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Abstract

We consider an application of quadratic spline function to a numerical solution of two-
point boundary value problem. We derive asymptotic expansion of the error which is of use
for a posteriori improvement of the quadratic spline approximation and a mesh selection
strategy (chopping procedure).

1. Introduction

We shall consider the numerical solution of the following two-point boundary value
problem :
x"(t)=f(¢t, x(2), x'(¢)), 0<¢<1
(1.1) @ox(0)—box"(0)=co
alx(1)+ blx,(1)201
where f(#, x, y) is defined and sufficiently smooth in a region D of (¢, x, y)-space
intercepted by two hyperplanes t=0 and ¢=1.
Here we rewrite (1.1) in the following form :
x'(8)=y(1), 0<¢<1
(1.2) v ()=£(t, x(8), y(¢)), 0<t<1
aox(O)—boy(0)=00
le(1)+b1y(1):Cx.
By making use of the B-spline Q,.:(¢):

m+1 )
(1.3) Qua(t)=1/m1) 8, (~D(™ =i
where
o (=D, >
(t—l)+—{ 0, t<i, |
we consider spline functions of the form x,(¢)= _n_Z_}_lz @:Qs(t/h—1i) and y,(t)= ‘n‘i_ll B:Q:(t/
h—1i) (nh=1) with undetermined coefficients (a-2, a1, ..., @n-1, B-1, Bo, ..., Bn-1).

P

The above x, and y, will be approximate solutions to the problem (1.2) if they satisfy
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xr(t)=yn(t), 0<t<l1
yu(8)=PLf (¢, xa(2), yu(2))], 0<¢<1
aoxh(O)_boyh(O):Co
d1xh(1)+b1yh(1):C1.

Here P is an operator defined by

(1.5) (Pe))="Z iruaze(t)

where g;.1,=g((i+1/2)h) and x;(¢) is the characteristic function on [¢;, t:+1] (¢:=ih).
For simplicity, let us denote ;=p, p+7, ..., g (=p+(m—1)r) by i=p(r)g. Since Q3(¢)
=Q.(t)— Q.(t—1), from (1.4) we have a system of determining equations with respect to

(a/z-, 181) :

(1.4)

'(1/1’1)(0’;"'6?:'—1):,3:', i=-—1(1)n—1
(1/h)(6i_3i—1):f(ti+l/2, (1/8)(di+6(1’i—1
(1.6) 1 +ai-2), (1/2)(B:i+Bi-1)), i=01)n—1

(1/2)ao(@-1+a-2)—bof-1=co
(1/2)01(&n—1+an—2)+b15n—1:Cl
where ¢;41,=(i+1/2)h.
In practical computation, by eliminating 8;, i=—1(1) »—1, we have the system of
nonlinear equations with only @;, i=—2(1)n—1: -
(1/h*Na:—2ai-1+ ai-2)=f(tivrz, (1/8)a:
+6ai—1+a’i—2), 1/(2h)(0'i"0'i—2)), iZO(l)n_l
(1/2)do(af—1+a—z)_(bo/h)(a’—L_a'—z):Co
(1/2)ai(@n-1+an-2)+(b1/R)@n-1— @n-2)=c1.
In the present paper we shall assume that the problem (1.2) has an isolated solution

(%, v) satisfying the internality condition

(1.8) U={(t, x, VIx—2() + ly—5() <8, t<[0, 1]})D for some & >0.
The solution (%, y) is isolated if and only if

(1.9) G=A4,0(0)+A,0(1)=A.+A,0(1) is nonsingular where

ao — bo 00

(110) I e
and @(t) is the solution of the first variation equation to (1.2) subject to the initial
condition @(0)=E (E the unit matrix):

, 0 1

(L1D) ¢ (”‘[am) aauj‘p(”

(02(8)=rfa(t, 2(2), (1)), as(t)=fo(t, Z(¢), y(¢))).

