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Abstract

The purpose of the present paper is to give a general theory of generalized Berwald
spaces.

§0. Introduction.

A Berwald space is an affinely connected space defined by Berwald [3, 4], which is
a Finsler space such that the coefficients G/, of the Berwald connection BI' [2] depend
on position alone. If we obey the Cartan connection CI' [6], such a space is also the
one in which the coefficients I'*;?, depend on position alone. Wagner [33] generalized
the notion of Berwald space, and called a Finsler space as a generalized Berwald space if
there is possible to introduce a generalized Cartan connection with torsion, in such a way
that the coefficients *I';; depend on position alone. And in the two-dimensional case
he characterized such a space in terms of the main scalar I (Berwald [4, 5]), and showed
that a Finsler space with the so-called cubic metric is an example.

In his paper [7], Hashiguchi, one of the authors, investigated various axioms
imposed on a Finsler connection, based on the modern theory of Finsler geometry by
Matsumoto [20, 22], clarified a geometrical meaning of the generalized Cartan
connection given by Wagner, and characterized Wagner’s generalized Berwald space
of general dimensions. Then, a generalized Cartan connection and so a generalized
Berwald space were defined in broader sense than Wagner’s, while Wagner’s were
called a Wagner connection and a Wagner space respectively.

On the other hand, Ichijyo, the other author, [13, 14] obtained the notion of
{V, H}-manifold from the study about Finsler spaces modeled on a Minkowski space
and showed that such a manifold is just a generalized Berwald space. This result is
significant in the sense that global considerations are possible in generalized Berwald
spaces.
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Recently, Matsumoto [23] generalized Okada’s axioms [29] which determine the
Berwald connection BI', and gave the notion of generalized Berwald connection. And
he showed that a generalized Berwald space can be also defined in terms of a generalized
Berwald connection. Since the notion of Berwald space was defined in terms of BT,
Matsumoto’s result is very satisfactory to the establishment of the notion of
generalized Berwald space.

Generalized Berwald spaces thus defined might look peculiar, but the peculiarity
is thought to be rather useful to characterize Finsler spaces with complicated character,
and have been studied by the authors and the others (Aikou-Hashiguchi [1], Hashiguchi
[9], Hashiguchi-Ichijy6 [10, 11], Hashiguchi-Varga [12], Ichijyé [15, 16, 17], Matsumoto
[24], Miron-Hashiguchi [27], Tamassy-Matsumoto [31], etc.), and have formed an
interesting class among Finsler spaces, waiting for the further studies.

The purpose of the present paper is to give a general theory of generalized Berwald
spaces. In §1, §3, §4, and §5 we state the respective definitions of generalized Berwald
spaces by Wagner [33], Hashiguchi [7], Matsumoto [23] and Ichijyo [13, 14] com-
paratively, and in §6 we consider the geometrical significance from various standpoints.
The definite definition of a generalized Berwald space is given in §3, and [7] is
improved. In § {V, H}-manifolds are defined also for a vector space V with an
eccentric norm.

The terminology and notations are referred to Matsumoto [20, 22]. As to Finsler
connections, we sketch the materials necessary for our discussions, in §2.

The authors wish to express their sincere gratitude to Professor Dr. M. Matsumoto
for the invaluable suggestions and encouragement.

§1. Wagner’s generalized Berwald spaces.

1.1. Let M and T(M) be a differentiable manifold and the tangent bundle
respectively. A coordinate system (‘) in M induces a canonical coordinate system
(%, ¥*) in T(M). And we put 8,=8[ox*, d;=>3/ay".

A positive-valued differentiable function L(z, y) defined on a domain D of T(M)-
{0} is called a Finsler metric of M, if it satisfies the following conditions:

(1) L is (1) p-homogeneous: L(x, Ay)=AL(z, y) for A>0,

(i) The matrix (¢;;) is regular: g=det(g;;)740, where ¢;;=1/2 3;5,L>

An n-dimensional differentiable manifold M with a Finsler metric L is called a
Finsler space and is denoted by F*=(M, L), if the length s of a curve zi(f) in M is
measured by s:fL(x, dx/dt)dt. Then L and g;; are called the Fundamental function and
the fundamental tensor of F* respectively. And we put y;=g¢;y", V=y‘|L, l;=g;l'
(=8:L=y/L), and (g")=(g:;)~*.

