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Two-sided quintic spline approximations for two-point boundary value problems
are considered. A selection of numerical results is illustrated in Tables 1-3.

I. Introduction

Splines are of much use for approximating solutions of simple two-point boundary
value problems for both linear and nonlinear ordinary differential equations. Recently
we have considered the two-sided cubic spline approximations of second order ([7]).
This paper discusses the two-sided quintic spline approximations of fourth order.

The two-point boundary value problems to be solved is

z"(8) = f(¢, 2(¢), 2’ (£)) (0<t<1) (1.1)
with boundary conditions |

Agz(0)—Byx'(0) =a, (1.2)

A1) +Bw'(1) =b, | (1.3)

where f(t, z, y) is defined and four times continuously differentiable in a region D of
(t, z, y)-space intercepted by two planes =0 and ¢t=1.

Now making use of B-spline Q4(t)=(1/120)X(~1)/(¢)(t)%, we consider spline func-
tion x4(f) (k=1, 2) of the form

,(t) = X aiQe(t/h—1) (nh =1)

and
(1) = 32 BiQs(t/h—1)
with undetermined coefficients a; and B; (i=-5, —4, -+, n-1).
The above z(t) (k=1,2) will be the approximate solution to the problem (1. 1)—(1. 3)
if it satisfies \

wy(t) = Py f(t, 24(0), 3,(2)) (0<t<]) (1.4)
with boundary conditions

Agy(0)—Bywy(0) = @, (1.5)

Az (1)+ By (1) =b. (1.6)
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Here the operator P,(k=1, 2) is defined as follows:
(i) (P, 9)(t) is the cubic spline function with the node £,(¢=0, 1, - - -, n) such that

(P19)(t:) = 9(t:) (t;=th, i=0,1,--,m),
(Pr9)' () =g’ (%) (1=0,n).
(i) (Py 9)(t) is the cubic spline function with the node ¢;,(2=0, 1, - - -, n) such that
Mgi-1+10g:+ 9:41)/12 (t=1,2,---,n—1)
(Pag, Li) =1 k(7 go+391)[20+h*(3 95 —291)/60 (2=0)
(T 9u+394-1)[20— (394 —292-1)[60 (¢ =n).
and (Pag)'(2:) = 9'(¢:) (t=0,n),

where for any o(t) and J«(t)e L?[0, 1], let us denote

1

[ o) wiiyde by (p.9).

0

For k=1, it follows that Eqgs. (1. 4)-(1. 6) are equivalent to the following system of
(n+b) equations:
 Fy(a) = Ag(a-g+ 2604+ 660+ 26+ a_y)[120
—By(0-1+10a-,—100-;—a-5)/24h—a =0,
F_\(a)|h = (—a—5+2a-4—20_5+a_,)[2h3
— f1(0, (a—5+260_4+66a_g+ 2605+ a_;)/120, (—a-5—10a—,+ 10a-y+ a_,)/24h)
— f(0, « - +)(a-3+10a_,—10a_,—a_;)/24R
— £4(0, -+ )yt 20 g—Ba_g+ 204+ 0_g)[6F2 = 0,
F{a) = (0i-5+20-4—60;-g+ 2055+ 51 [612
— f(ti, (@i-5+260-4+ 6603+ 2605+ @;-4)[120 ,
(ti-1+100;—3—100;-4—0;-5)[24h) = 0,
Fii(a)h = (0p-1—20p-9+ 20— g— Qy—5)[ 203
— £t (Qpmr 26t + 66—y 26015+ t_5)[120,
(a4 10ay-3—10ay— s —a,,—5)[24R)
— foltns + - )(@n-1+100-3— 100, s —@s-5)[24h
— faltns -+ Nn-1+20-3— 6045+ 204+ Ap-5)[6h = 0,
F,io(a) = Ay(0y—1+260,-g+660,-3+ 260, 4+ ay-5)[120
+ By(ap-1+100,-3—100,—s—0a,—5)[24h—b =0,

where Ju(®y, 3, 23) = —W—gw—fg’—wi)— (k=1,2 and 3).

—— —
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For k=2, Eq. (1.4) is equivalent to the following system of (n+1) equations:
Go(B) = (wa(h)—5(0))/ h—25(0)— (T fo+3f1)[20—h(3f s —2f1)[60,
GiB) = (@a(ti+1)—2ma(ti) + Ba(bi-1)) PP~ ( fir2+10f;+ fi-1)/12
(¢=1,2,-.-,n—1),
Go(B) = (wa(1)—@o(1—1))/h—m5(1)+ ~(T f+ 3fu~3)[20— (3, —2f 4-1)[60 ,.
where zy(t) = 3 B:Q(t/h—1), fi = f(ti, wa(ts), %2(2;)) and
T = fults, za(ts), @2(8:)) + folli 2alt:), @2 (8:)) 22(8) + folts, 2a(t:), w2(8:)) w5(8:) -

In the present paper we assume that the problem (1.1)=(1.8) has the isolated solution
#(¢) satisfying the internalty condition

U= (@) le—20)| + y—2'@) | <85,te[0,1} c D for some § > 0.

