer. Math. 11, 331-345 (1968).
- [2] M. SAKAI: Piecewise cubic interpolation and two-point boundary value problems. Publ. R.I.M.S., Kyoto Univ. 26, 345–362 (1971).
- [3] M. SAKAI: Cubic spline function and difference method. Mem. Fac. Sci., Kyushu Univ. 28, 43-58 (1974).
- [4] H. STETTER: Asymptotic expansions for the error discretization algorithm for non-linear functional equations. Numer. Math. 7, 18-31 (1965).