A Finsler metric is traditionally defined in the more restrictive sense that D=T(M)
-{0} and (g;;) be positive-definite. However, our definition may regard the following
well-known metrics as Finsler metrics:
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(L1) L(z,y) = (a:jx(x)y'yiy*) 2,
(1.2) L(z,y) = (a:j(@)y'y!) 2+ bi(x)y’ ,
(1.3) L(z,y) = a;i(@)y'y’|bi(x)y’ ,

where (a;i(z)y*y?)'/? is a Riemannian metric and b;(x) is a non-zero covariant vector
field. The Finsler metrics (1.1), (1.2) and (1.3) are called the cubic metric, the Randers
metric [30] and the Kropina metric [18, 19] respectively.

1.2. In the two-dimensional case, Cartan’s torsion tensor C;;z=1/2 3;¢;; is expressed
as

(14) LO,‘jk = Im,-mjmk ,

where m; is the unit vector orthogonal to I: m;=—I2V'g, my=IV g. The scalar I is
called the main scalar of F2. The differential equation 9;§=m;/L is integrable, and the
scalar g is called the Landsberg angle.

1.3. Wagner [33] called a Finsler space F? as a generalized Berwald space if there 1s
possible to introduce a generalized Cartan connection, with torsion (¥I'j,—*I'y*;5£0), in
such a way that the coefficients *I';//, depend on position alone: 8,*I'j;=0. *I'j"; were
there given by

(1.5) * =%y 8,0 (Tmimgmy + Fmgmy—milymy)
+s,m! (PPmimipmyg+ I(Fmpmp—milimg—mim,ly)
+mill—Umjl)
where I, are the coefficients of the Cartan connection, m‘=g*"m,, and s, is a covariant

vector field. By considering the condition that s,(0) can be chosen in such a way
that *I'y’; depend on position alone, he obtained

Theorem 1.1. (Wagner) A necessary and sufficient condition that F? (3I[36+0) s
a generalized Berwald space is thst 9I[20 be a function of I. If 8I[20=0, then I must
be constsnt.

Theorem 1.2. (Wagner) F? with the cubic metric (1.1) is a generalized Berwald
space and dI[00—=-3[2-312.

F? with a constant I is a Berwald space. If we consider a Berwald space as a
special generalized Berwald space, the assumption 8//3640 may be omitted. The detail
of the cubic metric is referred to [25].

What is the generalized Cartan connection given by (1.5)? How can we
characterize the generalized Berwald spaces of general dimensions? Are there other
interesting examples of generalized Berwald spaces ?
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§2. Finsler connections.

2.1. Given an n-dimensional differentiable manifold M, we denote by L(M) (M,
7, GL (n, R) ) and T(M) (M, =, V, GL (n, R)) the linear frame bundle and the tangent
bundle respectively. The standard fibre V is assumed that a base {e,} is fixed. The
induced bundle 7 1L(M)={(y,2) e T(M)X L(M)|+(y)=n(z)} is called the Finsler bundle
of M and denoted by F(M) (I'(M), 7y, GL(n, R)). The Lie algebra of the structural
group GL(n, R) of L(M) and F(M) is denoted by gl(n, R) and the canonical base by
(L}

Since a point of F(M) is a pair of a tangent vector y and a linear frame z—(z,) at a
point x of the base manifold M, a coordinate system (x¢) in M induces a canonical
coordinate system (@, ¢, 2,°) in F(M) by y=v'(3/ox’), and z,=z2,"(/ax?),.