The object of this paper is to show the following asymptotic expansion of the
error function:

ex(t)(= 80— Z4(0) = Bdp(D)+o(i) (h>0)  (k=1,2),

where d,=1/720, dy,=-1/240, Z(t) (k=1, 2) is the solution of the approximate problem
(1.4)~(1.6) and +(f) is the solution of the following variation equation of (1.1)—(1.3):

W (E) = folt, £(2), £'(0) ¥(0) + Sat, £(), £'(0)) ¥ (6) + £ () O0<t<1),
subject to the boundary conditions
Agp(0)—By'(0) =0,
A1)+ By'(1) =0.

2. Some Properties of Spline Functions

In what follows, for any continuous function (t), we shall denote its maximum
norm by [, and for any finite dimensional vector ¢, we shall denote its maximum
norm by [c¢|w. For any square matrix 4, we shall denote the norm induced by the
maximum vector norm by [4|c.

Lemma 1 ([1]). Let B=(b;;) be diagonally dominant, then
[B-leo < max [(|6:] — X |b451)].
j=i

As an applciation of this Lemma, we shall prove the following Lemmas 2-9.
Lemma 2. Let g(t) € C*[0, 1], then
I(I—Pg) glloo < ch* | 90 (k=1,2),

where I is the unit operator and c is a constant independent of h.
Proor. For k=1, see [1].
For k=2, let us rewrite (I-P,)g in the form:

(I—P3) g = (9—P19)+(P,—Py) g, (2.1)
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where 19—P1glloo < ch* | gD]|co . (2.2)
For the second part of (2. 1), we have

(Py—Py) g = X (Bi—:) Qult/h—7) (2.3)
with P,g=73 pQst/h—7) and  Pyg=> y:Q.(t/h—1).

From the definition of the operator P,, it follows that
(E 71’@4('/}1‘—7;): Lk) = k(gk+1+logk+ gk—l)/12 (k =12..., n"‘l) .
Thus we have
(Ve+26p4-1+66 4—5+26 p4_g+75-4)/120

= (95+1+10g2+ 93-1)/12 (k=1,2,n=1). (24)
Similarly we have

(X vi@u(+[h—3), Lo)[h = (47-5+32p,+23y-1+70)/60

= (Tg0+391)/20+h(3gs—291)/60 (2.5)
(2 viQu(-[h—1), Ly,)[h = (4 51+ 32742+ 23 Y3+ Y2-4) 60

= (794+39n-1)/20+h(—3 ,+29,-1)/60 .

Since @(t)=(P, ¢)(¥) is a polynomial of degree 3 on [¢;, t;+1], o(¢) is represented as
follows:

@(8) = @i L))+ @i+1 Liry(8) + @7 Ti(t)+ @i +1 Ti+4(2),

where (E—t)2[2—(t—t3[6h—h(t—1t)]3  (t; <t <t;sy)
Tit) = | (t—ti-1)*[6h—h(¢—t;-1)[6 (L1 <t <t)
0 (otherwise).

Thus we have

(s L) [ = (pr+1+4@s+ pi-1)[6—h*(Tpf+1+ 1697 + Tpf—1)[360

k=12, n-1). 2.7)
Similarly we have
(9, Lo)[h = (To+31)[20+h(3ps—241)[60 , (2.8)
(@: La)[h = (T@u+3pu-1)[20+h(—3pu+204-,)[60 . (2.9)
Since (P,9)'(t:)=9;=e¢; (k=0, n), we have two equations for
0(=ys—Ps):
0_3—0-,=0 and 0p—1—0,-3=0. (2.10)

From (2. 4)-(2. 10), we have the following system of equations for 8,(k=-2,-1, - -+, n-2):
(07 +260;—,+660;_o+260;_g+0;—,)/120
= —(grr1—291+ 9r-1)[12+P%(T 0} 11+ 169 + T pf-1)/360
k=2,3,---,n-2), (2.11)
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(320-5-+270_,+00)/60 = —h(gi—93)/30,
(3204—2+2760,-5+0,-4)[60 = I(g1—1—ps-1)[30 .
) | <chd-"|g@®| e (=0, 1, .-+, n and m=1, 2), by Lemma 1 and (2. 10)

