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1. Introduction.

Let m be a natural number which we fix throughout this note, and let k be a p-
adic number field and p the characteristic of the residue class field of k. We define a
chain of fields K,=k, K,, K,, ---, which has the property such that K; is the maximal
abelian extension of K; , with exponent p™ for each 1>1.

L.R. Safarevi¢ [6] has given the detailed structure of such fields, when % does not
contain the p-th roots of unity and m=1. For this case, E. Maus [5] has given the
upper ramification numbers and J. Idt [3] has given the explicit values of the ramifica-
tion numbers.

In this note, we compute the ramification numbers and the orders of the ramifica-
tion groups of K;/k for general m.

The author is grateful to Professor K. Shiratani for his kind encouragements and
advices.

2. Preliminaries.

Throughout this note, £ denotes a p-adic number field, £* the multiplicative group
of k, p the characteristic of the residue class field of %, and u, the order of the group of p
power roots of unity in k. Let K,=Fk and let K; be the maximal abelian extension of
K, , with exponent p” for each positive integer 7. Let e, f,, and n, denote the
absolute ramification index, the absolute residue class degree, and the absolute degree
of K, respectively. Then we have a following

LemMA 1. Suppose that the notations are the same as in the above.
(1) If pp=1, then
Ny =gy P*"s—1tD) | o= p™f; and e, = e, p™"s-1.
(2) If up = p™, then

s = ns—lpm ("s—1+2) y s = pmfs—l and ey = es_lpm(ns-ﬁd) .
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This follows easily from the local class field theory and the structure of the
multiplicative group of p-adic number fields. ,

Let 7 be a prime element in k£ and let e be the absolute ramification index of k. Let
U, be the group of units of k. We define the usual filtration by Uy=U}, U;={zck*;
ord;(x—1>7} for +>0, where ord, is the normalized additive valuation of k. Iet A
denote the function defined by

A(n) = min {pn,n+e},ne Z,n>0.

For each positive integer 4, let R,=U; denote a complete set of representatives for
the factor group U;/U,:,. It is shown by Hasse [2] that these representative sets can
be chosen in such a manner that

R; =R’ whenever i = \(j)

7

except in case u;>1 and 1= p—]f—l—- It is shown also that, even in the exceptional
case, R% (Where = pil > is a subgroup mod 7 of R; with index p.
LemMmA 2. Let t be a natural number < e(m+ pil )wz'tk
t£0 mod p™ for 0<t < el +e
e
m-1 < =1, e —1.
t=le mod p for o1 +lhe<t=< P +(+1e, l=1,---,m

Then
U nNk*" = Uy, .

Proor. Suppose that there is an element 7, in U,Nk*#™ but not in U,. Then
we have 7,=a?™ where « is a principal unit. Assume a=a,cU,—U,+;. Then we may
assume a,cR,. If O<v< —; le

p"Yp—1)

then a?™c Uym,—Uym,., from the above result of

Hasse. Therefore we have t=p"v< pil +e¢, which is a contradiction.
¢ e
f——————<v<—Fr———,1=1,...,m—1, then p”**1lv < and
p"(p—-1) p*-1(p-1) ? p—1

< p"-tv. Thus, by the above result of Hasse, we have

ob™ € Upm=t, 16— Upm=1, 1 1e1y .
Therefore we have
e
p—1

+le <t = p™*-v+le < +(1+1)e,

e

p—1

which is a contradiction. . , _ : '
If p™-+-1(p—1)le, I=0,1, - .-, m—1, then we see pf—l +(+1)e = le mod p™-*. Thus
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the consideration for the case v— K [=1,-..,m is not necessary. The proof

3
, p*Hp-1
i1s complete. - - ‘

3. The upper ramification numbers and the ramification numbers of
K /K, ..

For a finite (falois extension L/k with Galois group G, let T(L/k) denote the set
of the upper ramification numbers, i.e. the set of jumps in the upper numbering of the
ramification groups of L[k, and let v;=v;(L/k) denote the ramification number, i.e. the
jump in the usual numbering of the ramification groups of Lfk. For real =0, the
symbol {z} will denote the least integer =x. The next theorem was given by Maus [4],

[6]. We set for brevity v,=0 and v;=le+ I:—p—i—l—:l—[—p%—_y(e?_—l")—] for 1=1,..-, m-1.
TeeEorREM 3 (E. Maus). Let L be the maximal abelian extension of k with exponent
p™, and let e be the absolute ramification index of k.