2.2. The Finsler connection FI" in M is defined in three equivalent manners as a
pair (I', N), as a pair (I'*,I") or as a triad (I'y, N, I'*), where I" and I'* (resp. I'?) are a
connection and a horizontal (resp. vertical) connection in F(M), N is a non-linear connec-
tion in (M), and I'y is a V-connection in L(M). In F(M) the fundamental vector field
Z(A) (Aegl(n, R)) and h- and v-basic vector fields B*(wv), B*(v) (ve V) are defined,
and these three fields span the tangent space of F(JM) at each point. They are
expressed by

(2.1) Z(A4) = 4"z, (0[e2")
(2.2) Bh(v) = vz, *(a/oxt— N aJoy' —2,/F 10[024')
(2.3) Br(v) = vz, (8/ey* —2/C; so[0y") ,

where A=A4,°L," ¢ gl(n, R) and v=2,¢ V. Fj,, Ny, Cj; are called the coefficients of
FI'. The Finsler connection FI" having Fj';, Nis, Cj'; as the coefficients is denoted by
FI'=(Fj;, Ny, Cfy).

There is a tensor field D called the deflection tensor, which expresses a relation
between I'y and N, and it is expressed as

(24) Dik == ijjik—-Nik .

Definition 2.1. A Finsler connection FI'=(F iy, Niy, Cjs) is called linear, if Fjs
depend on position alone. ,

Let I'=(I'jis(z)) be a linear connection of M, that is, a connection in L(M).
Then a linear Finsler connection F(I") without deflection is obtained by F(I')=(Ij%,
yil'i, Cf), which is called to be associated to I', where Cj; is freely chosen, for
instance, C;i;=0. Especially, in a Finsler space we specify C,; to Cartan’s torsion
tensor 1/2 ¢"8,g,,.

2.3. Let K be a Finsler tensor field. The %- and v-covariant derivatives of K are
defined by 4*K(v)=B*(v)K and A4°K(v)=B¥(v)K respectively. If K is assumed, for
instance, to be of type (1.1), i.e.,
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(2.5) K =7 2K fe,Q¢t

where (2';%)=(2,")"1, and {e?} is the dual base of {¢,}, their components K;; and K|,
are expressed as follows:

(2.6) Kj ;= 8Ki+K"F, ,—K,F",
2.7 Ki|y=8,Kf + K;"C\iy—K,'Ci™s>
where §; = 8;—N™;3,, .

2.4. If we consider the Lie brackets [ , ] of the basic vector fields, we have
the following structure equations:

(2.8) [BH(v), BXw)] = BHT(v, w) )+ B (BX(v, w) )+ Z(R¥(v, w) ) ,
(2.9) [BH(w), B*(w)] = BH(C(v, w) )+ BY(P'(v, w) )+ Z(Pv, w) ),
(2.10) [B?(v), BY(w)] = Bv(SY(v, w) )+ Z(S*(v, w) ),

from which we have five torsion tensors T, C, R, P, S! and three curvature tensors R2,
P2 S2. Their components are expressed as follows:

(2.11) T: Ty =%u{Fisy; S Su=Wp(Cfr}; C: Cfy,
(2:12) R: Rij = (8:N%)); Pt Plj=0,N',—Fy;,

(2.13) R2: Ry = Win(8sF 3+ By iF i) +Cil B™

(2.14) P2 Pyii = 8414 i— 045+ Oi o P™in

(2.15) 822 Siiie = Wi {8:C3 i+ Ci™i00i s}

where %;;{....} denotes, for instance, N;;z{4;s} =Ajz—As;.
For the later use we give

Definition 2.2. A Finsler connection (Fj’;, N*s, Cji;) is called a C-zero connec-
tion if C;/,=0, and is called an N-connection if P;;=0: Fj=3;N ‘.
Let a Finsler connection FI'=(F;, Ny, Cj';) be given. A Finsler connection (F},

Ny, 0) is called the C-zero connection of FI', and a Finsler connection (9;N%;, Nég, 0) is
called the N-comnection of FI.

§3. Generalized Cartan connections and generalized Berwald spaces.

