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Abstract

The present paper is a revised note of the lecture presented by the author at “The
XXVIth Symposium on Finsler Geometry” held at Kushiro during October 5-8, 1991. Let a
hypersurface S in an euclidean space R” be implicitly defined by a differentiable function f
in R”. Then the Gaussian curvature of S is expressed, in terms of f itself, in a Finsler-
geometrically striking form, so this result is applicable to Finsler geometry. We discuss
the Gaussian curvature of the indicatrix of a Finsler space (R”, L), especially the effects
by some changes of the Finsler metric L in R”.
Key words: Gaussian curvature, Indicatrix, Finsler space, Randers change, Kropina change.

1. Introduction

In a three-dimensional euclidean space R? let a surface S be implicitly defined by a
differentiable function fin R® as f(x) =0, where = (x!, 2%, x®) is a rectangular coor-
dinate system of R%®. We put f; = 0f/0x’, fi; = 0*//0x'0x’. Around a point ZE S such
that f3(x) # 0 the surface S is graphically expressed by a differentiable function g as x*
=g(x', £, and the Gaussian curvature K of S is given by K= (pu1 paz— ph)/(1 +pi+
p3)?% where p;=0g/0x’, p;;=0%g/0x'0x’. If we directly calculate from

fibi=—fo, b=~ fufd + fidhifs + fidfifs— faaf s

we have
fu fie fis S
fa feo fos fa
1.1 K=— SRR+ 2+ )2,
(- f31f32f33f3(fff)
h o /0

Especially, in the case where a treated function f is a quadratic polynomial of the
coordinates:
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(1.2) 2f (x)=ayx'x’+2bx'+c  (a;=aj),

the formula (1.1) is reduced to

an Qi a1z b

Azz Qz3 b
(1.3) K=— | 92 08 2 ol oy oy
a3 Qa3 Azz 03

b1 bz b3 C

where fi(x) = a;x’ +b;. We use the summation convention in proper case. It is noted
that in this formula the value of K depends only on the magnitude of the gradient of f re-
ciprocally.

Generally, in an #-dimensional euclidean space R” we shall consider a hypersurface
S defined by a differentiable function fin R” as

(1.4) S={z€R"|f(x)=0, (Vf) (x)#0},

where x= (z',**,x") is a rectangular coordinate system of R” and V f denotes the gra-
dient of f.

Throughout the present paper, we put 8; = 0/0x’, and denote a vector with compo-
nents v1,***,v, by an # X 1 matrix ‘(v1,**,v,) and also by (v;) briefly. A letter ‘A de-
notes the transpose of a matrix A. The inner product 2#v; of vectors u= (#;) and v=
(vi) is denoted by u*v, and the length (v-v)'? of a vector v by |vl. Then we have

(1.5) V1= oo, | VA= (S (=0

The notion of Gaussian curvature is generally defined for a hypersurface S in R”,
and in the case where S is implicitly given by (1.4) we can get the same expression as
(1.1) (Theorem 2.1). This is derived, for example, from Theorem 5 of Thorpe [5,
Chap. 12, p 89], but in the previous paper [3] we showed a self-contained proof, based
on Lemma 2.1 concerning with the determinant of a linear transformation of a hyper-
subspace of a vector space R”. We sketch this proof in Section 2, where an orientation
N of Sis fixed by N=—V f/|Vf| and the proof of Lemma 2.1 is improved.

This result is applied to Finsler geometry. We denote by y= (y', - ,y") the ca-
nonical coordinate system of the tangent space R”% at each point x € R”, and put 0; =
0/0y'. Let (R", L) be a Finsler space, where L is the fundamental function defined in
R” Each tangent space R% is regarded as an #-dimensional euclidean space with the
rectangular coordinate system .

A hypersurface I, ={y€ R%|L(x, y) =1} in R"% is called the indicatrix at x. In
Section 3 we shall express the Gaussian curvature of I; in terms of L (Theorem 3.1).
Given a hypersurface S in each tangent space R" a priori, by the well-known method (cf.
Matsumoto [2, p 105]) we have a Finsler space whose indicatrix I, is the given S.
Thus the Gaussian curvature of S is expressed in terms of Finsler geometry. This fact
seems interesting from the standpoint of application. In connection with two examples
given in Theorem 3.2 and Theorem 3.3, in Section 4 we discuss the effects for the Gaus-
sian curvature of the indicatrix by some changes of a Finsler metric (Theorem 4.1,
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Theorem 4.2.).

The author wishes to express here his sincere gratitude to Professor Dr. Makoto
Matsumoto and Professor Dr. Yoshihiro Ichijyo for the invaluable suggestions and en-
couragement. The author is also grateful to Mr. Shin-ichi Nishimura and Professor Dr.
Shun-ichi Hojo who drew the author’s interest to this subject.

As to the details of some discussions in the present paper and the treatment for a
general Lagrange space, refer to [3].

2. The Gaussian curvature of a hypersurface

We return here to the case of #=3, and let a surface S in R® be parameterized as x
=z (u', u?). At each point TE S, two tangent vector fields Xo=0x/0u* (=1, 2) con-
stitute a basis of the tangent plane Sz, and the unit vector field N=(X; AX:)/| Xi A X, is
orthogonal to S;. Suggested by the Weingarten equation

(2.1) Ne=—h%X, (Nzg=0N/0u®),
we define a linear transformation T of Sz by
(2.2) T :S:—S:|lv=0v°X;—T (v)=—vEN,.

Since T (v) = (h§v?) Xg, the Gaussian curvature K=det(h%) of S at x is the determinant
of T. It is noted that the vector v*Nj in (2.2) is the derivative V,N of N with respect to v.