(1) If up=1, then T(L[k) = {t,;» =0,1, ---,me—1} , where

—le+1
L_ei_] fO/I' 1_/l§11<—ﬁl+1,l:(),1,...,m_1.

b, =v+ l pm_l_l

(2) If up =p™, then T(LJk) = (t,;»=0,1, .-, me+m—1}
where

v—l—le +l
pm_l_l

y_l—|- ’ ] fOT vz‘l‘lél’ < ljl+1+‘l7 l:O,l, "'}m—]‘

le+ for v=v,+1-1,1=12, .-+, m.

p—1

Proor. Let w: k*—>G=Gal(L/k) be the reciprocity law map of the local class field
theory corresponding to the extension L/k. Then, it is known that w(U,)=G" for all
n=0 (cf. Serre [7], Theorem 2, p. 235). Therefore, for each integer n=0, we have

GjG"1 o U, [ Uiol U, 0 47),

because L[k is the maximal abelian extension of exponent p™.

(1) Tirst, if ¢ satisfies the hypotheses in Lemma 2, then, ¢*/G*+1=«U,/U,,,=<k, where
k is the residue class field of k. Therefore such ¢ is an upper ramification number of
LJk. Next, let t =0 mod p” and 0<t=< —p]—ie—f We put t=p™v. If y,¢ U,, then 7, is

uniquely written as
N = (L+am) 4y (0 mod v, 74y € Uiy

where 7, p is a prime element and the prime ideal in %k (cf. Hasse [2], p. 206). We
may assume 1+o,7°¢R;,. From the result of Hasse in 2, there is a suitable element
n, in U, such that n2”=(14a,7")n;+; where n;.; is some element in U,;;. Hence
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U,sU+(U;Nk*?™).  Therefore G'=G'*.

4

+l<t<

Finally, let ¢ =le mod p™-! and 1 +(I+De,l=1,.--,m—1. We

put ¢ =1le+p™'v. Similarly, for any 7, = (1+a;7*)n;4,€ U;, there exists a suitable
n, € U, such that 98" = (1+a,7')n;+;. Therefore U, (U, N k**™) = U,, so G' = G+
This completes the proof of (1).

¢

. o omar ¢
(2) Since urz=p™, p"(p—1)le. Put » 7 p—1)

N . ceU., ,1=1,...,m. Then
FHC Ff“e

=1 Fo1He
1¢  =\(l+ae = e

for I=1,..-,m. Let

modyp,n e eU

a e e .
p—1tle =1 P'—IH”I, P=itle p—1+let1 p=itletl

From the result of Hasse in 2, there exist some 7v,eU», and a suitable n*eU , such

-1
that

: e
Pkl =1 p=171¢) 4
77111 Y <1+ab€__1 +1e7r K ﬁ +let1 *

Therefore U . / U
Iﬁﬂe
is complete.

e, <U,e_+
1 let+1 - le

N k*?”‘) is a cyclic group of order p. The proof
» p

In the proof of Theorem 3, we obtain the orders of the ramification groups of L/k.

These give the ramification numbers together with the Hasse’s function s, i.e. the

function defined by rz/x(z) = j (G°: G*)d¢ for real 2= 0.

0

Let ¢ = p"Hp—1)gm-147m1 0 = 1y < p™~Hp—1), and let 7 = (P—1)Gm-1+ 71>
0<7py<p—-1,forl=1,.---,m.

CoroLLARY. Suppose L[k us the same as wn Theorem 3 and § s the absolute residue
class degree of k. Let py=1 and let v;, 0 <t<me-1, be the ramification number of L/k.

(1) If 0<j < vy, then
_ (l_pﬁmf)(l_pqm,j(;bm-nf)
S T (1= p)(1— pi ™)
WkeTe J = (fpm_]-)Qm,j‘}‘rm,j, Oé Tm,j < pm_l .

1—-pf ("m,j*-l)
1—7pf

+p4m,j(ﬁ"‘—1)f

H

Q) If 2, =5< Vi, 1l m—1, then

~ 1_pf(i—i’z+1)
Vj = Uy, -1+ P/ <3m—z + —_—ll?f—

=51+ G L df pm-i(p—1)le

1_pf4m—l,j(15m—[—1))

fp"=t-1-7,,_1)
P " 1—prem =T

where g _,‘~=[
e 0 otherwise.
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Proor. Let ¢-,=0 and ¢; be the upper ramification number of L/k. Then we have

o= bralt) = £ P it

i

where ¢;=(G'y;:1). Therefore the corollary follows easily from Theorem 3.

RemARk. For the case such that u,=>p™, we obtain the similar results. In fact,
if v, +I<j<v;.;+1 then we have

7, Tyl
= 3 pli(ti—ti-)+ X pvTED(t—6) +
i=0 i=v;+1

J .
b S Dt
i=v;+]

4. The ramification numbers of K /k.

In this and the next sections, suppose that the notations are the same as in 2.
Furthermore, let v{,2% be the ramification number of Kk, K /K, ,, respectively.
Let @5, —1=@x,x,_, be the inverse function of s i =k xs_,-

TueoreM 4. For eachy, v=0}.