3.1. Now we are concerned with a Finsler space F*=(M, L). We have

Proposition 3.1. For a giwen alternate and (0) p-homogeneous Finsler tensor field
T4, there exists o unique Finsler comnection CI'(T)=(Fjs, N¢y, Cj) satisfying the
Jollowing four axioms:

(C1) It s metrical: g;j=0, g:j| =0,
(C2) The deflection tensor D vanishes: N'y=yiFy,
(C3) The torsion tensor T s the gwen Tjy: Fiy—Fii=Tj,
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(C4) The torsion tensor S* vanishes: Cj y=C};.
The coefficients are given by

(Fir = I*i =g Cirn(Cr™ Ay o—Ag™1) + Cf (O™ Ao o—Ao™)
+0u(Ci™ Ay o —Ag™) + Af's,
(3.1) Niy = G—C¥ Ay o+ Ag's

, 1 ..
Ci's = 59" gjr

where A= T+ T +T4)[2, and T'*jfy, Gy, Cfy are the coefficients of the Cartan con-
nection. CI'=CT'(0), and the subscript 0 means the contraction by yi: Ay"™,=y'4;™.

Definition 3.1. A Finsler connection CI'(T) given by Proposition 3.1 is called a
generalized Cartan comnection.

A Finsler space is called a generalized Berwald space if there is possible to introduce
a linear generalized Cartan connection CI'(T).

3.2. As a typical generalized Cartan connection we have

Proposition 3.2. For a given (0) p-homogeneous covariant Finsler vector field sy,
there exists a unique Finsler connection WI'(s)=(Fj;, N, Cf'y) satisfying (Cl), (C2),
(C4) and

(C3%*) It vs semi-symmetric with respect to the given s:

Fiy—Fy; = 8jisp—8i's; .
The coefficients are given by
Fiy=T*j+ LS/ +0f wCi™)st
+ (@ Cin—yiCti—yaCit)s' + Ci aso+ gins —8i'sj ,
(3.2) Nip = G, — L2048 35 —8i's,

. 1 ..
Ci'v= 59" Sgjr »

\

where st=g'™s,, and Sjy are the coefficients of S? of CT.

Definition 3.2. A TFinsler connection WI'(S) given by Proposition 3.2 is called
a Wagner connection.

A TFinsler space is called a Wagner space if there is possible to introduce a linear
Wagner connection WI'(s).

In the two-dimensional case, the F; given in (3.2) become Wagner’s *I'j%; given
by (1.5). Thus we have noticed the geometrical meaning for the generalized Cartan
connection given by Wagner.

3.3. In the paper [7] a generalized Cartan connection was defined as a Finsler
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connection satisfying the axioms (C1), (C4). Given a Finsler tensor field D, and an
alternate Finsler tensor field 7', there exists a unique Finsler connection satisfying

(C1), (C3), (C4) and
(C2%) The deflection tensor ts the given D¢y

However, only connections without deflection have been treated in almost the
subsequent papers. Hence, we reform the definition of a generalized Cartan connection
and so a generalized Berwald space, and adopt Definition 3.1. Then Theorem 3 of
[7] is improved as follows.

Theorem 3.1. A Finsler space ts a generalized Berwald space if and only if there
. emusts an alternate Finsler tensor field T'jy(x) such that CT'(T) satisfies the condition Cjjpy
=0.

Especially, a Finsler space is a Wagner space if and only if there exists a covariant
vector field sy(x) such that WI'(s) satisfies the condition C;jp;=0.

A Berwald space is characterized by the condition C;j; ;=0 with respect to CT'.
Thus a generalized Berwald space and a Wagner space of general dimensions are
characterized by the formally same condition as the one for a Berwald space.

3.4. Asan example of a generalized Cartan connection with surviving deflection we
have

Proposition 3.3. For a gwen (0) p-homogeneous covariant Finsler vector field sy,
there exists a unique Finsler connection MI'(s)=(Fjs, N, Cf'y) satusfying (C1), (C3), (C4)
and

(C2*) The non-linear connection is the Cartan one: Niy=G's.
The coefficients are given by

(3.3) Fiv=T*f+gus'—8i's;, Nipy=G, Cfr=1/2¢"8:gj, .