(
t

Since |g{™-p
we have
10:] < ch* g™ e (¢=0,1,--+,m).
Thus we have
1(P1—Ps) glloo < [[0]lcc < ch* [ g®)]|oo . (2.12)
Combining (2.2) and (2.12) yields the desired result.
Lemma 3. Let ¢(t) € C[0, 1], then we have
I(I—Ps) gllo < ch [|9' |0 (k=1,2).
Proor. For k=1, we have '
(pi+1t+4oi+ @i-1)[6 = (gira—9i-1)[2h
with o(t) = (P19)(®) -
Thus we have

piri—git)+4pi—9i)+(pi-1—9i-1)]1/6

= (9i+1—9i-1)/2h—(gi+1+4gi+ 9i-1)/6 - (2.13)
From the definition of the operator P;, we have two additional equations:
<p6—gé =0 and ¢,;—- g,; =0. (214)

Applying Lemma 1 to (2. 13) and (2. 14), we have the desired result. For k=2, let us
rewrite (I-P,)g in the form:

(I—-P,) g = (9—P,9)+(P,—Py) g,
where
II—Py) glloo <k || g [loo - (2.15)

In a similar manner analogous to Lemma 2, we have only to show:
((Py—Py) g, L) = (P19, Li)— M(gr:1+ 1094+ g1-1)/12

= h(Bpr+1+4pr+3pr-1)/20—h*(pt+1— Pi-1)[30—h(Gs+1+ 1094+ g3-1) /12

= M(gr11—20%+ 92-) 15— @hs1—@i-1)/30  (k=1,2,---,n—1).  (2.16)
A simple calculation shows:

(Pr—P)g,L)=0  and  ((P,—Py)g,L,)=0. (2.17)
Thus we have the desired result.
Lemma 4 ([4]). Let g(t) € C8[0, 1), then there exists a quintic spline function of the

form

p(t) = X 0 Qg(t/h—1)
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so that
(1) ‘P(ti) = g(ti) (7’ =0,1,---, n)
P™(1) = g™)(t) (i =0,n and m=1,2)
and
(i) lp™—g™|w=OR") (m=0,1,2,3) (h—0).

Proor. By the use of consistency conditions, we shall prove this Lemma. In the
case of the quntic spline, there are the following relationships between the first and
second derivatives of the spline:

(pi+at26p;11+66¢;+260;_1+ @i—s)[120

= (pi+at+109;1—100;—y—pi-s)[24h  (1=2,3,---,n—2)  (2.18)
and
(pi+at26p7 11+ 6607+ 26071+ i-5)/120

= (pirat20i+1—6pi+ 20,1+ @i-s)[6K* (1 =2,3,---,n—2).
(2.19)

If ristricted on [0, t3], @(f) depends upon 8 parameters. Therefore 9 quantities ¢, @;
and 7, (#=0, 1, 2, 3) are not mutually independent, there is a unique linear relation:

37 00— 540+ 9py+ 8ps+ 12he,
= h*(—23p,+ 3549]+ 201 p; + 8p3)/20 (2.20)
Similarly we have
3T pn—54pn—1+ 9945+ 8pu—3—12he,
= h3(—23p,+ 364 @p—1+ 201955+ 8ps—3)/20 . - (2:21)
Also we have
—235p)+65p;+ 15505+ 15,
= 16h2@5+h(111po+ 22791+ 799, +3p;) (2.22)
and
23b¢,—6bp,—1—15bp,—5— 150,
= —16h%p,+h(111p,+227 0,1+ 799, +3pu-3) . (2.23)
Since @i™-g™=0 (=0, n and m=1, 2), by Taylor series expansion and Lemma 1 we
have

lpi—gi] =O0(5) (6=0,1,---,m) from (2.18), (2.22), and (2.23) (2.24)
and
lpi—gil =0  (i=0,1,---,m) from (2.19), (2.20) and (2.21). (2.25)

Thus we have the desired result.
Lemma 5. Let o(t)=3a,0,(t/h—), then
lafleo < cllo]o -
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Proor. As is readily seen, we have
3a-y+ag = 6p;—8py5/3+(po+ 21)/3
(a-st+4a;—9+0a;-)6 =9@; (¢=2,3,---,n—2)
30u-g+ ap—g = 69, —8pu-1/2/3+ (Pn+ Pu-1)/3 .
From Lemma 1, it follows that
las] < cllpllw (¢=-10,---,n—3).
Since ai-3 = 6p;—4a;g—a;—y (¢=1,0)

Aj—q = 6<p,-——4a,~_‘2— i3 (Z =n—1, n) 5
we have
lalleo < cllplloo -

LemMa 6. Let o(t)=30;Q4(t/h—3) such that
pt)=m; (6=0,1,---,m), () =1-1/h and @'(t,) = nu+:/h.
Then we have
[plleo < €f|f]oo -

Proor. By consistency relations, it follows that

(pi+1t+4pi+ei-q1)[6 = (<Pi+1_<Pi—1)/2k

= (’7i+1""’7i—1)/2k (7: = 1’ 2: t n—l) ’
@o = N-1/h and on = Ny+1/b . '
According to Lemma 1, we have
loi| < cllnlle/ (¢=0,1,---,m). (2.26)
Since |@;|<[n)lw, by (2.26) we have
el < el .