In Section 2, we shall prove the following

(1.7)

THEOREM 1. In a sufficiently small neighbourhood of the isolated solution (%, y) of
(1.2), there exists an approximate solution (%n, y») of (1.4) such that
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Ilf—fhllzgtagg 1%(t)—%a(2)l= O(h?)

(1.12) )
|y —3xll=O(R*).
In Section 3, by making use of this Theorem 1 we shall prove the asymptotic expan-
sions of errors: x— %, and y— y,.

THEOREM 2. Under the same assumption of Theorem 1, we have
£(8)—xn(t)=—(1*/24)6(¢)+ O(h®)
V()= 9a(t)=—(n*/24)A(t)+(1/2)£®(2)
X(t—=t:)(t—tisr)+ O(R®)
ti£t£ti+l
where (6, A) is the solution of the following linear problem :

B ] M i
A 02 03] LA —x® 43035

6(0) 6(1)] _[o
A°[A(0)]+A‘[A(1)]_[o]'

In Section 4, we shall notice that (9, A) is approximately determined with very little
additional computation by using the already obtained approximation (%, y»). Hence we
may consider the application of the above stated asymptotic expansion (1.13) to a poster-

iori improvement of the approximate solution and a mesh selection strategy (chopping
procedure).

(1.13)

(1.14)

2. Proof of Theorem 1

In what follows, we shall denote the vector and matrix maximum norms by || - |. In
this section, by using Newton-Kantorovitch’s theorem we shall prove the existence and
convergence of a solution (@-», @-1, ..., @n-1, B-1, ..., Bn-1) Of (1.6):

Fi(a, 3)2(1/h)(ai—afz~—1)—ﬁ’i, i:—2(1)7’l—1
G—x(a’, /J)):(1/2)ao(d—1+a’—z)"bo,8—1_Co
(2.1) Gi(a/, ,8):(l/h)(ﬁi“ﬁi—l)—f(tiﬂ/z, (1/2)(&’:‘ i=0(1)n—1
'+‘a’i—1), (1/2)(.314‘&—1)),
Gn(a’, 3)2(1/2)01(%-1+afn_z)+b1,6’n—1—C1.
For simplicity, let us denote
(F(a, B), Gla, B))=(F-:(a, B), ..., Fu-ila, B),G-1(a, B), ..., Grla, B)).

Corresponding to (£, 7 ), one can determine piecewise quadratic and linear functions %,

and y, of the form:

i()='3 a:Qx(t/h—i)

w(= 8 BQut/h—i) (&)
so that
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fh(l‘iﬂ/z):.f(tiﬂlz), i=0(1)n—1

in(t)=x(t:), 1=0, n.
Since #(¢) is sufficiently smooth due to the assumption that f (¢, x, y) is sufficiently smooth,
it is valid that

(2.3)

| €% — %% |l= 0(h?), k=0,1
£ (tivrz)— Zn(tivrz)= O(R?) ([4]).
Hence we have the estimate of | F(&, 8), G(a, 8))|l of the form
(2.5) | F(a, B), G(a, B))=0(hr?). )
Next, in order to investigate of the property of the Jacobian matrix J (a, B) of (F(a,
8), G(a, B)) with respect to (@, 8), we consider a linear system :
(2.6) J(a, BIE, E)=(n, 72)
where £,=(%—a, U-1, .., Un-1), E2= (-1, Vo, -v, Un-1), 11=(C-1, Co, ..v, Cn1) @NA 72=(d-y,
do, ..., dn).
Corresponding to &, and &,, we consider quadratic and linear functions y:(¢) and y,(¢)
defined by

(2.4)

n—1
()= 2 wiQs(t/h—1)
(2.7) net
vo(t)= i=2_1 0:Q2(t/h—1),
and in a similar way, corresponding to 7, and 7., we consider linear and step functions ¢,(¢)
and ¢,(¢) defined by

¢1(f):ing._11 Cin(t/]’l—i)
bo(t)="2 dix1).

