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Abstract

We study the possibility to represent finite automata by their positive samples
called texts. It is shown that, for the class of all finite automata, such a
representation is impossible. However, restricting a proper subclass of automata,
called stem automata, we really construct the representation system for that class.

1. Representation systems

An effective numbering of objects (machines, languages, etc.) can be considered as
a system which represents the objects by natural numbers. The numbers in the
system are called codes or indices. The system has an encoder, which associates the

objects with the codes, and a decoder, which reconstructs the objects, with the follow-
ing equation.

decode(code(object) ) = object.

Certainly, the equation is essential to the representation. Hence, one may
represent the objects by their data rather than by numbers so long as the equation is
satisfied. We denote this idea by the following diagram.

OBJ —.—>DATA,

g
where OBJ is a class of objects (called a object space), DATA is a class of data (called a
data space), and f and g are total recursive functions such that g(f(z) )=z and that f(z)
is “consistent” with 2 in OB/J.

In this paper, we are interested in classes of finite automata as the object space.
Now, what do we allow as a data space ? Biermann [1], and Tanatsugu and Arikawa
[6] gave the system '

REG ——> D+xN,
8
where REG is the class of all regular sets, D+ is the class of all finite sets of (positive)

strings, and N is the set of all positive integers. Enomoto and Tomita [2] gave the
system
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D*,

AUT —2—

where AUT is the class of all finite automata, and D# is the class of all finite sets of signed
strings.

While their results are useful ones, what the authors want to study is whether we
can represent automata by their positive samples only. Therefore, our data space is
D+, The elements of D+ are called “texts” (Gold [3]). Formally, we call d e D+ a text
of xcREG [AUT] if d<x [d<b(x)], where b(z) is the regular set recognized by .

DrrintTioN 1. A representation system (R.S. in short) of a class L is a diagram

f

L——>D+ such that g(f(x) ) =« and

g
f(x) is a text of x for each z in L. We denote the R.S. by a 3-tuple (L, f, g).

In Section 2, we show that AUT has no representation system.

In Section 3, we define the subclass STEM of stem automata, and consider the
relations between the stem automata and their texts. The considerations introduce a
text generator G5 and an expansion procedure B, and we show that (STEM, G,, E) is a
R.S.. The expansion procedure uses “‘subtext relations”, and this technique is origin-
ated with Huzino [5].

Another related works are found in Schubert [7] and Gold [4]. Schubert gave a
non-effective method to represent partial recursive functions by their finite functions.

The representation is based on the sizes of machines, not on the structural relations.
f

Stating in terms of our definition, Gold gave the system AUT ——— D* with the
g

property that g(d)=x whenever f(z)=d. Our system for stem automata loses the
property, however, this is because the negative samples are not allowed in our system.

2. Fundamental Results

The following theorem is also valid for any class L with L2D+.

TreorEM 1. There is no R.S. of REG.

Proor. Assume to the contrary that (REG,f,g) is a R.S. Since there exists an
infinite language in REG, f is not an identity function on the subdomain D+SREG.
Therefore, there exists a set zye Dt such that f(z) Sz, and f(x,) is not empty. Now
assume that f(fxy) )=f(2,). Then f(me)=g(f(f(w))))=g(f (@) )=, holds. This
contradicts to f(zy)=z, Hence, f(f(z,) ) Sf(x,) holds and f(f(x,)) is not empty.
Similarly, we obtain the infinite sequence of the finite sets {f(")(x,)} such that

S (@) S f ) (wo)
where f®)(x,) is an abbreviation of f(f(---f(xo)---)). Clearly, this is a contradic-
n times

tion.
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CoroLLARY. There ts no R.S. of AUT. ,
Proor. If otherwise, composition of AUT ———=D+ and REG<———AUT

becomes a R.S. of REG, where r is a “realization”.

In other words, the theorem asserts that it is impossible to represent both infinite
and finite sets by texts. On the other hand, finite regular sets are of no concern.
Hence, it is natural to restrict our considerations to REG¥*, the class of all infinite

regular languages.

TareorEM 2. There is a R.S. (REG*, f, g)
Proor. Let x,, z,, #3,--- be an effective enumeration of REG* with no repeti-
tions. We define the encoder f by
f(@) =14f x=x, then min,[w ex]
else (let = be z;) min,[wez and w ¢ {f (), f (@s-1) }]-
The decoder g is defined as
9(d) =1f d = ¢ then ¢ else flag (min, [wed])
flag () =% min,; [f (1) = w].
It is easy to verify that the functions are totally defined, fis one-to-one, and g(f(x))=

x. The consistency is trivial from the definition of f.