The following Lemma 7 follows through the same arguments as in the proof of the
latter part of Lemma 2.

Lemma 7. Let o(t) be cubic spline function with the node t; (1=0, 1,.-+, n) such

that
(@ L) =hn; (8=0,1,---,m),  @'(t)=n-/k and o'(ts) = nunifb.
Then we have
lelleo < el .
Lemma 8 ([3]). Let g(t) e C4[0, 1], then
(P19)"(t:) = 9" (t:)—RPg £ [12+0(R?) (R —0).
Proor. Let us denote o(t)=(P,9)(t), then we have
(pi+1t+4pi+@i-1)[6 = (pin1—2pi+ @i-1)[h?
= (9i1—29i+ 9i-0)[F*  (1=1,2,---,m—1). (2.27)
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Thus we have
Upisi—gi+1) +4(pi— gi) +(pi-1—97-1)]/6
= —hg®[12+0(k?) (¢1=1,2,---,n—1). (2.28)
Since ¢(t) is cubic on [t %], we have
"2p5+#1)[6 = (p1—po)[b—p0 ,
from which follows

[2(6—90)+ (p1—91)]/3 = —hgs"[12+0(h?) . (2.29)
Similarly we have

[2(pn—gn)+ (@n-1—n-1)1/3 =—h2g [12+0(h2) . (2.30)
From (2.28)-(2.30), we have the desired result.
Lemma 9. Let g(t) be continously differentiable on [0, 1], tkeh we have
P19l < c(llgllco+] gl oo) -
Proor. Let (P,9)(¢) = X a;Q.(t/h—1), then
[P1glleo < llafco -
It follows from the definition of operator P, that
(a_l——a_3)/2k = 9o,
(0—1+40a;—g+0a;-3)[6 = g; (¢t=0,1,---,m),
(an—l_an—a)/Zk = gfl% .
Hence, from Lemma 1, we have
lalo < (llglloot+Rllg lloo) -

Thus we have the desired result.

3. Existence and Convergence of Spline Approximations

In this section, using Kantorovich’s theorem on Newton’s method, we shall
prove the solvability of the determining equations F(a)=(F_y(a), F_y(a), - -+, Fpis(a),

Fyi5(a)=0 and G(B)=(F_o(B), F-1(B), Go(B), - > Gu(B)> Fn:1(B), Frira(8)=0.
Corresponding to £(¢), one can determine uniquely a qunitic spline function £,(f), of the
form

£4(8) = X 6.Q6(t/h—1)
so that
£1(8;) = £(t5) (¢1=0,1,---,m)

£ (t;) = £0)(¢,) (¢=0,n and m=1,2).
Since £(¢) € C¥[0, 1] due to the assumption f(¢, z, y) € C* (D), it is valid that
(£ — &) || o = O(hS~™) (m=0,1,2,3) (Ah—0).
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For simplicity, we shall consider the special case when f(¢, z, ) is independent of ¥.
Let J4(a) be the Jacobian matrix with respect to a; (t=-5, -4,-.-, n~1). In order to
investigate the properties of J,(&), let us consider a linear system

Ji(a)é =, (3.1)
where §=(¢-5 &0 €n1) and 7= (72 M-1,"* ", n+a) -
Corresponding to ¢ and 7, we consider quintic and cubic splines y,(f) and y,(t) defined
by
Y1(8) = X €:Q4(t/h—7)
and Yolts) = m; (¢=0,1,.--,m)
Ya(to) = m-1/h,  y2(ts) = Tuiafb.
From (3.1), we have
Y52 (to) = [ faa(to, £1(to)
+ falto, £1(to)

~—"

+ faa(to, £4(t)) £i(te)] (%)
Y1(to) +9s(to) »
Y1(8:) = falts £1(8) ya(8) +ya(t) (1=0,1,---,n),
Y () = [ far(tn, 1(ta) + foaltn £1(ta)) £4(En)] Ya(tn)
+ faltns £4(8)) y1(ta) + Y2 (ta) »
Aey1(0)— By y1(0) = 13,
Ay (D) +Bryi(1) = My+s -
Since £,t)=28¢) (+=0,1,---,n), 2(t)=4't;) (@=0,n),

thus we have

~ ~

Yi(t) = Pyl folt, £(2)) 1(8)]+y(?) 0<t<1). (3.2)