Definition 3.3. A Finsler connection MI'(s) given by Proposition 3.3 is called a
Miron connection.

Whereas the Wagner connection has the very complicated coefficients, the Miron
connection is represented by the simple coefficients. Miron [26] treated the general
theory of transformations of Finsler connections. The simplicity applied the theory
gave us interesting invariants of the Miron connections ([9], [27]). On the other hand,
complexity of the Wagner connection serves to characterize Finsler spaces with
complicated characters.

§4. Generalized Berwald connections and generalized Berwald spaces.

4.1. In his recent paper [23], Matsumoto generalized the notion of Berwald
connection as follows.

Proposition 4.1. (Matsumoto) For a given alternate and (0) p-homogeneous Finsler
tensor field Ty satisfying the condition
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(41) y'(ékTii,—-ékai,) =0 ,

there exists a unique Finsler connection BI'(T)=(F s, Ny, 0) satisfying the following four
axioms:

(Bl) L;=0,

(B2) The deflection tensor D vamishes: Niy=yiFj,,

(B3) The torsion tensor P! vanishes: Fj,=0;N%,

(B4) The torsion tensor T s the given Tjy: Fiy—Fy;=Tf,.

The coefficients are given by
Fip=Gi— 30110+ 3iT+0)/2,
Nig= G — (03T g0+ T2,
where Gy, Gy are the coefficients of the Berwald connection BI'=BI'(0).

(4.2)

Definition 4.1. A Finsler connection BI'(T) given by Proposition 4.1 is called a
generalized Berwald connection.

A Finsler space is called a generalized Berwald space if there is possible to introduce
a linear generalized Berwald connection BI'(T).

4.2. Contrary to the case of CI'(T), T/, in BI'(T) is not necessarily given
arbitrarily. It must satisfy the condition (4.1). It is noted, however, that (4.1) holds
good if T, depend on position alone, and we have

Theorem 4.1. (Matsumoto) Let T/, be an alternate and (0) p-homogeneous tensor
field. If Tj, depend on position alone, then CI'(T)=(F s, Niy, Cjs) and BI'(T)=(Fj;,
Niy, 0) are defined, and BI'(T) is the N-connection of CI'(T). And CI'(T) is linear if and
only if BI'(T) vs linear. In this case BI'(T) 1s the C-zero Finsler connection of CI'(T).

Thus Definition 4.1 is equivalent to Definition 3.1 for the definition of generalized
Berwald space. A Wagner space is also defined in terms of a C-zero Wagner con-
nection. Since the notion of Berwald space was originally defined in terms of B,
the above result is very satisfactory to the establishment of the notion of generalized
Berwald space.

The discussions about the generalized Berwald connection need the homogeneity of
T4 So, in the definitions of CI'(T), WI'(s) and MI'(s) we imposed the homogeneity
for Ty, si, too.

4.3. Given a linear connection I'=(I'jix(x)) of M, we have two linear Finsler
connections F(I")=(I"js, 4"/, C;'y) and F(I')=(I'j's, 4T+, 0) associated to I'. Then
we have

Proposition 4.2.. The h-covariant derivative of a Finsler tensor field K with
respect to F(I") coincides with the one with respect to F(I'). If the components of K
depends on position alone, it coincides also with the one with respect to the original I

Since F(I') and F(I') have the same torsion tensor 7'jy(x)=TI"j}—I;, it follows
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from Theorem 4.1 that F(I') is a generalized Cartan connection if and only if F(I') is
a generalized Berwald connection, which is characterized by L;;=0. Thus we have

Theorem 4.2. Let a linear connection I' of M be gwen. If it holds that L,;=0
with respect to the Finsler connection F(I') or F(I') associated with I', then F(I') (resp.
F(I')) is a linear generalized Cartan (resp. Berwald) connection, and the space s a
generalized Berwald space.