Hence, corresponding to (2.6), we have
yi(t)=y2(t)+ :(t), 0<t<1
doy1(0)—boy2(0)=d—1
(2.9) *yé(tHl/z):62(ti+1/2)y1(ti+1/2)+63(ti+1/2)y2(ti+1/2)+ B2(tiv1r2),
’ i=0(1)n—1

(2.8)

a1y1(1)+b1yz(1)=dn
( G2(t)=fo(t, Zn(t), 9u(2)), Gs(t)=1o(t, £a(t), Iu(t)) ).

Since y3(¢) and ¢,(¢) are both step functions, from above we have
yi(t)=v2(t)+ (1)
y3(£)= Pt )31 (£)+ 65(1 )y )]+ p2(2)
(loy1(0)—boy2(0):d—1
a1y1(1)+ b1y2(1)=dn.
Here we rewrite the second equation of (2.10) as follows:

(2.11) yi(£)=02(t)y:1(t)+ 03(8)y2(8)+ () + $2(2)
where »(¢)= —([—‘P)(é‘zyl+53y2)+(6‘2—02)y1+(5‘3_0'3)3/2.
Since || (I — P)gllieseen= O(h) g’ || for any g€ C[0, 1],
17 licatesn= O yi I+ w1 I+l 41192 lieseeen]

(2.10)
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=0y I+ w2 ll+1 é2 41 b2+ v2 e el
By (2.11), we have
(2.12) 17 lheecn= ORI i I+1 y2 |41 1 141 62 1]
1=01)n—1 for h<h,
provided that 7, is sufficiently small.
By (2.10) and (2.11), we have

Yi|_ B 1 . $1
(2.13) [yz]—cb(; [dn ]+f0 H(-, s)[7+¢2]ds
where
_(O(DIE-GTTAI0()]O7(s), s<t
(2.14) B, S)ﬁ{—(I)(t)G‘IAl(D(l)(D“(s), t<s (5], [11]).

From above, we have the inequality of the form

(2.15) Iy ll, lv2ll<Cll d-1, d)l+1 7 [+ ol +1 2 )1}
where C is a generic constant independent of %, and || 7 [|=max || 7 iese001.

By the use of (2.12) and (2.15), we obtain the inequality of the form
(2.16) Iyl ly2ll< Clli(d-r, d)l+N gl +1 820} for R<hy (<ho)

provided that 7, is sufficiently small.
By a simple calculation, we have
lyil=Cll &, v:11=Cll &
I i< Cllvil, I gll<Cllv2ll  ([11]).
Therefore we finally have the inequality of the form

(2.18) (&1, €< Cl (1, 72)| for any h<h.
By (2.6), inequality (2.18) implies the nonsingularity of J(&, 4) and in addition the
inequality

(2.17)

(2.19) lJ-*a, B)I<C for h<h,.

By (2.4), let us note that there exists a constant /, such that

(2.20) I£=Znll+15—Fall<80<8 for any h<h,
Now let us define the set Q4(a, 8) which is a neighbourhood of ( @, B):

(2.21) (@, B)={(a, B)lla—al+I1B8—Bl<8—3o).
Then for

()= a.Qu(t/h—i)

n-1
()= B:Qut/n—1)
with (@, B)E24(a, ), we have
12 =xnl 15—yl <l %= Znll+1 5= Du 4+l £— 24 |+ 52— ya | <8 — S0+ 80=8
consequently (¢, x4(¢), ya(¢))€ U for any h<h,.
Here we have used the following results :

(2.22)
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0< Qm+1(f)£1
igm Qni(t—1i)=1
e, Iea—xsl<la—al, I9n—yal<IB-Bl.
This means that (F (e, #8), G(a, B)) is defined on the region Q.(a, #) for any i< h,.
Hence by means of the mean-value theorem we have
(2.23) 17 (ar, B1)—J(az, B)I<Cl(a1—az, Bi—B2)]
for (a, Bl), (a2, BZ)E.Qh(C?, ,é)

The expressions (2.5), (2.19) and (2.23) show that the conditions of Newton-Kantoro-
vitch’s theorem are fulfilled for sufficiently small #(<min (%, #2)). Thus we see that the
determining equation (F(e, 8), G(a, 8))=0 has one and only one solution (a, 3)=(a, 8)
in a neighbourhood of (&, 8) ([8]).