Equation (3.2) can be rewritten as follows:

yi— fult: 8) 1 =92+ R,
where R=—{I-P:](f2 y)-
Since #£(¢) is isolated, there exists the Green function H(t, s) such that
1

vo= | H(-, ) [yals) + R(s)] ds+ (3.3)

0
where ¢(t) is the solution of the following equation:

" (t)— falt, (1)) p(t) = O O0<t<l)
subject to the boundary conditions
Ap(0)—B,p'(0) = 12,

A19(1)+ B1g'(1) = nyea -
A simple calculation shows that
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el < 1)l (7-0> Tava)l -
Throughout this section, ¢; (1=1,2, - - -, 15) will denote the constant independent of h.
From (3.3) we have the inequality of the form:
Iy1lleo<ca(l¥2llco+ [ Rllo) + C5ll o0 -
Application of Lemma 3 yields
1Bl < ca(lyillco+ 91lloo) -
By virute of the well-known inequality:
1Y1lleo < €5llyalloo+Cellyilleo for some ¢; and ¢,
we have
IBlloo < ezh(llyalloo+ 191 11e0)
< cgh([Yalloot [Yalloot [ Bl oo) -
Hence we have the estimate of |R|w of the form
[ Blloo < coPi([|4:]lo0+ | Y3l o) for sufficiently small A.
Thus we have
lyallee < C10(lgalloot I (m-25 T+2)ll) -
Since [|[y;]lo=C11]|€éllo and [|[Yal0<C1a|Tl We finally have the inequality of the form
[ €lleo < C13)| 7|00 for any 2 <h,. (3.4)

provided %, is sufficiently small.
By (3. 1), inequality (3. 4) implies the non-singularity of J,(&) and in addition the
inequality
17480 < C1a(= C19) for any h<ho.
Let o= (a5 a4+, 1) and B =(B-5 P-4 ", Pu-1) be

arbitrary vectors such that ,

| (@-5+260a;-4+66a;—5+ 2605+ a;—1)[120—£(2;) | <8,

|(Bi-5+26Bi-4+ 663+ 265+ Bi-1)[120—E(t)| <3,

(¢t=0,1,--+,m).

Hence by the means of the mean value theorem we have

1/1(@)=J1(B)l o0 < e15]la—floo (3.5)
By Lemma 2, we have the equality of the form
I F(8)]e0 = O(R*) . | (3.6)

The expressions (3.4)—(3.6) show that all the conditions of Kantorovich’s theorem on
Newton’s method are fulfilled ([5]). Therefore the determining equation F(a)=0 has
the solution & such that
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o —a]e = O(Y).
Thus we have
1% —#lloo < |T1—&illcot |£5—2l0 = O(R*) (R 0),
where T,(t) = X2 a;Q(t/h—1) .
For the second derivative, we have
z—4" = P, f(t, T,)— f(¢, £)
— Po[f(t, &) ft, 8)]—(T—Py) ., 8).
By the means of Lemma 9 we have ,
11— o0 = O
For the first derivative, it follows that
1Bi—# oo < | —&leot 0ol BT—&' oo = OY) (B —0).
Therefore we have
|B 8] = 0()  (m=0,1,2) (h—0).
In the general case when f(¢, x, ¥) contains the component y, we can show the same
result by reducing the equations (1.1)-(1.3) into the system of first order differential
equations ([6,8]).
Thus we have the following

TerorEM 1. In the sufficiently small neighbourhood of the 1isolated solution %(t)
of the problem (1.1)~(1.3), there exists a quintic spline function T4(?) of the form:

Ty(t) = X2 &iQs(t/ k_":)
such that
|B7 8o = 0D (m=0,12) (b —0).
In analogy with Theorem 1, we now have Theorem 2.

TaEOREM 2. Let the hypotheses of Theorem 1 hold. There exists a quinitic spline

Sfumction Ty(t) of the form
To(t) = 2B:Qs(t/h—1)

so that

(1) the coefficient B=(B—5, B-1>"* *» Bn—1) Salisfies the determining equation G(B)=0,

(i) |7 —8™M]o=0()  (m=0,1,2) (h—0).

Proor. For the operator P,, let G(B)=(F_o(B), F_1(B), Go(B), -+, Gu(B), Fnii(B),
F,.5(B)) and Ju(B) be the Jacobian matrix with respect to 8; (1=-5, 4, ---, n-1).