Then, if T is symmetric (resp. semi-symmetric), then F(I") is the Cartan connection (resp.
a Wagner connection), and F(I') is the Berwald connection (resp. o C-zero Wagner con-
nection), and the space ts a Berwald space (resp. a Wagner space).

§5. {V, H}-manifolds.
5.1. Let V be an n-dimensional linear space with a fixed base {e¢,}. A global

coordinate system (v®) is introduced on V by v=v%¢, ¢V, and the differentiability is
defined for a function on V.

Definition 5.1. A positive-valued differentiable function f(v) defined on V-{0} is
called a Muinkowsks norm of V, if it satisfies the following conditions:

(1) fis (1) p-homogeneous: f(Av)=Af(v) for A>0,

(ii) The matrix (g,;) is positive-definite, where g,;=1/2 8%f2?/av*a0’.

An n-dimensional linear space V with a Minkowski norm fis called an n-dimensional
Minkowskr space, and is denoted by (V, f).

Proposition 5.1. In a Minkowsks space (V, f), the set
(5.1) G = {I' e GL(n, R)| f(Tv)=f(v) for any ve V}

18 a closed subgroup of GL (n, R), and so becomes a Lie group.

5.2. The tagnent space T',(}M) at any point = of a Finsler space (in the restrictive
sense) (M, L) is a Minkowksi space, but the tangent spaces at two distinet points
are not necessarily same. So an important class of Finsler spaces is given by the
property that the tangent spaces at any points are linearly isomorphic to a single Minko-
wski space.

Proposition 5.2. Let H be a Lie subgroup of a Lie group G defined in Proposition
5.1. Suppose that an n-dimensional differentiable manifold M admaits the H-structure in
the sense of G-structure. Let {U} be a coordinate neighbourhood system and z=(z,) be a
linear frame adapted to the H-structure. Then any tangent vector y at e M 1s expressed
as y=y'(dfou’)=1v%,. The function L defined on T(M)-{0} by ‘

(52) L(w’ y) :f(v) (?):'vaea’ vt = z,iayi)

does not depend on the choice of the local coordinate system and the adapted frame, and it
gwes globally a Finsler metric of M. '
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Definition 5.2. The Finsler metric given by Proposition 5.2 is called a {V, H}-
Finsler metric.
A Finsler space (M, L) is called a {V, H}-manifold if L is a {V, H}-Finsler metric.

5.3. Ina {V, H}-manifold (M, L), let I" be a G-connection relative to the H-structure,
then it holds L ;=0 with respect to the Finlser connection F(I") associated to I'.  Hence,
by Theorem 4.2, a {V, H}-manifold is a generalized Berwald space. In the case that
M is connected, the converse is also true. If a Finsler space F* is a generalized Berwald
space by a linear generalized Cartan connection (I'j'x(x), y/I"j's,C;%s), the F* is a {V, H}-
manifold, where H is the holonomy group of the linear connection (I'jx(x) ).

Theorem 5.1. A {V, H}-manifold is a generalized Berwald space. Conversely, if
M vs connected, a generalized Berwald space (M, L) vs a {V, H}-manifold whose {V, H}-
Finsler metric coincides with L.

A differentiable manifold M admitting an {e}-structure gives a simple example of
a {V, H}-manifold.

Another example is given by a Minkowski space V with a Minkowski norm

n 1/2
(5.3) fO) = (3 092) " + kot
where £ is constant and 0<k<1. Then G of (5.1) is 1 XO(n-1) and we have a Randers
space.

Theorem 5.2. Let M be an n-dimensional differentiable manifold. If M admaits a
{1 X0 (n-1) }-structure, then M admits o Finsler metric such that

(5.4) L(z, y) = (a:i(@)y*y?) 2+ kby(z)y’ ,

where a;;(x) 1s a Riemannian metric on M and b,(x) is a covariant vector field on M
satisfying a'ibb;=1. Comversely, if M admats the above Finsler metric, then M is a {V,
1 X O(n-1)}-manifold.

