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Abstract.

We shall consider an application of a simple rational spline to a shape-
preserving area-true approximation of a histogram, Our method is situated between
the one on a polynomial quadratic spline and on a piecewise linear function, Some
numerical examples are given at the end of this paper.

1. Introduction and Description of method

We are concerned with a smoothing of a histogram by a simple rational spline.
For the histogram with a height %; on an interval [%;, %..] (0=i<n—1), we
demand that a smooth (at least continously differentiable) function f satisfies the
area true conditions :

Xi+1
fx)de=h; Ax; (0<i<n—1) (1)

X;
where Ax;=x;.,—x..
Usually we choose f to be quadratic or quartic splines from a computational point
of view since then the coefficient matrices of the determination of them are diago-
nally dominant. However, they don’t always preserve the shape (for example,
monotonicity) of the histogram.

Now by making use of the following rational spline, we consider a shape-
preserving area-true approximation of the histogram, For p,>—1(0=i=<»n—1),
the spline s is defined by
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(i) s(x) €C* [x, xn]
(ii) s(x) is a linear combination of 1, x, t2/(1+pi¢t) (t = (x—x;)/

Axi) on [xz'a xi+1].

Then, by a simple calculation we have

¢(pi) AX; 8" + [{ 1/2 —¢(P1)} Ax; + {“‘%—i%i*—(ﬁ(pi—l) Axi—l] s +
_ pi—l ’
{qs(pi—l) 2 (2 +Pi—1) } AX; 8"
1 M+ X;
=z {c s(x) dx— Ar, éi_ls(x)dx (2)
e _(14p)2 ;1 1  log (1+p)
where s/ =s"(x;) and ¢ (p) = (2+p) { 25 2 + P |3

Since s depends upon # + 2 parameters, there are two additional conditions
to the area true ones (1) required for a unique determination of it. Here we take
these to be end ones :

so=a, S ,=p. (3)
For p;=p (0 <i<m—1), we have
Theorem 1. Suppose that Ahy<AM< -+ <Ah, <0, a< 0and 2 Ahn_ /A%, 1 <
L 0. Then the spline under (1) and (3) is decreasing on (%, x.) for sufficiently
lavge p.
By replacing &; with h,_,_; (or —h,_,_;), xwith —x, p withq (=p/(1+p))
and swapping @, B, from above we have

Corollary, Suppose that 0 <Ahy <A< S<Ahp s 0La< 2Ah/Ax% and 0 <p
(07 Ahp s <Ahy 3 <+ <AB< 0, 2Ah,/ A%<al0 and B<L0). Then the spline
under (1) and (3) is increasing (or decreasing) on [%, x.) for sufficiently large
q.
Next we consider the case when Al <A S+ <Al < 0 <AL S Aly,.
(4)
Then, for p,=p (0<i<k—1) , p»=0 and p,=q (=—p/(1+p)) we have

Theorem 2, Suppose that (4), a< 0 and 08, If
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__(Axk+ 2Axk+1) < Al <— AXpyy

Axk_l Ahk_l (Axk+ 2 Axk—l) ’

then the spline under (1) and (3) is decreasing on [%, c] and increasing on
Lc, x.) for sufficiently large p, where c€ (Xp Xui1).

2. Proof of Theorems
Before we proceed with analysis, we shall require the following simple lemma.

Lemma. Let s be a linear combination of 1, x, x*/(1+px). Thens'(x) <0 on
(0, 1] ¢f and only if s'(0), s'(1) <0,

Proof. We only have to notice the equation which is easily obtained by a direct
calculation :

PN — o (2x+px?) (1+p)2 ,
s’ (x)=s(0)+ SETOERCET) {s"(1)—=s(0)}

= {1—9¢x}s(0)+y¢x)s(1) (5)

where
0<ply) (=-2xtpx) (1+p)

(1+px)? (2+p)

) <1 (6)

Now, from (1)— (3) we have a system of linear equations in s’; (p) (=
s’(x;) with the parameter p ) whose coefficient matrix is diagonally dominant for
any p>—1. Therefore, s’; (p) 1is a continous function of p on (—1,00),
Letting p be +c0, we have

