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Abstract

For the problem of estimating the normal mean a ba岳ed on a random sample Xl9…,Xn

with known variance J2 when the mean 〟 is expected to lie near a prior value 〃　a class of

estimators (i(k) - k(U)X +(1 - k(U))fi｡ is considered, where X is the sample mean, U -

Jn{x - n｡)/a and k is a weight function. Various choices of k have been considered to search
the estimator optimal in some sence. Inada [2] combined the idea of preliminary test estimators

and shrinkage estimator's and proposed β(k) with k(U) - w*/(|C/| < C) + /(|C/| > C), where for

丘xed C, w*∈[0, 1] is chosen by a minimax regret criterion. In this paper we investigate Inada's

minimax regret estimator when the variance F2 is unknown. The existence of a minimax regret

weight is proved and numerical considerations are given.

1. Introduction

Let Xl9...,Xn be a random sample of size n from a normal population with

unknown mean 〟 and known variance α　For the problem of estimating the normal
●                                                                                                          ●

mean 〟 when 〟 is expected to lie near a prior value 〃｡? a class of estimators

ulk) - k(U)度+ (1 - k(U))(i｡　　　　　　　　　(1)

is considered, when X is the sample mean, U-^/^{X-iuo)/a and k is a weight
function. For certain choice of L β(k) coincides with previously studied preliminary

test and shrinkage estimators. Hirano[3] studied a special type of preliminary

α

estimator, by taking k in (1) as k^U) = I(¥U¥ ≧ Z号), where z昔is the 100 x亘percentage

point of N(0, 1). He applied Akaike's[l] information criterion to determine the

optimal level of signi丘cance for the preliminary test. Thompson [5] proposed a shrinkage

estimator of the form (1) with k2(U)- U2/(l + U2). Mehta and Srinivasan[4]

considered k3(U)- 1 -ae bu , where a and b are adjustable constants. Inada[2]

combined the idea of preliminary test estimator's and shrinkage estimator's and proposed

(1) with kAU)-w*I(¥U¥<C)+I(¥U¥ ≧C), where for fixed C, wH∈[0, 1] is chosen

by a minimax regret criterion. Looking at these estimators, one observes that they
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search the estimator optimal in some sence.
●

In this paper we investigate Inada's minimax regret estimator when the variance

a is nuknown. In this case we consider the estimator

A(fc) - k(T)X + (1 - k(T))fi｡

where k(T)-wI(¥T¥ <C)+I(¥T¥ ≧ C), T-Jn{度-Mo)/

(2)

∑(xi一度yl(n-1) and w

is a real number such that O≦W≦ 1. From the point of view of the minimax regret

criterion we shall prove the existence of a minimax regret weight w* in section 2 and

numerical values of minimax regret weight are given in section 3.
●

2. A minimax regret estimate of a normal mean with unkown variance

Let Xi,...,Xn be a random sample of size n from a normal population with

unknown mean u and variance a2. We consider the estimator u(k) given in (2) and

prove the existence of w, satisfying a minimax regret criterion. Since a normal

distribution is invariant under translations of the mean, we may assume without loss

of generality, that /i｡ - 0. We denote the mean squared error of jl(k) as M(w, ¥i, O, n).

Taking M(w, ¥x, a, n) as a risk function, a regret function can be written as

Reg(w,ix,a,n)-M(w,/x?a,n)-minM(w,
o<w<1〃,a,n).(3)

Forcomputingtheregretfunction,wefirstevaluatethemeansquarederrorof(x(k).

M{w,&a,n)- (wx - u)2f(虎)g(s2)d克ds2

(x - /i)2f(x)g(s2) dxds2

(4)

where fix) -

ヰ 262

n(元-n)2

2α2

n-1and

a

W

]
g(s2)

'U＼U′　2T(守)
1

S2 -㌃｢∑lAxi-x)2.

The transformation defined by u - y/n(x - jx)/a and v -

M(w, [i, cr, n) =空nw, ∂, n)
n

where

(n- 1)s2

262

(n- 1)s2

262

旦二土- 1
2

will yield us

(5)



A minimax regret estimator of the normal mean with unknown variance after preliminary test　3

n*,∂, n)- 什n-1)C2v>2(u+a)2

用

{w(u + a) - ∂V(l>(u)k(v)dudv

u2 d)(u)k{v) dudv,

n-¥)C2v≦2(m+a)2

(b(u)-expトv2jl¥U2%,k(v)-v牢-1expl-v]/r(守)and∂-y/nn/a.

TheregretfunctionReg(w,¥i,a,n)canberewrittenas

Reg(w,u,a,n)-雷{V(w,∂,可-in^(w,

｡<w<1∂,n)}.

α2
-R(w,a,n)

n

(6)

(7)

This is nothing but the actual mean squared error minus its minimum value, and thus
】

the regret function is the shortcoming in the mean squared error caused by the absence

●            ●

of knowledge on ¥ijo. Then the minimax regret criterion leads to the minimax regret

weight w*, which attains

｡si禁sup
l-｡｡<<S<のR(w,∂,n).

Letwo(a)andwx(∂)bethefunctionofade丘nedby

mln
-Oo<W<QC

nw, ∂, n) - nwo(a), ∂, n),

mm ･mw,∂,ォ)-m(∂),∂,n.
0≦w≦1

We need Lemma 1 in order to prove Theorem 1.

(8)

(9)

Lemma 1. Let m(∂)-x(e*∂+e　∂)-∂(ex∂-e~ズ∂), then we have for a positive

number x

m(a)-m(-∂), m(0)>O

and there exists a positive number ∂　such that

m(∂)>O if ∂[<∂1,

m(∂-0 if∂l-∂1,

m(∂)<O if ∂l>∂1.