5.4. The above stated notion of {V, H}-manifold [13, 14] followed from the
consideration of a two-dimensional Finsler metric [5] given by

(5.5) Lz, 22, y', ) = (y*+29?)?y* (2 R).

In order to treat such a non-restrictive Finsler metric, we can generalize the
notion of {V, H}-manifold by defining a Minkowski norm f of V in a non-restrictive
sense as a positie-valued differentiable function defined on an open set W of V-{0}
satisfying the following conditions:

(1) If ve W then dwe W for any A>0, and f(Av)=Af(v),

(1) (gg) 1s regular,

(iii) There is a continuous function f defined on a dense open set U of V containing

W such that f=f|W.
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Then the set
(5.6) G = {T < GL(n, R)| f (Tv) = f (v) for any v, Tve U}

becomes a Lie group, too. Let H be a Lie subgroup of G. If an n-dimensional
differentiable manifold M admits the H-structure, we can define a generalized Berwald
space (M, L) in the way shown in Proposition 5.2 by L(z, y)=f(v) (v=0, for y=2v%,).

For example, the Finsler metric (5.5) follows from the Minkowski norm given by

(5.7) f@) = (' +z?)?[o! (ze R),
where W=U={ve V|v'40}, f=F and G is given by

o { [a za(l—a)

5.8
©8) 0 a?

] ‘a;éo, a€ R] .
Other interesting examples are obtained from the Minkowski norms of V given by the
arithmetic, geometric and harmonic means of the components v* of ve V.

§6. The geometrical significance of a generalized Berwald space.

6.1. An interesting example [10] of a generalized Berwald space is obtained from
an (o, B)-metric L(«, B), which is by definition [21] a (1) p-homogeneous function of
a(®, y)=(a;j(x)y'y))'2 and B(x, y)=b;(x)y’, where  is a Riemannian metric and b; is a
covariant vector field.

A Finsler space F"=(M, L(a, B)) has two metrics. The one is the Finsler metric
itself, and the other is the Riemannian metric o. A linear connection I'=(I",;) of
M is called to be metrical if it is metrical with respect to the latter: V,a;;/=0, where 7,
denotes the covariant differentiation with respect to I'. Let b; be parallel with respect
to a metrical linear connection I': Fzb;=0. With respect to the associated Finsler
connection F(I") we have from Proposition 4.2 that a;jz=Fa;j=0, b;;;=V;b;=0, which
implies L,;=0. Thus we have from Theorem 4.2

Theorem 6.1. If there exists in F*=(M, L(a, f)) a metrical linear connection I' such
that b; is parallel with respect to T', the associated Finsler comnection F(I') is a linear
generalized Cartan connection, and F" becomes a generalized Berwald space.

Especially, of " vs semi-symmetric, F(I") s a linear Wagner connection, and F” becomes
a Wagner space. If b; s parallel with respect to the Riemannian connection determined
by «, the F* is a Berwald space. '

The interest of geometry is in the classification theory. A generalized Berwald
space offers a criterion of classification to get interesting models of Finsler spaces. And,
it is noted that this theorem rose naturally from considerations of {V, H}-manifolds.

6.2. As is shown in [11], a generalized Berwald space plays an important role in
the conformal theory of Finsler metrics [8].

Proposition 6.1. Let a generalized Cartan connection FI'=(Fj,, N'y, Cj') be
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gwen wn o Finsler space F*=(M, L). If for a conformal change L=e°*)L we put

(6.1) F] =F; k—I—SJ Ok, Nk—N’k—l—y ok, Cj"k=0jik,
where oy="230, then FI'=(F j*;, N';, Cj') is a generalized Cartan connection of the Finsler
space F*"=(M, L).
The torsion tensor T, is changed as T 3=T s+ 8;03—8;'c;, but the other torsions
C, R, P, St and all curvatures R2, P2 S2 are invariant for FI" and FTI.
It is noted that the invariabilities of B! and R? are due to the fact that FI'is p-
homogeneous and oy is gradient. Since o, depend on position alone, we have

Theorem 6.2. A generalized Berwald space (esp. a Wagner space) remains to be
a generalized Berwald space (esp. & Wagner space) by any conformal change of Finsler metrics.

