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Chopping procedure for two-point boundary value problems is considered. A
selection of numerical results is illustrated in Tables 1-4.

1. Introduction and Description of Method

Russell and Christiansen in [1] have treated various adaptive mesh selection
strategies for two-point boundary value problems. One of the major methods is
the numerical integration using chopping procedure. In the present paper we describe
this procedure based on cubic spline interpolation and its asymptotic expansion. The
problems to be solved is

z" = f(t, z, ') 0<t<l) (1)
a¢2(0)—be'(0) = ¢ (2)
a2(1)+b,2'(1) = ¢, . (3)

By using B-spline Q,(t), let us consider a cubic spline function z,(¢) of the form:
Ty(t) = X 0iQu(t/h—1) (nh =1)

with undertermined o; (2=-3, -2, .-, n-1).
The above x,(t) will be an approximate solution if it satisfies

x, = Py f(t, 2, 7;) o<t (4)
a4(0)—bg;(0) = ¢ (5)
ay @y (1) + 0124 (1) = ¢, - (6)
Here the operator P, (k=1, 2) is defined as follows:
(1)  (PuN)@) = ZfiLa)

with the piecewise linear function L,(t) such that
Lyt;) = Li(5h) = &j,
(i) (Pof)(#) = X B:Li(t)
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such that the coefficient 8; (=0, 1, - -+, n) is determined by

(2B0+B1)[6 = (2f(to)+ f(t))/6
(Biss+4Bi+Pi-1)[6 =f (%) (t=1,2,-,n—1)
(2Bn+Bu-1)/6 = (2f(ta)+ f(t4-1))/6 -

For the approximate problem (4)—(6), we have

TaeoreM ([5]). In a sufficiently small neighbourhood of the isolated solution
£(t), there exists the approximate solution x,(f) (k=1, 2) such that

£(0)—wx(t) = (—1)*h23h(2)/12+O(R)
(—1)*(@y(t)—2o(1)/2+0(R®) (B —0).

I

If x,(t) satisfies the inequalty:
|2,(8)—25(t) | < 2¢ (€ is a desired tolerance)
for ¢t €[0, a], [0, 1](@ = nyh, b = nyh), let us consider

the following approximate problem on the remaining interval [a, b]:

x, = Py f(t, z, ;) (e<t<b; h:=h/2) (7)
T4(0): = (w1(@) +25(2))/2 (8)
24(b): = (21(0) +24(0))/2, 9)

where if a=0, the boundary condition (8) is replaced by (5) and if b=1, the boundary
condition (9) is replaced by (6). If the following homogeneous problem

‘P” =f2(t’ ﬁ: ﬁ’) 9’+f3(t9 £, ﬁ’) ‘P’ (a <t< b)
p(@) =p(b) =0

has only the trivial solution =0, then we have the similar result to Theorem. The
successive use of this procedure gives the approximate solution z,(f) such that

(i) z,(2) = £(2) = 2,(t)
(i) |£(t)—2(t) | < €.

Now we consider the application of the stated method by the sample equations in

[11-[4].

2. Numerical Illustration
Example 1 ([1]).
o' —2—)xr=—-1 (o =10-8)
2(0) = 0.5, z(1)=0.
Exact solution: £(¢) = 1/(2—t?)—exp (—10%1—¢)))—exp (—104(1+¢)).
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Table 1
N Remaining interval (e=10-1%) N 4 Remaining interval (e=10-9)
39 [0.825,1] 39 [0.75,1]
13 [0.9125,1] 19 [0.875,1]
13 [0. 95625, 1] 19 [0.9375,1]
13 [0. 978195, 1] 19 [0. 965625, 1]
13 [0. 9890625, 1] 21 [0. 9828125, 1]
13 [0.9953125,1] 21 [0. 99140625, 1]
11 [0. 998046875, 1] 21 [0. 997265625, 1]
9 [0. 9990234375, 1] 13 [0.9984375,1]
9 [0. 9991210938, 1] 15 [0. 9986328125, 1]
17 [0. 9993164063, 1] 97 [0. 998828125, 1]
7 [0. 9995117188, 1] 47 [0. 9989746094, 1]
39 [0. 9997070313, 0999987793] 83 [0. 9991455078, 1]
45 —_ 139 [0.9993041992, 1]
9227 [0. 9994689941, 1]
347 [0. 9996520996, 0, 999985559 ]
441 _—

(N is the number of interior points per subinterval.)

Example 2 ([3]).
x" = 400 (z+ cos?at)+ 272 cos 27t

2(0) =2(1) = 0.
Table 2|
N Remaining interval (¢=10-4)
39 [0,0.5]
4 [0, 0. 25]
41 [0,0.1875]
45 —_—

Example 3 ([4]).
2" = ksinh (kx) (k= 10)
2(0)=0, 2(1)=1.

Table 3

N Remaining interval (¢=10-4)

399 [0.4375,1]
449 [0.82,1]

987 [0. 93625, 1]
203 [0. 9984375,1]

9 [0. 99953125, 1]
5 anm—
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Example 4 ([2]).
2"+ (3 cotan t+2 tan t) 2’ +0.72x = 0
2(30°) =0,  x(60°)=5.

Since this solution curve has a sharp spike approximately at 30.65°, we have computed
x;(t) such that

|£(6)—m(8) | < €£(7) -

Table 4
N Remaining interval (¢=10-%)

79 [0,0.5375]

85 [0, 0. 01875], [0. 01875, 0. 24375]
5, 69 [0, 0. 01875], [0. 01875, 0. 025]
11,3 [0, 0. 01875], [0. 01875, 0. 025]
23,7 [0, 0. 018751, [0. 01875, 0. 02265625
47,9 [0, 0. 01875], [0. 01875, 0. 01921875 ]
95’ 5 -_
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