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Abstract

The purpose of the present paper is to give a dual theory, corresponding to the theory
of semi-symmetric metrical Finsler connections in Finsler spaces given in R. Miron-M.
Hashiguchi [6].

Introduction

In his recent papen [5], R. Miron studied a dual space (M, H) of a Finsler space (M,
L), and established a beautiful dual theory of Finsler geomtry. All properties of such a
space (M, H) are based on the existence of one canonical d-connection M*I". Since
these concepts were obviously made explicit by him for the first time, we hope to call
(M, H) a Miron space and M*I" a Miron connection.

In the present paper we shall define semi-symmetric metrical d-connections called
semi-symmetric Miron comnections in a Miron space, and study the group of transforma-
tions of these connections and its invariants. As the results of these considerations, we
have two important d-tensor fields L;’x; and M,;™ which are invariants of semi-
symmetric Miron connections (Theorem 5.2), and consider some of their properties.

The terminology and notaions follow those in Miron [5], with some modifications (e.
g., Cartan space — Miron space, Nyy—> Ny HI = F*I", H:x— Fy'x, Rjxr— Rrsh, etc.). For
convenience’ sake, in the first two preliminary sections we shall sketch the materials
necessary for our discussions from the theory of Miron [5].

The authors wish to express here their sincere gratitude to Professor Dr. R. Miron
for the invaluable suggestions and encouragement.

1. Distinguished geomerical objects on the cotangent bundle

Let M be an n-dimensional C”-manifold and (T*M, =* M) its cotangent bundle.
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Since a point of T*M is a covector (x, p) at a point x of the base manifold M, a coor-
dinate system x=(x%) in M induces a canonical coordinate system (x, p)=(x’ p)) in
T*M by p=pidx’).

Let V be the vertical distribution on T*M given by (x, p) € T*M — Vip
={XE TapT*M | ¥ X=0|. A non-linear connection N on T*M is a distribution of class

C* given by (x, P)E T*M = NupC TanT*M such that TupT*M =Nuzp@® Viep. N is
characterized by

(1.1) 8;=90,+ N, 0",

where 9,=9/ax’, 3'=9/9p.. {6, % is a local basis adapted to the distributions N and
V, and its dual basis is {dx’, 0p4, where

(1.2) api=dpi_Ni'rdxr.

A distinguished tensor field, a d-tensor field for short, of type (7, s) on M is defined
by its components, satisfying the classical law of transformations with respect to a
transformation of canonical coordinate systems in T*M:

(1.3) =24 x!, -+, x), P,=(0x"|0%")p+; det(0xOx")=*0.
A d-connection on M is a triad F*I'=(N, F, C), where N=(N,x) is a non-linear

connection, F' =(F,%) is a special d-object and C=(C,/®) is a d-tensor field of type (2,
1). The transformation formulas of N;x F;', C.’* with respect to (1.3) are as follows:

N ;x=(2x°| 2%’ 3x"| 0%*) Not+ A 3% x"| 02’ BE"),
(1.4) F iv=(0dox")0x"|0f") ox'|ox") Fs + (8% ox (2% x| O OE*),
C/*=(ox"| o) o’ | 9x°)\ 9" 9t C .

Given a d-connection, the h- and v-covariant derivatives are defined for d-tensor
field, e. g., K%, by

(1.5) Kix=0:Ki+ KF/x— KLF,"y, Ki|*=0"Ki+ K[C/*—KiC,"™.
The five torsion and three curvature tensor fields of a d-connection are given by

(1.6) T x=UmF, C,

1.7) Rij=—Ud0xNil, Pi*=—(0"N,;— F/F), S/*=—U,{C,

(1.8) R a=Unl0iF s+ Fy kF A4+ Ci Rom,

(1.9) Pyi'=0'F,’x— C,"w+ C,'" Py,

(1.10) S, #=Uplo'C,*+ C,"™C,*,

where U,4f--*} denotes the alternate summation.

2. Miron spaces and metrical connections

We shall consider a C>-function H(x, p) defined in T&M ={x, p)€ T*M | p+0,
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and we put
(2.1) =(0'0’H)2.

The pair (M, H) is called a Miron space, if H satisfies the following conditions:
(i) H is (2)p-homogeneous: H(x, Ap)=A*H(x, p) for A>0, ‘
(i) &% is non-degenerate: det(g8*)+0.

The H and 8" are called the fundamental function and the fundamental metric tensor
field of (M, H) respectively. We put p*=8""p, and (&:;)=(8")"".

It is noted that a Miron space differs with a so-called Cartan space [2], where D; is
not a covector but a covector density.