Definition 6.1. A Wagner connection WI" (o) is called a o-Wagner connection if o}
is a gradient vector field ¢;=00 of a fuction ¢(z). A Finsler space F* is called a
o-Wagener space, if F* becomes a Wagner space by a o-Wagner connection.

If F*=(M, L) is a Berwald space, then F*=(M, e°L) becomes a o-Wagner space by
WI'(s). Conversely, if F*=(M, L) is a o-Wagner space by WI'(o), then F*=(M, e~L)
is a Berwald space. Thus we have

Theorem 6.3. A Finsler space F* is conformal to a Berwald space, if and only if

F" becomes a o-Wagner space.
Since R? is invariant by (6.1), we have

Theorem 6.4. A Finsler space F" is conformal to a locally Minkowsks space, if and
only tf F* becomes a o-Wagner space by a o-Wagner connection whose curvature B> vanishes.

A locally Minkowsks space is by the original definition a Finsler space such that there
exists a coordinate system (z7) in which g;; are functions of y* alone, and is characterized
as a Berwald space whose curvature R? vanishes. Tamdssy-Matsumoto [31] proved
directly Theorem 6.4 by the original definition.

The above theorems show that if we know a result about a Berwald space (resp. a
locally Minkowski space), we can directly obtain a result about a space conformal to a
Berwald space (resp. to a locally Minkowski space) in terms of a o-Wagner space. For
example, Hashiguchi-Varge [12] generalized a result (Numata [29] and Varga [32])
about a Berwald space of scalar curvature.

6.3. Could a fixed Finsler space (esp. Berwald space) become various generalized
Berwald spaces or Wagner spaces ? In order to solve this difficult problem partially,
Aikou-Hashiguchi [1] consider whether the paths in generalized Berwald spaces can
coincide with the geodesics, and obtained

Theorem 6.5. Let F* be a generalized Berwald space by a generalized Cartan connec-
tion CI'(T)=(Fj4, Niy, Cjs). Then the paths with respect to CT'(T) coincide with the
geodesics of F", if and only of F* is a Berwald space and CI'(T) s given by
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(6.2) Fiy=T*H+ 1742, Nip=Gp+T4%/2,
and T} satisfy

(63) Qijs'Trsk =0 ’
where Qi = 2Cy" + 987 + 958" [16].

Theorem 6.6. A Berwald space cannot become a non-trivial Wagner space in such
a way that the paths coincide with the geodesics of F™.
Are there T4(x)=+0 satisfying (6.3) ? We have from (6.3)

(6.4) T#=0.
So, in the two-dimensional case, (6.4) implies 7';;=0.

6.4. In his appearing paper [24] Matsumoto finds all two-dimensional Wagner
spaces as follows. Putting z=y?/y! for a positive !, we have a function A of !, 2% and 2
by

(6.5) A(#t, 2%; 2) = L(at, 22 1, y?/y") ,

which is called the associated fundamental function of F*. Then I? and oI/af are
expressed as follows:

(6.6) T2 = O(N)2/AAN" 3NN [2(N)2 4+ AN )/ 4(X")3
(6.7) 2(3I/38) = 3—3(N')2/2AN" — N A" [(A")2—BA(X")2/2(N")3+ AX"" [(X")2 ,

where A’=0A[oz etc. Thus from Theortem 1.1 we have

Theorem 6.7. (Matsumoto) T'he associated fundamental function X of a two-dimen-
sional Wagner space with 3I[30-£0 is given by an ordinary differential equation of fourth
order.

By specifying the above differential equations to be solved, various intersting
examples of two-dimensional Wagner spaces have been obtained. For example, the
differential equation obtained from 8I/30=3/2-I?/3 gives all the Kropina metrics (1.3)
as the solutions. Thus, every two-dimensional Finsler space with a Kropina metric is
a Wagner space.

This research is significant in the sense that various fundamental functions with
interesting character spring out concretely.
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