3. Proof of Theorem 2

Let ¢;=x%—%» and e,=y — 3y, then in virtue of Theorem 1 we have
e1=e:

6526281+6362+(1—P)92”+7’+ O(I’L4)
aoer(0)—boe2(0)=0

arei(1)+biex(1)=0

(3.1)

where

VY= —(]_P)(0261+Gs€2)-
Hence we have

el ! . 0 1 . 0 4
(3.2) [ez]_fo H( ,s>{(1_P)£,,(S)]ds+fo H( ,s)[r(s)]ds+0(h ).

Now we shall prove the asymptotic expansion at mesh point ¢=¢; :

(3.3) ! 0 (12 ' 0 — 0
,/(:H(t’s)[([—-P))E”(S):lds_ (/2] [ H(t,s)[fm(s)]ds zz(t>[£(4)(1)]

0 0 )
+2W(t)[ 0)]+[ ]}+ o(n),

£(4)( 2(3)(”
where
Z()=—0(t)G A, and W(t)=0(H)[E—-G'A.:0(1)].
Let K(¢t, s)=H:x(t, s), i=1, 2 of the (7, 2)-component of H(¢, s). Since K (¢, s) is
sufficiently smooth except ¢=s, by Taylor series expansion we have for j=1(1)»n—1

B4) [ K, s\I-P)(s)ds=3 [ UK, ti)

i

+K'(t;, tiviz)(s—timrz)+ o HER2(s— tivis)
+(1/2)8812(s — tivr2)?+ ... }ds

n-1
igo {(n?/ 24)92(1‘4431/2K(tj, tivrz)F(R3)12)820 2K (85, tivr2)}+ O(h*)

(l/z2/24)f01 K (t;, s)a?“”(s)ds+(lfz2/12)fo1 K'(t;, $)5¥(s)ds+ O(h*)=(*),
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(3.5) (*)=—(r*/24) [ K(t, $)8(s)ds+(n*/ 12K (1,, 1)

X ZO(1)—{K(t;, t;+)—K(t;, t;—)}x¥(¢;)
—K(t;, 0)£®(0)]+ O(h*)
where K'(¢, s) means the partial derivative of K (¢, s) with respect to the second variable
s.
Since
Hio(t;, t;+)—Hp(ts, t;—)=—0:2
H(t;, 1)=—0(t;)G A= Z(t;) ,
H(t;, 0)=0(t;)[E—G'A:10(1)]= W (¢;),
we have the desired result for t=¢;, 7=1(1)n—1.
For =1, by (3.4) we have

(36) [ K@, 9P (s)ds=—r2/24) [ K(1, $)29(s)ds

+(R?/12){K (1, 1-)x®(1)—K(1, 0)£®(0)}+ O(h*)
where
H(,1-)=0()[E-G A, 0(D)]0o'(1)=E+Z(1)
H(1, 0)=0()[E-G A, 0(1)]0"(0)=W(1)

from which follows the desired result for t=1. Similarly we have the desired asymptotic
expansion for t=(. This completes the proof of equation (3.3) at any mesh point.