For simplicity, we shall consider the special case when f(¢, =, ¥)=f(¢, z,0). In a
similar manner analogous to Theorem 1, let us consider a linear system:

Jo(a) =17. (3.7)
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Corresponding to ¢ and 7, we consider quintic and cubic spline functions z,(¢) and
25(t) defined by

27(t) = X €Q6(t[h—1)
and
(22, Lt) =}“7t (?;ZO: 1»"'5 n)

2to) = 1-4/k, Atw) = Nusaf b .
From (3.7), we have
(21, L) = (Pof foz), L)+ (20, L) (t=0,1,---,m), (3.8)
20(8) = (foz) () +22(2) (t=0,n). (3.9)
Applying Lemma 7 to the equations (3.8) and (3.9) we have
21 = Py( foz1)+2, 0<t<]).

Thus in a similar way as in Theorem 1, we have the desired result.

4. Asymptotic Expansion of Error Function E,(t) (k=1, 2)

By the means of the results of the previous sections, we shall prove in this section
the asymptotic expansion of the error function ex(t)=£(t)-%;(t) (k=1, 2).

TrEOREM 3. With the hypotheses of Theorem 1, then we have the asymptotic expansion:
ex(t) = dph*o(t)+o(ht) (h—>0) (k=1,2).
Proor. From Theorem 1, we have

er = fuolt, £, 2') e+ folt, £, 2') ex+ (I—P;) f(t, £, ')+ O(F) ,

(k=12 (h—0), (4.1)
Ager(0)—Byep(0) =0, (4.2)
Ayex(1)+Byei(1) = 0. (4.3)

Since £(¢) is isolated, equations (4.1)—(4.3) can be rewritten in the form:

ex(t) = I H(t, s\I—Py) g(s)ds+0(h5)  (k=1,2) (h—0).

0

with 9(t) =#£"(t). For k=1, we have
(I—Py) g(t) = g(t)— ga(t)+ gs(t)—(P19)(?) for tel[t,tidl,
where 9s(t) = 9: L)+ gi+1 Lira(O)+ 9: To(t)+ 9741 Ti4(2) -

According to Lemma 8, we have
95(0)— (P19)(t) = [9: —(P19)i1 T«(®) +[97 +2— (P19)i+1] Tina(?)
= (1/12) (95" T'(t) + 951 Tira()) + () ,

from which follows, using the second mean value theorem on the definite integral,
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[ Ht,5) [95(6)— (Pag)(sN1 ds

— (212 [ g [ Bt ) Ts)ds-+ g8 [ H(t 9) Tinls) ds] +o(h?)

= —(1/288) I3[ gV H(¢, £:)+ gL H(E, m:)]+ o(R)
for some ¢; and 7; € [¢;, t;+4] -

Thus we have

1 1 .
| H(t,9) [gs9)—Prgloll ds = —(1/14) e [ H(t,5)g@(6) ds+olh)  (44)
0 0

Futhermore, a simple calculation shows:

9(8)— ga(t) = [{(E—)*—h3(t—2,)} [24— (h(t—t:)*— B3(t—1:)} [12] g1 + o(h*)
for any te[¢;,t;].
Thus it follows that

| H ) (909)— ga(s)) ds = (#4120) [ H(t, 5) g©(s) ds+o(h) (4.5)

0
From (4.4) and (4.5), we have the following asymptotic expansion:

ext) = J lH(t, $) (I—P,) g(s) ds = (4/720) j 1 H(t,s) g®(s)ds+o(hY).  (4.6)
0

0
On the other hand, we have

1

exlt) = [ H(t, s{I—Py)g(s) ds = I

0
where, for each ¢=0,1, ..., n-1,

I;— j H(t, s)(I—P,) g(s) ds
o j [H(2, ;) L{s)+ H(2, ti+1) Lyi(s)] (I—Py) g(s) ds—+ o(hS)

— H(t,) [ Lo T—Ps) g6) ds-+-F(t, i) [ Luna(s)(T—P2) g(s) ds-+o19).

Thus we have
ex(t) = H(t, ) | Lo(s)I—Py) g(s) ds

+ 5 Ht,6) [ TNT—P) g(5) s+ Ht, ) | Lu(s)T—Ps)g(s) ds-+o(h)
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= H(t, t0)[ [ Lofs) 9(5) ds—(T go+3.92) 20~ H43 95—24)/60) |
+ S HEE) | [ Lis) 9(5) ds—h(giea+ 10g:+ g:-2)/12

+ H(t, ) [ [ L(s) g(s) ds—h(T g3 9-1)/20+ 1 (39i—294-1)/60 |

By Taylor expansion, we have
1
es(t) = — (k4/240)_[ H(¢, s) g@)(s) ds+o(h?) . 4,7)
. 0
Thus we have the desired result. v
As an immediate consequence of Theorem 3, we have the
CoroLLARY. With the hypotheses of Theorem 1, then we have

(BT1(8)+ Ty(2))/4 = £(t)+ o(h%) (h—0).