(1) §o(+0)=a
(i) A% 41 (+00) +A%x;_18";(+00) =2 Al (1 <i<n—1) (7)
(iii) §"p(4o00)=4
If 2Ah, ,/Ax,_,<B<0, from above we have
§i(+0)<0 (1<i<n—1) (8)

from which follows
s:(p)<0 for p>p,(1<i<n—1) (9)

where, p, means a sufficiently large generic constant,
If 2Ah, ,/Ax,-,=8, we only have
2AR /A% 1 <s'; (+0) <0 (1ZLi<n—1). (10)
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In this case, a detailed analysis is required to show the desired inequalities (9).
Now, letting Ax;_s’; (+0) by d;, from (2) we have the following asymptotic
relation :

d;=2Ahi_1— Al + (2 /P){ 1+ (Axi/Axi—l) dis1— 2 (Axi/Axi—l)Ahi—l}
+0(1/p? (1<i<n—1). (11)

Hence we have

() dor= (4/p) cnr+0O(1/p%)

(12)
(1) dpn-2=2Ahn3— (4/p)Cr2t0O(1/p?
where ¢,o1=Ahp_2/A%p—; (<0) and chz=cCp1t+ (Axp_/AXp_3) Abp_s (<0).
Hence, we have
§'n1(D)y  §'n2(p) <0 for p>p. (13)
If Ahny/Ahns<, by 12 (ii)
2 AR, /DXy 3<S py (+00)<0 (14)
from which follows by 7 (ii) and
§’c (+0) <0 (1<i<n—3). (15)
Thus we have
s’s(p) <0 for p>py (1<i<n—3). (16)
If Ahyy=Ah,_;, from (ii) we have
(1) dus= (4/p)cast0O(1/p?
(17)

(11) dn—4:2Ahn-5_ (4/P)Cn—4+0(1/172)

where ¢,3=Cn2+Ahp_3 (< 0) and ¢,y = Cns+ (Axp_o/A%y—5) Ah,—s (< 0). Hence,
we have

§'n3(D)y " n-a(p) <0 for p>p,. (18)

By continuing these processes of mathematical induction, we have the desired
inequalities (9).
For § =0, as in the proof for the above case when 8 = 2 Ah,_,/Ax,_,, we have
the desired inequalities (9), by making full use of the asymptotic relation (12).
Combining Lemma and (9), we have the complete proof of Theorem 1.

Next, we shall prove Theorem 2. Letting p be +coin (2) (i=k, k+1),
we have
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(i) ( 2 Axp+ 3 Axk—l) S'k(‘*‘oo) + AXpSk+1 (+°°) =6 Alp

(19)
(i) Axes o (+0) + (2 AXpr1) S 21 (+0)=6Ah, .
From above, we have
(i) S’k_("'oo) = ( 6 /Dk) {( 2 Ax,+ 3 Axk+1) Ahk—l"AxkAhk} ( )
20
(ii) §'gp1(+0)= (6/D,) {(2Ax+3 Axpy) Ah—Ax ARy 1}
where
Dk: ( 2 Axk+ 3 Axk_l) ( 2 Axk-f- 3 Aka) - (Axk) 2.
Similarly as in the proof of Theorem 1, if
(i) 2 Ahk_z/Axk_1<s'k(+00) <0
(21)
(i) 0 <§p41(+00) < 2 Ahpyy (+oo) < 2 Alppr/ Dpsr,
we have for p > p,
(i) s:(p)<0 (1<i<k—1)
(22)

(i) s;(p)>0 (k+2<i<n—1).
Since Aly_, <Ahy, and Ak, <Ahs.,, conditions 21 (i) — (ii) may be replaced by

(i) 2 Ahk_l/Axk_l <s'k(+00) < 0
(23)
(i) 0 <§p41 (+00) < 2 Ahp/ A1,

By a simple calculation, 23 (i) — (ii) are equivalent to the following inequalities :

_(Axk+ 2Axk+l) < Ay < — AXpiy : (24)

Axpyy Ahk_l (Axk+ 2 Axk_l)

Hence, under (24) we have
S(x)<0 ((p<x<x), x>0 (Xp:1<x<x,) for p >po. (25)

Since s is a quadratic polynomical on [x, x.], there exists a constant ¢ where s’
changes its sign from — to + .
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This completes the proof of Theorem 2.