Next we shall consider the second term of (3.2). Let r=0,e:+ 0se:, then for K (¢, s)
=H.»(t, s)

(3.6) [ K, r(s)as=— [ K1, s)\I—P)e(s)ds

:—:2: /:M {K(t;, tivr2)+K'(t;, tivr2)(s—tisrz)
+ ...}{T/i+1/2(3_ti+1/2)+(1/2)2':',+1/2(5_ti+1/2)2+ ---}ds
Since %, is piecewise quadratic, in virtue of Theorem 1 we have
(3.7) Tiv12=03(tis12)e2(tivr2)+ O(R?)= O(h?)
tir12= 0s(tis12)es (Livr2)+ O(R?)= 05(tis12) 282+ O(R?)
where
er(tiviz)=x{v12— f(tivrz, nltivrz), Iu(tiz1r2))
=f(tivvz, Xivvz, Yivrz)— f(Livvz, Zaltivvz), Ia(tivrz))
= 0(h?).
Combining (3.6) and (3.7) yields

(3'8) /(;1 K(tj, S)r(S)dS:_(ha/z‘l) g K(tj, lfz'+1/z)Gs(ti+1/2)f(z'3421/2+ O(h*)

= —(h?/24) f;)l K(t5, $)05($)®(s)ds + O(h*).

Thus we have

; 0
(3.9) fo H(z, s)[r

(s)]ds:—(h2/24)fo H(t, s)[

. (SOW] ds+0(h).
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By (3.3) and (3.9), we have

el(tj) (12 ! . 0
(3.10) [e2< m]‘ G201 H 5)[£‘4)(s)+03£‘3’(s)]ds
0

_ZZ(ti )[’2(4)(1)]4‘2 W(tj )[5(4)(0)]_2[5(3)(“)]}

4\ _ (1,2 6(t5) 4
+0(h*)=—(h /24)[/1(tj)]+0(h ).

By a simple calculation, (4, 1) is shown to be the solution of (1.14). This completes the
proof of Theorem 2 at any mesh point.
By Taylor series expansion, we have
(3.11) J?i+1/z:(1/2)(92”1+fz’)"(h/8)(f:'+1_ﬂ')+ 0(h4)
£ir12= 1/ 2)(£ir1+ %)~ (h?/ 8)%% 12+ O(R*)
from which follow
ei(tiviz)=—(n?/24)0(tis12)+ O(R*)
ex(tivrz)=—(h*/ 24)A(tiv12)— (B?] 8)Z P12+ O(R*).
Since %,(¢) and y,(¢) are piecewise quadratic and linear;
£n(8)=Q/R*)2%n(t: )t — tivr2)(t — tiv1)—4%n(tis1s2)
(3.13) (t—t: )t = teer)—2%n(tirr ) (8 — )t — tisrp2)}
Iu(t)=Q/R){Fn(t: ) tir1— )+ In(ti40)(E—2:)}.
Hence, in virtue of (3.10) at mesh point and (3.12) at mid point, we have the desired
asymptotic expansions at any point t[0, 1]. This completes the proof of Theorem 2.

(3.12)

4. Computation of Principal Part of the Errors

By the definition of H (¢, s), we have
0" = 0.0+ 030"+ 5+ 0:5°
(4.1) 000(0)—1)00,(0):—21)09263)
6216(1 )+ b10/(1):251)2513).
Here we notice the following asymptotic expansions for other numerical methods to
two point boundary value problems.

PEMARK 1 ([5]). If we apply the box scheme to the problem (1.2), under the same

’

assumption of Theorem 1 there exists a solution (%, %\, ..., Xn, Yo, ..., ¥n) Of the box scheme
so that

(4.2) A= 2Qth—i+1)=— (12 20)()+ O(R?)
where

V' =00+ 03V + 29+ 038+ 30:%8”
(4.3) aov(0)—bov'(0)=—2box&®
dl!/(l )+ b1)/,(1 ):2b1£§zs).

By making use of the B-spline Q,(¢), we consider a cubic spline of the form
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xn(t)= :;2_13 a:Q4(t/h—1).