In a Miron space (M, H) there exists a canonical d- connectlon determmed by H
only. A d-connection is called metrical if 8,x=0, 87|*=0. Let 7,'x be the Christoffel
symbols formed with respect to &;;.

Theorem 2.1. In a Miron space there exists a unique metrical d-conmection F*I” Satis-
fying Djx=—(prF;"x— Ny, T'x=0, S7*=0. If we denote this F*I" by M*I'= (N F
C), then it is given by

(2.2) N jx=D+7"x— D+D"¥s"{O°&:n)[2,
(2.3) F ' =8"(0x8x+ 0:8kr— 0812,
(2.4) C/*=—g.,(0"g’")2.

The above d-connection M*I" was first obtained by Miron [5] as a dual notion of
the well-known Cartan connection of a Finsler space (cf. [3, 4]). So we shall call M *r
the Miron connection and also N the Miron non-linear connection. \

When we discuss d-connections with a fixed non-linear connection N, a d-
connection is denoted by F *I'(N)=(F, C). The set of all metrical d-connections
F*I'(N) was given in the following form by Miron [5], and was first used in [1],
together with M*I".

m
Theorem 2.2. In a Miron space there exists a unique metical d-conmection F*I"(N)
=(F, C) having the torsion tensor fields T;'x, S;’* given a priori. It is given by
. m : :
(2.5) Fiv=F;'x+8"(8rsTs°k— 8is Tr’x+ 8xs T:°1)I2,

(2 . 6) ; C':jlcz giﬂ:_ gt’r(grsssjk_ gjsssrk+ gksssjr)/z.

3. Semi-symmetric Miron connections and their group of transformations

We denote the set of all d-covector fields and the set of all d-vector fields in M by
X*(M) and X(M) respectively.

A d-connection on M is called semi-symmetric if the torsion tensor fields T;%, S.’*
have the form

(3.1) T)'x=0,0%— 0x05, Si’"=— (2707 —7*87),
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where ;€ X*(M), '€ X(M).

The Miron connection M*I" on a Mniron space is considered as a special semi-
symmetric metrical d-connection F*I'(N). We call a semi-symmetric metrical d-
connection F*I"(N) a semi-symmetric Miron connection. From Theorem 2.2 and (3.1) we
have

Theorem 3.1. In a Miron space the set of all semi-symmetic Miron connections (N, F, C)
18 given by
m s m : Y
(3-2) Njx=N 1, F;'x=F;'x+ ajﬁi gﬂcU C: = C Jk'f‘ Tjé\k g,k‘l'i,
where 0;€ X*(M), v’ € X(M) are arbitrary, and o°‘=8"0r, 1;=8ir7".

Hence two semi-symmetric Miron connections (N, F, C), (N, F, C) are related in
the form

(3.3) N jx=Njs, F/x=F's+ 8,05— s, C/*=C/*+ t'0F—g'*t,,
where $;=ad;,—o0y, t’=7"—17’, and s'=8""s,, L,=8:-1".

Conversely, given $;€ X*(M), € X(M), the above (3.3) is thought to be a trans-
formation of d-connections preserving the non-linear connection. Then it transforms a
semi-symmetic Miron connectionsto a semi-symmetric Miron one. We shall Sdenote this
transformation by #(s;, 7). Let T be the set of all such transformations. In T a product
is defined by the mapping product #(3,, ') t(s;, t’)=1(s;+ S;, t'+ t’), and we have

Theorem 3.2. The set % of all transformations t(s;, t’) given by (3. 3), together with
the mapping product, is an Abelian group. This group acts on the set of all d -connections
effectively, and it acts on the set of all semi-symmetric Miroy connectwns F *F (N ) transitive-
ly. The group ST is, the direct product of its subgroups Tc—lt s;, 0)€ Tf and Tp—lt
thVeETk T=TcX Tk

4. Various transformation formulas

S
In order to find invariants of the group T, we shall first treat a transformation of
general d-connections, preserving the non-linear connection:

(4 . 1) NjkzNﬂc. Fjik: Fjik—B.itky Cijkz Cijk—Dijk-

Proposition 4.1. By a transformation (4.1) of d-connections the torsion and curvature ten-
sor fields arve transformed as follows:

(4 . 2) Tjikz Tjik_mjk{BjikL Ctjkz Ctjk" Dtjk.
(4 . 3) Rijkz Rijk. Pukz Puk— Btkj, gtjkz Sijk_*'?’[jleijk},
(4 . 4) Rjtkl = Rjikl - Bjir Ty — DJWR Tl mkl’Bjikll - BkaBriz},

