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Abstract

The present paper is a revised note of the lecture presented by the author at "The

XXVIth Symposium on Finsler Geometry" held at Kushiro during October 5-8, 1991. Let a

hypersurface S in an euclidean space Rn be implicitly defined by a differentiable function/

in R. Then the Gaussian curvature of o is expressed, in terms of/itself, in a Finsler-

geometrically striking form, so this result is applicable to Finsler geometry. We discuss

the Gaussian curvature of the indicatrix of a Finsler space (Rn, L), especially the effects

by some changes of the Finsler metric L in Rn.
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1. Introduction

In a three-dimensional euclidean space R , let a surface S be implicitly defined by a

differentiable function /in R3 as f(x)-0, where x- (x , x2, x3) is a rectangular coor-

dinate system of R3. We put fi-df/dx¥ fa-∂'蝣f/dx*∂x3'. Around a point x∈S such

that/3(.r) ≠O the surface 5 is graphically expressed by a differentiable function g as x

-g(x , x2), and the Gaussian curvature K of S is given by K-抄11 p22-P至2)/(l+P至+

p2)2, where pi-∂｣/&r', p,,-∂lg/dxldxJ. If we directly calculate from

hPi - -fu fiPij - -fijfi +Mfs +Mfs -fsM,

we have
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Especially, in the case where a treated function / is a quadratic polynomial of the

coordinates:
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(1.2)　　　　　　　　2f(x)=ciijXixメ+2biXl+c　(aij-aji),

the formula (1.1) is reduced to

(1.3 〟-

011 ^12　013　01

α21 α22　α23　∂2

#31 #32　#33　b%

01　02　03　C

/(f? +fi +fiY

wherefi(x)-dijXJ+bi. We use the summation convention in proper case. It is noted

that in this formula the value of gdepends only on the magnitude of the gradient of/re-
●

ciprocally.

Generally, in an n-dimensional euclidean space Rn we shall consider a hypersurface

o defined by a differentiable function/in Rn as

(1.4)　　　　　　　S-ix∈R*¥f(x)-O, (Vf)(x)≠0),

where x- (x ,-,xn) is a rectangular coordinate system of Rn, and Vfdenotes the gra-

dientof/

Throughout the present paper, we put ∂i-d/dx¥ and denote a vector with compo-

nents fli,�"�"�",vn by an nXl matrix '(#i,-#-,fw) and also by (vi) briefly. A letter *A de-

notes the transpose of a matrixA. The inner product ∑uiVi of vectors u-(ud and v-

(vd is denoted by wv, and the length (vv)1/2 ofa vectムr vby |i?|. Then we have

(1.5)　　　　　　Vf-t{fu-,/ォ), Wf¥- (zmi/2 (fi-dif).
1

The notion of Gaussian curvature is generally defined for a hypersurface S in Rn,

and in the case where S is implicitly given by (1.4) we can get the same expression as

(1.1) (Theorem 2.1). This is derived, for example, from Theorem 5 of Thorpe [5,

Chap. 12, p 89] , but in the previous paper [3] we showed a self-contained proof, based

on Lemma 2.1 concerning with the determinant of a linear transformation of a hyper-

subspace of a vector space Rn. We sketch this proof in Section 2, where an orientation

Nof 5is fixed by N-- Vf/¥vf¥ and the proof of Lemma 2.1 is improved.

This result is applied to Finsler geometry. We denote by y- (y ,-',yn) the ca-

nonical coordinate system of the tangent space Rnx at each point x∈Rn, and put ∂i=

d/dy¥　Let (Rn, L) be a Finsler space, where L is the fundamental function defined in

Rn. Each tangent space Rnx is regarded as an n-dimensional euclidean space with the

rectangular coordinate system y.

A hypersurface Ix- iy∈RnxIL(x, y) -1} in Rnx is called the indicatrix at x. In

Section 3 we shall express the Gaussian curvature of lx in terms of L (Theorem 3.1).

Given a hypersurface S in each tangent space Rnx a priori, by the well-known method (cf.