Finally it should be remarked that for the type of the first derivatives absent the
approximate problem (k=2) (1.4)—(1.6) is identical with the well-known differnce scheme
as the Numerov formula. Thus the collocation method using quintic spline function
gives the opposite approximation to the solution of the problem (1.1)~(1.3) as com-
pared with the Numerov difference method.

5. Numerical Examples

" In this section, we discuss numerical results obtained from some concrete examples.
These numerical results conform the theoretical accuracies established in previous
sections. In the case of examples 1 and 2, the approximate problems (k=2) (1.4)—(1.6)
are identical with the Numerov difference schemes. We now consider the numerical
solutions of particular examples (1.1)—(1.3).

Example 1 ([1]). As our first example, we consider the linear problem:

x" = 100z O0<t<])
2(0)==z(1)=1.
The unique solution is x(t)=cosh (10¢-5)/cosh b.

Table 1.1 (e, (£))

¢ h=1/20 h=1/40 h=1/80
0.1 —1.5388(—5) —9.8931(—7) —6.2338(—8)
0.2 —1.1333(—5) —17.3228(—1) —4.6184(—8)
0.3 —6.4387(—6) —4.1708(—"17) —2.6314(—8)
0.4 —3.6378(—6) —9.3598(—17) —1.4891(—8)
0.5 —2.7793(—6) —1.8040(—17) —1.1385(—8)

1.5 (—5)=1.5x10-5.
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Table 1.2 (ey ()

t "h=1/20 h=1/40 h=1/80
0.1 4.7568(—5) 2.9940(—6) 1.8747(—7)
0.2 3.5245(—5) 2.2185(—6) 1.3891(—17)
0.3 2.0081(—5) 1.2641(—6) 7.9151(—8)
0.4 1.1363(—5) 7.1537(—7) 4.4793(—8)
0.5 8. 6870(—6) 5.4691(—17) 3.4245(—8)
For this simple problem we have
(3%,(0.5)+Tp(0.5) ) /4 = #(0.5)—2.25(—11)  for 7 =1/80.

Example 2. Let us consider the nonlinear differential equation:

" = 1.bx?

2(0) =14,

0<t<l)
2(l)=1.

This problem has two isolated solutions such that

£(f) = 4/(t+1)? and  £(0.5) = —10.53.

Table 2.1 (e, (£) for £(0.5)=16/9)

t h=1/20 h=1/40 h=1/80

0.1 —1.0389(—6) —6.5916(—8) —4,1385(— 9)
0.2 —1.3221(—6) —8.4604(—8) —5.3121(— 9)
0.3 —1.3207(—6) —8.3876(—8) —5.2656(— 9)
0.4 —1.1856(—6) —17.5272(—8) —4.7248(— 9)
0.5 —1.0034(—6) —6.3684(—8) —8.9970(— 9)
0.6 —8.0610(—17) —5.1147(—8) —3.2098(— 9)
0.7 —6.0576(—"7) —3.8427(—8) —92.4113(— 9)
0.8 —4.0552(—"7) —9.5719(—8) —1.6138(— 9)
0.9 —2.0447(—7) —1.2967(—8) —8.1361(—10)

Table 2.2 (e, (t) for £(0.5)=16/9)

t h=1/20 h=1/40 h=1/80
0.1 3.1666(—6) 1.9871(—1) 1.2432(—8)
0.2 4.0657(—6) 2.5507(—17) 1.5957(—8)
0.3 4.0309(—6) 2.5284(—7) 1.5817(—8)
0.4 3. 6174(—6) 2.2687(—1) 1.4192(—8)
0.5 3.0605(—6) 1.9192(—17) 1.2005(—8)
0.6 2. 4580(—6) 1.5412(—17) 9. 6405(—9)
0.7 1.8466(—6) 1.1578(="7) 7.2492(—9)
0.8 1.2360(—6) 7.7489(—8) 4.8469(—9)
0.9 6.2313(—17) 3.9066(—8) 2.4435(—9)

As in the previous exmaple, we have

(3%4(0.5) +4(0.5) ) /4—#£(0.5) = —3.5(—12) for = 1/80.