(10)

(ll)

ProofofLemma 1. Proof of(10) is clear. So we suppose without loss of generality
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that ∂>0. m{∂) can be written as

m(a) - e-xd{gl{∂) - 9i(a))

where gA∂)-∂ +x and g2(∂)-(a-x)e2x∂. As孟g2(∂)-2xe2x∂

o<x<　　92(∂)
●                         ●               ●

is strictly increasing m ∂>O and when x≧

decreasing in O<∂<
●

2jc2 - 1

2x

●

<x and strictly increasing in　∂>

2x2-1

2x

when

, ♂2(∂) is strictly

2x2-1

2x

And as

m(0) - m(x) - 2x > 0, the straight line of gA∂) and the curve of g2(∂) cross at a single

point ∂t. This completes the proof of lemma 1.

Theorem 1. The function wo(a) is given by

W｡(∂) -
6月(n-1)C2v>2(u+｡)2(u + ∂)¢(u)k(v)dudv

JJ(n- 1)C2v> 2(u+｡)2(l< + ∂)2¢(u)k(v)dudv
(12)

which is a non-negative even function satisfying wo(∂) - 0 if and only if a - 0 and there

exists a positive number ∂　such that

W｡(∂)<1 if¥8¥<∂1,

W｡(∂-1 1/ ∂t-∂1,

W｡(∂)>1 if　∂l>∂1.

(13)

Proof of Theorem 1. As the function ^(w, a, n) is quadratic in w with the positive

coe侃dent to w , the minimum is evidently attained at the value given in (12). Let

w｡(∂) - Sg(∂)/h(∂). After the transformation, u + ∂ - x, we have

♂(∂) -

n-1)C2v>x2

m
=e　2

誓　>c^>
h(∂)-e一㌢

Simiraly we have

x¢(x - ∂)k(v)dxdv

xe一書(ex｡ - e-**)k(v)dvdx.

x2e-誓{exd + e-x｡)k(v)dvdx.

(14)

(15)

�"/O　^cv㌃二T

Therefore it is easy to check g(∂)- -g{-　∂) and hid)- *(- ∂). Since wo(a) - w<>(- ∂),

we suppose without loss of generality that a > 0. (14) imply that g(∂) is positive, and

hence wo(∂) is positive except for ∂-0. Now wo(∂)<1, - 1 and　> 1 is equivalent

to h(∂)-<50(∂)>0, -0 and <0, respectively. On the other hand it turns out
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h(S)-dg(∂err
)-e2xe誓m(S)k(v)dvdx

andbecauseofLemma1?theexistenceofapositivenumber∂isconcluded.●

Wethushave

R(w,∂,n)-ォF(w,∂,n)-n*i(∂),∂,n)

where∂-y/nfi/aand

wl(∂)-wo(∂if¥d¥<31

if¥8¥>d.

16

and wo(∂) and ∂! are given in Theorem 1.

Theorem 2. The minimax regret weight exists.

ProofofTheorem 2. As !P(w, ∂ n) and wJ∂) are continuous, R(w, ∂, n) - iP w, ∂, n)

- vm∂), ∂, n) is continuous both in w and ∂　Further examination of(6) indicates

lim jR(w,∂,n -0.
∂→±(刀

Therefore the supremum of R(w, ∂, n) in ∂∈(-oo, ∞) is attained at a finite value of

∂　or equivalently there is a function ∂(w) with

sup R(w,∂,n)-R(w,∂(w),n)
-oo<∂<(カ

and ∂(W)∈(- ∞, ∞). And R(w, ∂(w), n) is a lower semicontinous function of w denned

on [0, 1]. As [0, 1] is compact, the infimum of R(w, ∂(w),n) is attained at a point

in[0,1].

3. Numerical considerations

To obtain the value of the minimax regret weight, we must calculate

nw, ∂ n). The value of this quantity can be evaluated by the expansion (17), (18) and
19.

n-1)C2v>2(u+a)2

w-3

2

u2¢(u)k(v)dudv - ∑
i-0

n-1)C2v>2(u+∂)2

Jd

i! ､耳元

〃-3

2

u¢(u)k(v)dudv - ∑
j-o i

e一品(dn2i+2 -2Jd∂p2汁1 +∂ 7*21)>

(17)

Jd
'2+d

e一品(Jd〃2f+l　∂fhd　(18)
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6

and

where
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F7BI
2

¢(u)k(v)dudv - ∑
i-o i¥

･"fc-f-∞'inag-g)2

-e-2&--dt,ft-浩6

･｣

診てj

_　∂2

e　百子盲M2ォ

(n- 1)C2
d

'2+d

19

Thesethreeexpansionsarebasedonintegratingfirstinuandthenapplyingthe

expansion(20)

Iaw志vp-1e-vdv-Py-a'v

i-｡i!(20)

wherepisapositiveinteger.Finallyfrom(17),(18)and(19)wearriveatasimple

expressionofW(w,∂,サ).

nw,∂,ォ)-!+

牢
∑
刷 ー

　

　

　

●

●
‡

Jd

2+d
e一品{d(w2-1)n2i+2+2Jd∂(1-w)u2汁i) (21)

After rather extensive numerical examinations, values of the minimax regret weight w*

were obtained for C-v(n- 1)(eォー1), which was given by Hirano by applying

Akaike's information criterion, and are given in Table 1.
●

Table 1. Values of the minimax regret weight.

n 11 13 15

W* 0.6461 0.6444 0.6434 0.6428 0.6423 0.6420

n 17 19 21 23 25

W* 0.6417 0.6415 0.6413 0.6412 0.6411
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