Finally we notice that our spline is represented in terms of R;, in the case
when x;,=17 and p;,=p.
Let x be an indicator of (0, 1] and ¢.,, (x) be a simple rational function :

cn(p) /(1 +px) ™+ (0<x<1)
Pmp (%)= (26)

0 (otherwise)

where ¢, (p) is determined by

1
[ bme (1) dr=1 (27)
Then, Rp.1p, (x) is defined by '
Rpiip X)= (x*x* *x*ém» () (28)
N— —
m

Remark. At the end of this Section, let x;,=:. Then we may also consider
another area-true shape preserving approximation of the histogram by use of R,

([2D.

That is, we take a spline s of the form :
n—1

s(x) = 23al'R4,p (x—1) (29)

i=—

with undermined coefficients (a_;, a2 ***, an—1) so that
i—1
s(i)= = h; (0<i<n) (30)
i=1

for any constant %_,.

Then, s’ is an area-true shape preserving approximation of the histogram with the
height %; over [i, i+ 1] for p sufficientry large or close to — 1 according to the
shape of it, For e =f—s’, we have

1
2 (3+3p+p?

— pz ” ce e
_12(3+3p+p2>f" + (31)

i+1

where h,:f_ fx)de (0Z5i<n—1).

{(1 +P)2ei+ et (2 +p)zei—1}

On the other hand, by a simple calculation we have the following consistency
relation for R; - '
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BB st (5 o 28B)) st {80 g5y s

= (1/2) ([ Tswar+ [ | s@an. (32)
Hence, we have

BD) Gt 15y i 28B))at ($(0) 5o

= ($0) —5 gy S (33

where é=f —s,

Here, by a simple calculation and a numerical computation, we see that the ratio
of the coefficient of £;” in (33) and the one in (31) would go from 1/5 to 1
as p goes from 0 to +o© (or— 1+), where the coefficients in (33) and (31)
are given by p? /60+ 0O (p®) and p?/12+ 0 (p®), respectively, For example, the
above ratio is about 0.6~0.8 at p= 1 ~10, Therefore, our method would be superior
to the one with R, , if we would use the same value of p.

3. Numerical Illustration
For a determination of an appropriate initiial value of p, we shall show the
following inequality that implies a positiveness of the coefficient of £;” in (33) :

(1+p)? { 1 1 n log (1+p) > 4+5p
(2+p) ‘2p p? p? 12(1+p)
(p>—1, p+0). (34)
This is equivalent to
(1+p)%log (1+p)>p+3p*/ 2 +p%/ 3 —p*/12 »>0) (35)

where for — 1 <p< 0, we take the reverse inequality in (35).
Here, let us denote a difference of the left hand side and the right one of (35) by
2g(p). Then

g(0)=g"(0)=0, g®@)=p*/(1+p) (36)

from which follows
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gp)= (1/31) g®(&) (03&3p). (37)

This completes the proof of (34).

Since the coefficient of ;" in (33) gets its minimum at p= 0 and then the
method is of order 3, in practical computation it would be sufficient to increase
(or decrease) the parameter p, starting at zero, until the curve is satisfactory.
The last six examples are for the histograms given by f(x)=e™ (r>—1).
Especially the last three ones (FIGS 7 —9) show that the method is reliable and
efficient even for not so well behaved histograms obtained from integrals in which
integrands have endpoint singularities,
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FIG, 4 (f(x) =x7°%)

FIG, 5 (f(x)=x"°5)
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FIG. 7 «(f(x)=x"%)
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FIG. 9 (f(x)=x"0%99)