Matsumoto [2, p 105]) we have a Finsler space whose indicatrix Ix is the given S.

Thus the Gaussian curvature of o is expressed in terms of Finsler geometry. This fact

seems interesting from the standpoint of application. In connection with two examples

given in Theorem 3.2 and Theorem 3.3, in Section 4 we discuss the effects for the Gaus-

sian curvature of the indicatrix by some changes of a Finsler metric (Theorem 4.1,
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Theorem 4.2.).

The author wishes to express here his sincere gratitude to Professor Dr. Makoto

Matsumoto and Professor Dr. Yoshihiro Ichijyo for the invaluable suggestions and en-

couragement. The author is also grateful to Mr. Shin-ichi Nishimura and Professor Dr.

Shun-ichi Hojo who drew the author's interest to this subject.

As to the details of some discussions in the present paper and the treatment for a

general Lagrange space, refer to [3].

2. The Gaussian curvature of a hypersurface

We return here to the case of n-3, and let a surface Sin R be parameterized as x

-x(ul, u2). At each point x∈5, two tangent vector fields Xa-dx/duα (α-1, 2) con-

stitute a basis of the tangent plane Sxi and the unit vector field N- (X¥/¥Xt)/¥XiA^Gl is

orthogonal to Sx. Suggested by the Weingarten equation

(2.1)　　　　　　　　　Ne--hasXa　(NB-- ∂N/∂uβ),

we define a linear transformation Tof Sx by

(2.2)　　　　　　　T : SJ-Sx¥v-vβxB-T(v)- -v"Ns.

Since T(v) - (h%vβ)Xa, the Gaussian curvature if-det(/S) of 5 at x is the determinant

of T. It is noted that the vector ifiN& in (2.2) is the derivative VvNof Nwith respect to v.

Now, let (5, N) be an oriented hypersurface in Rn, where N is a unit vector field

orthogonal t0 5. Let Sx be the tangent space of a pointx∈S. The derivative VVVof TV

is defined with respect to v∈Sx, and we have VvN∈Sr, so we can define a linear trans-

formation Tof Sx by

(2.3)　　　　　　　　　　T : S.√-Sx¥V-T(v)-- VvN.

This is called the Weingarten map of (5, N) at x. The Gaussian curvature Kof (5,

N) at ∫ is defined by the determinant of 71

In the case where a hypersurface 5 in Rn is implicitly defined by (1.4) , for an

orientation Nof 5 we shall choose

2.4 N-- Vf/¥vf¥.

Then we have

Theorem 2.1. Let (S, N) be an oriented hypersurface in Rn, where S andNare

given by (1.4) and (2.4) respectively. 77z｣n /Ae Gaussian curvature K of (S, TV) is
●

givenby

(2.5)

lies

∬-
fu fi

fj 0
/¥ vf¥n+1.

Since for any u-(ui), v-(vt)∈Sx the Weingarten map Tof (5, N) atx∈o satis-
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u-T(v)- (∑fnuivM vfl
I,3

the proof of Theorem 2.1 is obtained from the following lemma by putting cLa-fij/¥ vf¥,

ni- -fi/¥ vf¥.

Lemma 2.1. Let W be an (n- 1)-dimensional subspace of an n-dimensional

euchdean vector space Rn, 7V- (ォ,-) a unit vector orthogonal to W, and T a linear

transformation of W. If for any u- {Ui), v- (vt) ∈ W the innerproduct wT{v) is

expressed by a matrix A- (0,7) as

(2.7)　　　　　　　　　wT(v)-*uA u(-∑ clijUiVj),
i,3

then the determinant K of T is given by

(2.8) ∬-

A　Ⅳ

JⅣ　0

an Hi

n, 0

Proof.IntheprooftheGreekindicestakethevaluesI,***,n-¥.Wechoosea

basisXi,--,Xn-iofWsuchthatXi,m-,Xn_NconstituteanorthonormalbasisofRn,

andrepresentTbyan(n-1)×(n-1)matrix(baβ),whereT(XB)-∑baβXa.Thenthe

determinantKofTisobtainedbydefinitionasK-det(6a/s).Iti芸notedthatbas-

Xa'T(Xs).