The proof of the theorem uses a coding of REG* to N, hence a text f(x) of & dose not
reveals the structure of . In the next section, we investigate the structural relations
between the stem automata and their texts. In counter to the theorem 2, the relations
reveals the structures of automata.

3. Stem Automata

A stem automaton has a very simple structure, however, is not trivial. First we
list up the necessary definitions.

DEriNiTIONS. A stem over a finite alphabet ¥ is a linear tree such that
1. the leaf is specified by the reserved name end,”
2. the arc to the leaf is labelled by #¢J, an end marker, and

3. each arc except 2. is labelled by a letter o €.
The nodes except leaf are called states. The order on the set of states is defined as

¢:<q, iff ¢, is on the path form ¢,.

The unique path from ¢ to ¢’ is denoted by (g — ¢').

A stem automaton consists of a stem S and a set of arcs R, and is denoted by (S, R).
Each arc in R is of the form ¢;°q; with ¢;>¢;, and is called ‘“‘return” arc. Moreover,
for each letter, there is exactly one transition out of each state. Note that a stem
automaton is a determinstic finite automaton under the interpretation that the initial

state is the root of the stem and that the state ¢ with qL end is the unique final state.
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ExaAMPLE.

-« stem S

B = {5, 9195 —> 93, Q2 92> 95 72} -

Now consider the following loop structure to find systematic relations between the
stem automata and their texts.

stem path w=(¢—>¢')

For each n>0, (wo)” wy € b(q) whenever y eb(q’), where b(q) is the set of all path
from ¢ to end. Let 4 be a set

A={wy, (weywy, (wo)Pwy, (wo)wy, ---, (wo)*wy}, a text of q. After scanning w,
A becomes

B={y, owy, o(wo)wy, o(wo)2wy, ---, o(wo)*-1wy), a text of ¢’. Moreover, after
scanning o, B becomes

C=(wy, (wo)wy, (we)2wy,---, (We)*-1wy}, a subtext of 4.

m;
Grrrrererriencens —-q
F: :
Ow .

A ................ —)B:bwA

The figure F roughly shows the relations of texts and transitions, where 9,L denotes
the derivative of the language L with respect to the string w.

Thus if we generate each text for each state by moving backward through the
stem path and by iterating loops continuatively using fixed “loop parameter”, then the
structure of the automaton corresponds to the expansion of the text using the deriva-
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tives, especially, the subtext relations reveal the structure of return arcs. The text
generation is done by the text generator G and the text expansion by the expansion
procedure E.

TexT GENERATOR

For a stem automaton z=(S, R), a text D, for each node ¢ is inductively constructed:
Base: for the leaf node, D,,;={A}.

k
i if S4
Steps: Dy*tf = {aefglq j§o 7 ' 0¥ ¢

A} if otherwise

where 84,5 ¢ iff o is a “self arc” q1>q.

a'€Ry j=1

k . .
Dret _{ 3 [ X (wr)iw] D, if BRj=%¢
ret —
¢ if otherwise,

where R,>¢' iff ¢'is a state from which a return arc ¢'->q exists, and w=(g—q")==.
Finally

D, = Dy*f [rDy+Dyet],

where ¢’ is the direct successor of ¢ in the stem, that is, ¢->¢’ is a stem are.
Gi(x)=D,, where ¢ is the root of the stem.

ExampLE. In the following figure, dotted lines show the correspondences of states
and texts, and the loop parameter % is 1.

Dy, = Dy +abababaD,, = Gy(x)
Dy, = (A+a} [bDg3-+baaabaaD 4]
D3 = aD g+ aabaaD g
............. D,y = aDy

The expansion procedure E takes D e D+ and returns E(D) e STEM. Each state of
E(D) is specified by a string « and is denoted by s,,.
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Expansion ProcEpure K.

E is specified by giving the following “expansion rules”.
R1: the initial state is s,
R2: Assume that sy, S,y Soy090°* 5 Soyeee0, are already created as
states, and let w be ¢y05- - -0y
R2-1. if $a#0yo DS05,05e0; D for some 0<j<nm,
create the return arc $,—>S,,0-+0 ;e
R2-2. if there is exactly one 9,,D+¢ such that ,,D%K00,...c jD for any 0<j <n,
create the new state s,, and the stem arc s, —>s,,. if otherwise, stop the
expansion.
R3. If the expansion is stopped at s, with o,D={2}, define E(D) by the automata

expanded. Note that s, is the end node. Otherwise, E(D) is an arbitrary stem
automaton.