(4.5) P/i=P/ =B, Cy — D" Prt— (B, |*— B,"xD ")+ (D;*x— D;," B/,
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(46) S ikl __ S ikl Djirsrlcl__?lkl{Djml z_Dj'rkDT,;z}.
If we eliminate Rrx from (4.4), we have

Proposition 4.2. The d-tensor field defined by

(4 . 7) Kjiklz Rjikl_' Cj"R Tkl

is transformed by the transformation (4.1) as follows:

(4 . 8) Rjikl: Kiikl - Bjir T — 9'[;cz{Bjiku“ BjrkBrizl.
In a Miron space, let us consider the d-tensor fields

(4.9) =(0%0k—g"gwl2, Q*n=(010%+ 8" 8wl2,

which have the well-known properties and play the same role as the operators Al, A,
given by M. Obata [7] (cf. [6]).

Now, we shall treat the transformation (3.3) of semi-symmetric Miron connections.
Then B,’x, D/ in (4.1) are expressed as B,’s=—287is,, D/*=—2Q75t". From Prop-
osition 4.1 we have

Proposition 4.3. The d-tensor fields Ti'x, C.*, S.* P/’* Ki/m, Si'w of a semi-
symmetric Mivon connection are transfomed by the transformation (3.3) as follows:

(4.10) T =T, x+2U,dQ%ks,), C/F=C/*+2Q3%t",
(4.11) S/*=S/*—2U,dQ7it", Pi*=P, +2Q[ s,
(4.12) K=K n+2UnlQk s,

(4.13) S, # =8, 42U Q% L™,

where

(4.14) Sn=Sm— Sr&1— 8r01+(8/2)8rn; S=8"°8,Ss,
(4.15) Er=1"'— T+ T (22)8T t=grst 1.

5. Invariants of semi-symmetric Miron connections

We have the following important invariants from Proposition 4.3 by the well-known
elimination method [4], [6].

Theorem 5.1. The following d-tensor fields of semi-symmetric Mivon connections are in-
vaviants of the group T
(5.1) T/ — U T,04l(n—1), C/*—2Q%C"l(n—1), C¥,
(5.2) Rix, S =4S 01(n—1), P, zgi"Pr/ n—1), P,
where T,=T,';, C’=C/* §’=S/* P,=P,’, and C*=C;* P,=P,'
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Theorem 5.2. For n>2 the_following d-tensor fields of semi-symmetric Mivon connec-
tions are imvariants of the group T

(5.3) Li'n=K' n+ 2l QUK rn— 8rnK[2(n—1)}H(n—2),
(5.4) M= S,* 42U QN(S™ — g™ S[2(n— D)} (n—2),
| where K;x=K,'xi, S*= S, K=g8"K,, and S=8g:xS™.

We shall show some properties of the invariants L', M;™.

Theorem 5.3. In a Miron space the invariants L'k, M™ of semi-symmetric Miron con-
nections F*I"(N) have the following properties:

(5 -5) Q*f:LsTklz - 8jiSRsm; ,{J*J'?,;'-.Msrm:0y
(5 . 6) iiklz - CsRskz, Ljiki:(); Miikl=0, MJ.“.”:O’
(5 . 7) 6jkl{Ljikll= - és@jm{MRsmV(n - 2); @ikl{MJ’ml}z 0,

where C5= S°+ C®, and ©,uf-+*} denotes the cyclic summation.

For the proof it is sufficient to study the properties of ﬁjikl, ﬁ ;" formed with re-
spect to the Miron connection M*T". "

As is shown in [5], from the metrical property of M*T" we have Q*;;Rs"u=0,
Q*7+S™=0, from which we have

(5 ‘ 8) Q*f;K sTm=— CfisRskz, i'm=—Ci"Rsn, S;"™=0.
m m
On the other hand, from the Bianchi identities &,ulK ;'x=0, &l S,=0, we have
m m m m
(5 * 9) Q'[h:l”( kll:' CiisRskz, mmismi=0.

Thus the proof follows in the same way as in [6, p. 34].
We shall finally give an example of a Miron space satisfying L;'x=0, M,"*=0.

Theorem 5.4. If the Miron connection M*I" has the properties of h- and v-isotropy:
(5.10) K/ a=h0ig8ix— 0480, S;™M=0v(08"— 058",
where h(x, D), v(x, D), are arbitrary functions in TEM, then for any semi-symmetric Miron
connection F*I'(N) we have

(511) jikl=0, Mj““:O.

Indeed, i,ikz=0, 1\"2;“”=0 follow from the respective conditions of (5.10).

It would be an interesting problem to characterize the Miron spaces satisfying
L/#=0, M,*=0. On the other hand, we can also treat semi-symmtric metrical d-
connection such that deflection tensor fields D,z vanish, and consider some special
Miron spaces.
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