EinWedefineannXnmatrixXbyCXi,"-*,Xn-i,N)and(w+1)x(n+1)matricesA,

kby

-MArtpo>

vN｡/¥｡Iy

乙i:!ウXandXareorthogonal.ThenwehavefromXa'N-O,N*N-1

XAX-

"xa/

'NAO

'XaAXs 'XaAN

'NAXg 'NAN

～

from which we have det^- -det('XaAXs). Paying attention to 'XaAXs-Xa-T(XB)
iこ▼:

=baβ, we have detA--det(bαβ).　　　　　　　　　　　　　　　　　　　　Q. E. D.

As a special case of Theorem 2.1 we have

Theorem 2.2. Let (S, N) be an oriented hypersurface in Rn, where S is a regu-

lar quadratic hypersurface defined by

(2.9)　　　　　　　2f(x)-auxtx'+2blxi+c-o　(flォ-flォ)

and N is a unit vector field orthogonal to S given by (2.4). Then the Gaussian cur-

vature Kof (5, N) isgiven by
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an bi

bj
A?. /?) (H+D/2

I
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where fi(x) =aijXJ+bi.

3. The indicatrix of a Finsler space

●                                                                    ●      ●

Let (Rn, L) be a Finsler space. We put U-diL, ¢｣-(/ォ), #ォ-(d<∂jL2)/2, (*")-

(gii) f and g- det(gij). The Finslerian length of the normalized supporting element

ウL is 1 :*"/,/,-!, but | FL|-(≡ U2)l/2 denotes the euclidean length.

If we define a function /by

(3.1)　　　　　　　　　　　2f(x, y)-L2(x, y)-l,
●                   ●

and put vf-(∂if), then the indicatrix Ix is expressed as

(3.2)　　　　　　　　　Ix-iy∈R"x¥f(x, y)-O},

whereon we have Vf- ¢L≠0.

●

●

At each y∈Ix the vector field VL is orthogonal to Ix. We shall assume that an

orientation N of Ix is always

(3.3)

Since on the indicatrix we have

N--VL/¥vu.

∵m

we have from Theorem 2.1

Theorem 3.1. Let (Rn, L) be a Finslerspace. At eachpointx∈Rn, the Gaus-

sian curvature K of the indicatrix Ix oriented in the direction opposite toウL- (lt) is
●

givenby

(3.4)　　　　　　　　　　　K-g/¥ vL¥n+1.

We can apply Theorem 2.2 for a Randers space and a Kropina space. Let α¥x, y)

- (aij(x)yiyi)l/2 be a Riemannian metric and β(x, y) -bi(x)yl a non-vanishing 1-form

in Rn. Then we have

Theorem 3.2. Let (Rn, L) be a Randers space, where L-α+β. At eachpoint

x∈Rn, the Gaussian curvature K of the indicatrix Ix oriented in the direction opposite

to VL-(/,-) is given by

(3.5)　　　　　　　　　K-det(aa)/(写ft;2¥ (w+l)/2
I

wherefi(x, y) -aij(x)yJ+α(x, y)bi(x) (fi-αli).
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Theorem 3.3. Let (Rn, L) be a Kropina space, where L-α2ノβ　At eachpointx

∈ Rn, the Gaussian curvature K of the indicatrix Ix oriented in the direction opposite

to ¢L-(li) is given by

(3.6)　　　　　　　　　K- 2n-1b2det(aij)/(2:fi2) (H+D/2
I

where b2-gijbibj andfi(x, y) -2aij(x)yj-bi(x) (fi-α%).

4, Changes of Finsler metrics

We shall here investigate how the Gaussian curvature of the indicatrix is effected

under some changes of a Finsler metric L in Rn. Let β(x, y) -bi(x)yl be a non-

vanishing 1-form in Rn. We shall first consider the change

(4.1)　　　　　　　　　　　　　　L-^L-L+p

called a Randers change (cf. Matsumoto [1]).