15
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Table 2.3 (%, (£) for #(0.5)=—10.53)

¢ h=1/20 h=1/40 h=1/80
0.1 0.47888 2153 0. 47890 7800 0.47890 9356
0.2 —3.00817 147 —3.00811 801 —3.00811 477
0.3 —6.33106 629 —6. 33100 275 —6.33099 890
0.4 —9.03861 971 —9. 03857 472 —9.03857 195
0.5 —10.53624 51 —10. 53622 75 —10. 53622 63
0.6 - —10.41020 88 —10.41019 40 —10.41019 30
0.7 ! —8. 69761 980 —8. 69758 515 —8. 69758 301
0.8 ! —5.86094 255 —5.86089 822 —5. 86089 552
0.9 ; —9.49164 475 —2.49161 604 —2.49161 429
Teble 2.4 (%, (t) for #(0.5)=—10.53)

¢ h=1/20 h=1/40 h=1/80
0.1 0. 47898 8923 0. 47891 4396 0. 47890 9796
0.2 —3.00794 894 —3.00810 426 —3.00811 391
0.3 i —6.33080 168 —6.33098 639 —6.33099 788
0.4 : —9.03843 017 —9.03856 294 —9. 03857 122
0.5 —10.53616 63 —10. 53622 24 —10.53622 60
0.6  —10.41014 19 —10.41018 97 —10. 41019 27
0.7 —8. 69747 345 —8. 69757 604 —8. 69758 244
0.8 —5.86075 761 —b.86088 678 —b5.86089 481
0.9 —2049152 480 —92.49160 861 —92.49161 382

Example 3 ([2]). As our final exmaple, we consider the following nonlinear

differential equation:

2" = 23— (1+cos t)®—cost,

2'(0)=0,

The unique solution is £(t)=1+ cost.

Table 3.1 (e, (2))

z'(1) = —a¥(1) sin 1/(1+cos 1)3.

¢ h=1/8 h=1/16 h=1/32

0 2.7463(—8) 1.7128(—9) 1.0700(—10)
1/8 2.7378(—8) 1.7076(—9) 1.0067(—10)
1/4 2.7110(—8) 1.6912(—9) 1.0565(—10)
3/8 2.6615(—8) 1.6607(—9) 1.0375(—10)
1/2 2.5822(—8) 1.6119(—9) 1.0071(—10)
5/8 2.4626(—8) 1.5384(—9) 9.6138(—11)
3/4 2.2909(—8) 1.4326(—9) 8.9551(—11)
/8 2. 0504 (—8) 1.2857(—9) 8.0405(—11)

1 1.7350(—8) 1.0890(—9) 6.8148(—11)
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Table 3.2 (e, (f))

t h=1/8 | h=1/16 h=1/32
0 —5. 6945 (—8) —4.3398(—9) —2.9604(—10)
1/8 | —6.5089(—8) —4.5891(—9) —3.0336(—10)
1/4 ; —6.9507(—8) —4.7043(—9) —3.0544(—10)
3/8 —7.1104(—8) —4.7102(—9) —3.0280(—10)
1/2 —17.0293(—8) —4.6113(—9) —9.9523(—10)
5/8 —6.7118(—8) —4.4060(—9) —2.8192(—10)
3/4 —6.1347(—8) —4.0695(—9) —2. 6156(—10)
/8 . —b.2553(—8) | —3.5778(—9) —2.3253(—10)
1 \ -4.0197(-8) | —2.9010(-9) —1.9307(—10)

For this example, we have
(3%,(0.5)+Z(0.5))/[4—£(0.5) = —1.7(—12)  for h=1/32.

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]

References

J. AELBERG, E. NiusoN and J. WaLsH: The theory of splines and their applicatiors.
Academic Press, New York, 1967.

P. CrarieT, M. ScHULTZ and R. VArcA: Numerical methods of high order accuracy for
nonlinear boundary value problems. IL. Nonlinear boundary conditions. Numer. Math. 11,
331-345 (1968).

J. DaNieL and B. SwarTz: Eatrapolated collocation for two-point boundary value problems
using cubic splines. J. Inst. Math Applics. 16, 161-174 (1975).

W. Hoskins and G. McMasrter: Multipoint boundary expansions for spline interpolation.
Proceeding of the second Manitoba conference on Numerical Mathematics. Utilitas
Mathematica Publishing Incorporated. Winnipeg, 1972.

L. Ravn:  Computational solution of nonlinear operator equation.
1969.

M. SARAI: Piecewise cubic interpolation and two-point boundary value problems.
LM.S., Kyoto Univ. 26, 345-361 (1971).

Cubic spline interpolation and two-sided difference methods to two-point boundary
value problems. Rep. Fac. Sci., Kagoshima Univ. 9, 31-38 (1976). -

Cubic spline function and difference method. Mem. Fac. Sci., Kyushu Univ.
28, 43-58 (1974).

Wiley, New, York,

Publ. R.