Then the above x, is an approximate solution to (1.1) if it satisfies
xn=P;[f(¢, xn, xn)], 0<¢<1
a0xr(0)— box»(0)= co
a1xx(1)+bixn(l)=c;,

where P; j=1, 2, are operators defined by

() (Pug)(t)=3} & Qu(t/h—i+1)

(i) (Pag)(t)= 3} 7:Qu(t/h—i+1)

ATy,=0, r=4
(1/6)(‘)’i+1+4')’i+7’i—1):g, i=11)n—1
V=0

(A and V are forward and backward difference operators, respectively).
By using the same argument in Sections 2 and 3, we have

REMARK 2. Under the same assumption of Theorem 1, there exist approximate solu-
tions %n: i=1, 2 of (4.4) according to P;, i=1, 2, respectwely
(4.5) £(#)—Zni(t)=(— 1) (h*/12)o(t)+ O(h?)
where
0" =020+ 030"+ 5%
(4.6) a0 (0)—bop’(0)=0
a10(1)+b10'(1)=0.

Now, in order to compute the principal part of the error 9, we consider an approximate
problem to (4.1):

6.=P [ (9h+0'3(9h+g]
(4.7) do@h( ) b ( ) 2/10
d1l9h( 1)+6:6%(1)= 2u1,.

Since the problem (4.1) has the (isolated) solution §(¢), by using again the same argument

in Section 2 there exists a solution §,(¢) of (4.7) for sufficiently small /4 so that

(4.8) 16— 652 |< C max [| o+ 60|, | 11— 0:2£9],
OSIIllsanx |giv12— x(z'4ll/2_d3(li+l/2)fi(+3{/2|], k=0, 1.

Thus, in order to define a computable approximate problem for §(¢), we shall require
O(h?) approximations to £, £ £%.2, £, i= 0(1)n—1.
Here, by the definition of P and (3.12) we have
(4.9) Xivv2— Zn(tiv12)=—(W*] 24)(0620+ 03A+3038%) = 10112
+0(r*), i=0(1)n—1.
From above, we have
(1) £8=(1/h){—2%n(t12)+ 385 (ta2)— Zn(ts2)}+ O(h?),
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(1/R*) {255 (tj2)—5% %) taz)+ 4% % (tsi2)
— xn(tr2)}+ O(W?),
f(r?)—x/z: ceny
(4.10) (iii) £902=Q/ ) %0 (tivaz) = 28N tivr2)F TR (Eizrs2))
+0(h?), i=11)n—2,
(iv)  #8=/2Rr){—3%k(tv2)+4%%(ts2)— £ r(tri2)}+ O(R?),
f‘ill/zz ceey
(v) x£22=Q/20){x0(tiva)—Zn(ticr2)}+ O(R?),
i=11)n—2.
Let 6,(¢t)=/fx(t, %u(t), £W(2)) and G5(¢)=1(t, %x(t), £%(¢)) which have been already
computed in the process of the Newton method for determining %, then in virtue of
Theorem 1
(4.11) ” 02_5'2||, ” 0'3_5'3"20(1’12).
By combining (4.10) and (4.11), we have a posteriori computable approximate problem to
(4.1):

(i) xR

0Z:P[520h+536;+é}1]
(4.12) do@h(())_bo@/h(())IZﬁo
a10x(1)+6:0%(1)=2/,
where g_h(tiﬂ/z), i=0(1)n—1, 2fio, 2/, are approximations to Je({‘luz‘*‘Ga(ti+1/2)ﬂe(z‘3431/2, 1=
0(1)n—1, —2bo%s> and 26,5 obtained by (4.10). Since the problem (4.7) has the solution
O», in virtue of (4.11), the problem (4.12) has a solution §, so that
(4.13) |6® -8 = 0(n?), k=0, 1
for sufficiently small #.
By using §,, we have a posteriori improved approximations :
)Ei_{fh(ti)*(l’lz/zll)éh(ti)}:0(1’l4), i=0(1)n
£i—{Palt:)— (2] 28)0%(t:)+(R?/12)28}= O(h*), i=0(1)n
where &= (1/m){£7(tiv12)—%n(tiz12)}, i=1(1)n—1 and £, £ by 4.10 (i).
Here we remark that the coefficient matrix of (4.12) for determining 4, is exactly the
same one of the Newton method at the final stage by which we determine the approximate
solution £,(¢#). That is., we may compute §%(¢), £=0, 1 with very little additional effort.