The indicatrix Ix at x∈Rn of a Finsler space (Rn, L) satisfies

(4.2)　　　　　　　2/Or, y)-L2{x, y)-(l-B(x, */))2-0.

Then we have ft-Lli+(1-β)bi, fij-gij-bibj. Since on the indicarix Ix we have //-

Liu where U-diL, the vector Vf-(dif) has the same direction as FL-(//). Thus

the vector field N- - ¢j/l頼gives the orientation assumed for a Finsler space.
Since on the indicarix lx we have

gu-bibj Uh+bi)

L(lj+ bj)
-g,

applying Theorem 2.1 to (4.2) we have the Gaussian curvature K of the indicatrix Ix

of the Finsler space (Rn, L) as

(4.3)　　　　　　　　　K-g/(L¥ウL¥)n+1

Since the Gaussian curvature K of the indicatrix Ix of the Finsler space (Rn, L) is ex-

pressed as K-g/¥ vL¥n+1, we have

Theorem 4.1. Let (Rn, L) be the Finsler space obtained from a Finsler space

(Rn, L) by a Randers change L->L-L+β　Then the Gaussian curvature of the in-

dicatnx is changed as

(4.4)　　　　　　　　　K- (¥ vL¥/LけL¥)n+1K.

In the same way, we can treat a change

(4.5)　　　　　　　　　　　　　　　上-L-L

called a Kropina change (cf. Shibata [4]). The indicatrix Ix at x∈Rn of a Finsler

space (Rn, L) may be expressed as



On a Finsler-Geometrical Expression of the Gaussian Curvature 27

(4.6)　　　　　　　　　f{x, y)-L2(x, y)-β(x, y)-O.

Then we have fi-2Ll¥-bi, fij-2gij. Since on the indicatrix Ix we have /,�"-L2/*,

where li-dfL, the vector F/-(9*/) has the same direction asウ｣-(/,)�"　Thus the

vector field N-- ¢i/l拍gives the orientation assumed for a Finsler space. Since on
the indicatrix Ix we have

ju　2Ui-bt

2Ll,- b,　0
2"-lb2g,

applying Theorem 2.1 to (4.6) we have the Gaussian curvature Kof the indicatrix Ix of

the Finsler space (Rn, L) as

(4.7)　　　　　　　　K-2n-1b2g/(LウL¥)n+1

Since the Gaussian curvature K of the indicatrix Ix of the Finsler space (Rn, L) is ex-

pressed as K-g/¥ VL¥n+1, we have

Theorem 4.2. Let (Rn, L) b旦the Finsler space obtained from a Ftnsler space

(Rn, L) by a Kropina changeと→L-L/fi. Then the Gaussian curvature of the in-

dicatnx is changed as

(4.8)　　　　　　　　K-2n- bH¥ウL¥/L2¥ vL¥)n+lK.

Remark 4.1. Applying (4.3) and (4.7) to L-a, we also have Theorem 3.2 and

Theorem 3.3 respectively.

Remark 4.2. Let (Rn, L) be the Finsler space obtained from a Finsler space (Rn,

L) by a Randers changeん-L-L+βL By Theorem 3.1 the Gaussian curvature of the

indicatrix Ix of (Rn, L) is given by K-宮/|FL|W+1. If we compare this formula with

(4.3), we have g-g/Ln+l on the indicatrix Ix. Since y/L∈Ix for any y∈Rnx, we gener-

ally have g- (L/L) g. It is interesting that we can get g without knowing the con-

crete form of gij. Especially, we have g- (L/a)n+ldet(tfo) for a Randers space (Rn,

L), where L-竺+β･

Let (Rn, L) be the Finsler space obtained from a Finsler space (Rn, L) by a Kropi-

na change Lr^L-L2/β In the same way, we have g-2n-lb2{L/L)2{n^l)g. Especially,

we have g-2n-1b2(L/a)2in+1)det(au) for a Kropina space (Rn, L), where L-α2/β.
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