ExampLE. For a text D={a%, a8, a%bat, a?ba?s, aba?t, aba’s, aba?bat, aba?ba®4},
E(D) is

0 ouD Y
ab
2.0 5
deasDs ¢>b
aa aZD >6a1D a Sj:a
aaa‘tD» = {A} e%d

Now let us prove that (STEM, G4, E) is a R.S. From the definition of the text
generator, we have

Facr. For each k=1, G, satisfies the consistency condition, that is, G(x)Zb(x) for
each .
LemMA. Let 44 be 0,G4(x) for a stem automaton x. Then, for each state q of x, we

have

k .
dy=Di+ ¥ [X(g—9") {olg’ > ¢")} 1Dy,

q',9",0)eCq i=1

where w 1s the stem path (¢,—>q), qo S the tnitial state, and o 3-tuple (¢, 9", o)) €Cy off q”; q
18 @ return arc with ¢">q and ¢>q’.

In what follows, ifor ¢’, ¢", ¢, and ¢ with ¢'<<¢<q” and ¢"->¢’ ¢ R, we denote the

expression [f} (g—9") {o(¢'~>¢")} 1 Dq" by I(¢’, ¢, ¢"; o: n, m). The meaning of this
1=n
expression is as follows: |

. TN, . L :
‘Iterate the loop q'—q—q" © times at the state q, where n<i<m’".
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Proor oF THE LEMMA. By the definition of G4, we have
(90—>9) D,=D,;,=G(z), and hence

(1) D,= 4, holds.

For (¢, ¢", o) €Cy, if any, the definition of Dj¢¢ implies Dyl (9" ¢, 9": o: 1,k). Thus
we have
(2) 4y 20> Dy 21(¢',4,9"; 05 1, k) .

By (1) and (2), we have 4,2D,+ X I(¢’, ¢,9"; 05 1, k). The converse is proved

(@, 97,0 ecy
by induction on the number of states. Let qolnh is a stem arc. Then by the defini-
tion, we have

(3) 0.Dyg, = Dy, + > I94,91,9";0;1,k).

(d0,9"",0)ECyq,
Thus, for each state ¢ except g,, we have

4) Aigyng) =3(g») Do+ = I1(99,9,9";0; 1, k)
(40,2",0)€Cq,
€4, <9<q”

Let 2, be a subautomaton of & with its root -

By the induction hypothesis for «,, and by the fact that D,=Dj, a text assigned to ¢ by
Gi(z,), we have

5 »pDg, =D 1 ’a ’ ”; s 4,

() 9(gy9) Dy, ¢t (q',q"z,;)ecq 4,9,9";0;1, k)

e 9/%9,
Note that Dy, =G(x,).
By (4) and (5), we have
A(gy>g) = Dy+ 3 1(q,9.9"; 05 1, k)

(4,9"",0)ECq e ¢’ +40

I(g0,9.9"; 05 1, k)

(0,4",0)ECy e 11<9<q"’
q

C D,+ PN I(¢,9,9";0;1,F).

- (4,90 ec,

The base of our induction is trivial because D,=3,D,=4, and C, is the empty set.

Now we can state the representation theorem for STEM. From the Fact, it suffices
to show E(G4(x) )==.



54 : M. HaracucHI and S. IIMORI

TreorEM 3. For each k=1, (STEM, G4, E) is a R.S.

Proor. Assume that the expansion procedure E has already created s),8q,, * *, Sp=
Soq-+-0, Irom the text G4(x) of x and that s, corresponds a state ¢ of . If ¢ has a self

p
arc g—¢, then
’D;df 2 {A’ P> " 'Pk}
(1) 4, =Dy [rDy+Dp*1+ 5 I(¢,4.9";05 LK)

@,9'",0)ECy
holds. Since stem automata are deterministic, we have
b,,Aq = aprk(x) = {A’ [ AR Pk—l} [T-Dq"‘i"D;”] c Aq .

Thus, the self arc s,>s,, is formed by the expansion rule R2-1.

Similarly, for a return arc g->¢, the equation (1) implies

94w = I(g1, 91,45 03 0,k—1) = (¢ > q) Dy+1(g1, 91,95 0; 1, k—1) .

Note that, among the elements of C, only (¢, ¢, o) is remained by J,.
Since (¢,—¢) D,=Dq, and
1(91, 41: 9505 1, k"'l) - 1(91, ¢, 9505 7;7 k) < Dg:t - Dql hOldS’ we have

3,4 S Dy,  d(g-q,) -

Hence, the return arc s, —>sg,—»q,) is created by R2-1. Finally, we verify that the
stem is exactly expanded. Let w, be (g—end), then w, is the minimal length string in
b(g). Since |w,|<|wy| holds for each ¢’ with ¢’<gq, we have

)

wgeD,; S 4, and w, ¢ 4y S b(q') .

Thus, if g¢->¢, is a stem arc, we have
A(g9s0) TS 4(29—54%) for each ¢’ with ¢’<q. That is, the new state s(go—9), and the

transtion $(gg—q)—S(90—>9), are created by the rule R2-2.
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