Proor. We prove the theorem by induction on s. Let Gal(K/k)=G") and
Gal(K/K,—;)=N®. Then we have, for all j, N‘;’zG;S’nN(S) and

G;S’N(S)/N(s) G(S)/N(S) )ps,s—1(J) =2 G;jssll)(.)
from the Herbrand’s theorem (cf. Serre [7], Ch. 1V, §3). Hence

(@7 651 = @5 ) G hums L)

jtal

Now, suppose N’ = N7/ ,. Then NO2ss-1) — N2s,5-10+1)

j+1°

If ‘Ps,s—l(j +1) =

e,
: 11 +e¢,,;, then we have, from Theorem 3,

{‘Ps,s-l(j)} = {¢s,s—1(j+1)}

or ,
P"hi—=1 < @s,i-1(J) < @s,e-a(J+1) = 7R +1,
where ; is a suitable integer. If {p,,~1(7)}={p;,~1(j+1)}, then Gy () = Go, . 1(5))
G;s sll(J"'l S0 G(S) G;S-t)—x *

By the induction hypothesis and Theorem 3 we have

VD =0 =y (80T ) = Pre,ee(1) = 1,
where #¢-" is the upper ramification number of K, ;/K,—,. Hence v¢~" =1 mod p
for =1. Therefore, if p"h;—1<g; - 1(7)<@s,s-1()+1)=p™h;+1, then o, () is not
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the ramification number of K,_,/k. Thus we obtain

G, ) = O, age1)s s0 G =G5,
For all 10, by the theorem of Dedekind-Hensel-Ore, we have
pes—l < €5-1
g~ P(p=1) = p—1
where ¢~V =(G;z_§-1)1>: 1) (cf. Maus [5], 1.4). On the other hand, we have from

,U(is—l) <

Theorem 3 0<es,s-1(]+1)—gs,—1(j)<2. Therefore, if @ —1(j+1) > ge_s__ll , then we

obtain

(s—1) | (s —1)
Op,oa(i) =1 =06 (i11)s

SO G;’S) — G(s)

jt1*
This completes the proof of our assertion.

By the corollary to Theorem 3 and Theorem 4 we can compute an explicit value of
v$). For s=1, we may replace f in the corollary to Theorem 3 with f,. Let s=2 and
wp=1. Put e,=(p-1)g, +79, 0=ro<p-1. Then, in Corollary to Theorem 3 we have

G-t = To(P™ 14 ™2 o £ pt])

for all | and we may replace f, ¢ with f,_;=p*,,e,-,, respectively. Similarly, in the
case such that u,=p™, we may replace f, ¢ in Remark to Theorem 3 with f,_;=p°*-f,,
¢s—1, Tespectively.

ReMARk. In the case where m=1 our result coincides with the result of J. Idt

[3].
5. The orders of the ramification groups of K/k.

The next theorem is a generalization of the result of J. Idt [3] and from this theorem
we can compute inductively the orders of the ramification groups of K/k.

We put 9;5’=(G:(;, : 1>.
j

THEOREM 5. Assume that u,=1, f,=m and s=2.

m_]
(1) Ifj#= L= (ws-v_1) for all i =0,1, -+, me,y—1, then

”

990951, = pls-1.

m_1
2 Ifj= P — (v* =V —1) for some 1, then
p
9909, = (g8~ Plgesn)pls-1.

Proor. For each j, we have

(s) (s) (s—1) (s—1) (s) (s)
G 6 =<G e (N<,:N(>>.
< ”jS) v(jsix 9”5,5-1(”;') 7’3.5-1(1’j+1) vjs vjs.H
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Now, assume g ,—(v')=vy~" for some t. Then we have v‘;’=«];~s,3_1(v$"”)=
s, s-1(D§ 7 V), because vf~ V=21 by Theorem 4. On the other hand, we have v$’=
Vrs,-1(F4") where 7% is the upper ramification number of K K, ;. Therefore we
et T . . €s—1
obtain vf~=¢. Since v} l’é———p_l , we have
J+1 }
pr—11"
We put j=(p"-1)g;+rj, with 0=<r;<p™-1. Then we have vy~ V=p™q;+7r;+ 1. From
the theorem of Hasse-Arf we have

j <9, and v~ =7+ {

(s —1) — a5(s— As—1)[F(s=1
vi's+11) = ,U:.s 1) ,modg{,s )/ggs ),

where gis =0 =(Nis—h: 1), NV =Gal(K,—,/K,-,). Hence, from Theorem 3 and Theorem
7
4 we see v*~V=1 mod pfs-2. Therefore we have p”g;+r; =0 mod pfs-2. Because

rj<p™—1=pis-2—1, we obtain r;=0. Therefore we have jzﬁp—;—l—(viﬁ—”—l). This
completes the proof of our assertion.

ReMARK. In Theorem 5, the restriction such that u;=1 and f,=m is not essential.
Similar results hold for more general case.
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