(4.14)

5. Mesh Selection Strategy (Chopping Procedure)

In this section, we shall consider chopping procedure applied to two-point boundary
value problem by Russell and Christansen ([9]). Our procedure uses only uniform meshes
at each step, which can be automatically refined in order to reduce the (estimated) error
below a requested tolerance. It behaves quiet adequately for various problems whose
solutions have sharp gradients. If §,(¢) satisfies the inequality :

(h?]24)10x(t)|<e (e a desired tolerance)

5.1
G.1) for t€|0, al, [6, 1] (a, b mesh points),
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we chop off intervals [0, ¢] and [, 1] and consider the following new approximate problem
on the remaining interval [q, 5] with 2: =h/2
xn=Pl[t, xa(t), xx(¢)], a<t<b
(5.2) Xh(a):fh(d)”‘(l’lz/ 24)(91;((1)
x1(b)=%n(b)— (n?] 24)0n(b).

By (4.14), we probably have
| £(a)—{%r(a)— (R?/ 24)04(a)} K| %(a)—%n(a)|< e
| #(6)— {%n(8)— (h?] 24)04(0)} K| #(b)— Zn(B) <€
from which the boundary conditions of (5.2) are considered to be suitable ones. While
inequalities of (5.3) are not assured theoretically for any %, no numerical difficulties are
encountered (see Examples 1 and 2 in Section 6).
If G,(¢) satisfies the inequality :

(5.4) (h?/24)|0n(t)|<e for tE<[a, b] (a, b mesh points),
then we consider the following two problems on [0, «] and [b, 1] with z: = &/2;
xn=PLf(¢, xa(2), x1(2))], 0<¢<a
(5.5) 1 @0xr(0)— boxr(0)=co
(xn(a)=xn(a)—(h?]24)04(a);
xn=Pf(¢, xa(t), x:(2))], b<t<1
(5.6) 120(8)=xn(6)— (%] 24)04(b)
Clth(l)‘i‘ blxh(l):cl.

Continuating these processes would yield the approximate solution %, such that
(5.7) |2 —{£n— (h?/ 24)6:} 1< £ — Znl<e

for sufficiently small .

(5.3)

6. Numerical Illustration

In this section we shall consider the application of the above stated asymptotic
expansion to a posteriori improvement of spline approximations of solutions of two point
boundary value problems and mesh selection strategy. Numerical results conform the
theoretical accuracies established in previous sections. The rates of decrease of the errors
O(h®), where ¢ are computed from the results from %4=1/16 to 1/32, are given in
parentheses in each Tables.

As our examples, we choose

Problem 1.
x”=(1/2)exp (— ¢ )(x*+x"*)
x(0)=1, x(1)=e.
Problem 2.
The same equation in Problem 1 subject to the boundary conditions :

x(0)—x"(0)=0
x(1)+x'(1)=2e.
The exact solutions of the above problems are exp ().



12

M. SAKAI

Table 6.1 The observed maximum errors in function values.

h

1/16

1/32

(a)

Prob. 1
Prob. 2

0.614—4*—0.674—7
0.246—3—0.657—6

0.154—4—0.435—8

0.616—4 — 0.464—7

2.0—4.0
2.0—3.8

* We denote 0.614x107* by 0.614-4.

Table 6.2 The observed maximum errors in derivatives.

1/16

1/32

(a)

Prob. 1
Prob. 2

0.588—3—0.241-5
0.284—3—0.232—-5

0.147-3—0.161—6
0.710—4 —0.154—6

2.0—3.9
2.0—-3.9

In the following Tables, the left and right hand sides of (...)-(...) mean max |%{®

0=si=n

—%(¢:)), =0, 1 and (gllas)sl | £:— {%n(t:)— (R?/ 24)éh(ti)} l, 0@?22 | %i—[%n(t:)—(h?/ 24)91

(t:)+(R2/12)(1/ R E R (iv12)— X5 (ti-12)}] |, Tespectively.
The above stated method is also applicable to the numerical solution of the nonlinear

boundary value problem having the singularity at t=0:

x"+(x/t)x’+£(t, x)=0, 0<t<1

x(0)=0 and x(1)=c:

with x=0, 1, 2, respectively.
While Theorems 1-2 are not assured for the above problem, no numerical difficulties

are encountered.

Problem 3. We treat the nonlinear problem :

2"+ @2/t)x"+x°=0, c:=V3/ 2.

The unique solution is 1/v/1+ ¢2/3.
Problem 4. Consider another nonlinear problem :

x”+(1/t)x"+exp (x)=0, 0<t<1

The solutions are x(¢#)=2XIn[(B+1)/(Bt?*+1)], where B=3+2/3.

c:1=0.

In the following

Table 6.3 The observed maximum errors in function values.

h

1/16

1/32

(a)

Prob. 3
Prob. 4

0.834—5—0.422—-7
0.589—4 —0.196—6

0.209—5—0.248—-38
0.147—4—0.134—7

2.0—4.1
2.0-3.9

Table 6.4 The observed ma

ximum errors in derivatives.

h

1/16

1/32

(a)

Prob. 3
Prob. 4

0.159—3—0.868—6
0.202—3—0.593—6

0.398—4 — 0.503—7
0.505—4 —0.292—7

2.0—4.1
2.0—4.3




Quadratic Spline Approximation for Bundary Value Problem 13

Table, we only list up numerical results for the smaller solution.

Now we consider the application of chopping procedure to the following problems in
which we take a desired tolerance ¢=10"* and #=1/32 as starting mesh sizes.

Problem 5. o

107*x"+(1—-1/2¢)x'—(1/2)x=0, x(0)=0 and x(1)=1.

The exact solution is approximately 1/(2—¢) on (0,1] and has a boundary layer of
thickness 107* at ¢ =0.

Problems 6 and 7. We consider Troesch’s equation :

Table 6.5 Remaining subintervals.

Prob.5 Prob. 6 Prob.7
[0, 5] [1-33.1] [1-35.1]
[0, %1 [1-3.1] [1-251]
[0, 125 ] [1-431] [1-3%.1]
[0, 5] [1-2 1] [1-21]
[0, ) [1-5,1] [1-402,1]
[0, 7555 ] [1-0 1] [1-1gp 1]
[0, 5555 ] [1-50e 1] (122811
[0, 7555 ] [1- 5 1] [1-25 1]
[0, gz ) [1-201)
[0, Te351 ) [1-238 1)
[0, 33755 [1-35065 1]
[0, g [1—gorts: 1]
(1~ 133073 1]
[1—555tap 1)
[1_56252;28’1]
h 271s 272 9710
N 256 168 496

* h is the smallest mesh size and N is the maximum number of partitions

of the remaining subintervals.

Here we notice that we have to solve at least one time a linear system

of order N +2.
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x”=ksinh kx, x(0)=0 and x(1)=1.
The solution has a singularity for #<1 for values of x’(0) slightly greater than its real
value. This creats problems for any shooting technique. The results for £=10 and 20,
using identically zero starting guess, are shown in Table 6.5. We have obtained 147.. ...
and 21875...... as approximate values to x'(1) for £=10 and 20, respectively.
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