Now, let (S, N) be an oriented hypersurface in R”, where N is a unit vector field
orthogonal to S. Let S; be the tangent space of a point t€S. The derivative VN of N
is defined with respect to VE S;, and we have Vo,NES;, so we can define a linear trans-
formation T of S; by

(2.3) T:S—S:|lv—>T@w)=—V,N.

This is called the Weingarten map of (S, N) at x. The Gaussian curvature K of (S,
N) at x is defined by the determinant of T.

In the case where a hypersurface S in R” is implicitly defined by (1.4), for an
orientation NV of S we shall choose

(2.4) N=—Vf|Vfl|.
Then we have

Theorem 2.1. Let (S, N) be an oriented hypersurface in R", where S and N are
giwen by (1.4) and (2.4) respectively. Then the Gaussian curvature K of (S, N) s
given by

fii fi
i 0

Since for any u= (u;), v= (v;) € S; the Weingarten map T of (S, N) at xE S satis-
fies

(2.5) K=— /|7 flm,
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(2.6) u-T@w)= (_Z_fijuivf)/l Vfl,

ni=—f/|Vfl.

Lemma 2.1. Let W be an (n — 1)-dimensional subspace of an n-dimensional
euclidean vector space R", N= (n;) a unit vector orthogonal to W, and T a linear
transformation of W. If for any u= (u;), v= (v;) € W the inner product u-T (v) is
expressed by a matrix A= (ai;) as

2.7 u-T)='uA v(=2 aiuw;),

-z 3l)

Proof. In the proof the Greek indices take the values 1,-:-, #—1. We choose a
basis Xi,**, Xu—1 of W such that Xi, -+, X,—1, N constitute an orthonormal basis of R”,
and represent 7 by an (m—1) X (n—1) matrix (bas), where T (Xp) = ;baﬁXa. Then the
determinant K of T is obtained by definition as K = det(bag). It is noted that bas =
Xo T (Xp). ~
_ We define an #X#n matrix X by (Xi,***, Xs-1, N) and (n+1) X (n+1) matrices A4,

X by
~ (A N\ ~ [X 0
A= , X= .
‘N 0 01

X and X are orthogonal. Then we have from X,*N=0, N-N=1

then the determinant K of T is given by

A N
‘N 0

ai; n;
n; 0

(2.8) K=— ’

‘X, AXs 'Xa¢AN 0
‘XAX=|'NAX, 'NAN 1 |,
0 0 0

from which we have det A= —det(Xa A X5). Paying attention to ‘Xg A Xs=Xo* T (Xp)
=bgas, we have det A= —det (bap). Q. E. D.

As a special case of Theorem 2.1 we have

Theorem 2.2. Let (S, N) be an oriented hypersurface in R", where S is a regu-
lar quadratic hypersurface defined by

(2.9) 2f (x)=aix'x’ +2bix'+c=0 (aij=a;j)

and N is a unit vector field orthogonal to S given by (2.4). Then the Gaussian cur-
vature K of (S, N) is given by
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aij bi

(2.10) K=— ‘ /(Z ﬁZ) (n+1)/2’
bj Cc i

where fi(x) =a;jx’+b;.

3. The indicatrix of a Finsler space

Let (R”, L) be a Finsler space. We put L,=,L, VL= (l)), g;= (0,0,11)/2, (g")=
(g;j)_l, and g = det(gi;). The Finslerian length of the normalized supporting element
VLis1:g"Lil;=1, but |V L= (2 1)"? denotes the euclidean length.

If we define a function f by :

3.1) 2f (x, y)=L*(x, y) —1,
and put Vf= (6,f), then the indicatrix I is expressed as
3.2) L={y€R%f(zx, y)=0},

whereon we have Vf= V L#0. '
At each y € I the vector field V L is orthogonal to I;. We shall assume that an
orientation N of I is always

(3.3) N=—VL/|VL.
Since on the indicatrix we have

gii i

L, 0 =&,

fi fi| _
fi O

we have from Theorem 2.1

Theorem 3.1. Let (R", L) be a Finsler space. At each point xE R", the Gaus-
sian curvature K of the indicatrix I, oriented in the direction opposite to VL= (l;) is
given by

(3.4) K=g/|V L™,
We can apply Theorem 2.2 for a Randers space and a Kropina space. Let a(x, y)

= (a;j(x)y'y’)"’? be a Riemannian metric and B(z, y) =b:(x)y' a non-vanishing 1-form
in R”. Then we have

Theorem 3.2. Let (R", L) be a Randers space, where L=a+ 3. At each point
ZER", the Gaussian curvature K of the indicatrix I, oriented in the direction opposite
to VL= (l;) is given by

3.5) K=det(a;;) /(2 fH) 172,
where fi(x, y) =ai;(@)y’ +alzx, y)bi(x) (fi=al).
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Theorem 3.3. Let (R", L) be a Kropina space, wheve L=a?/8. At each point x
€ R", the Gaussian curvature K of the indicatrix I, oriented in the direction opposite
to VL=(l;) is given by

(3.6) K=2"""b2det(a,)/(Z f7) "+
where b*=g'b;b; and f,(x, y) =2a;(x)y’ —b:(x) (L=al).

4. Changes of Finsler metrics

We shall here investigate how the Gaussian curvature of the indicatrix is effected
under some changes of a Finsler metric L in R”. Let B(x, y) = bi(x)y’ be a non-
vanishing 1-form in R”. We shall first consider the change

4.1) L—L=L+p

called a Randers change (cf. Matsumoto [1]).
The indicatrix I at tE R" of a Finsler space (R”, L) satisfies

(4.2) 2f(x, y)=L2(x,y)—(1—B(x ¥))?=0.

Then we have f, Llii+(1— B)b,, ----- —bib;. Since on the indicarix Ix we have f,
Ll1 where l,-— OL the vector Vf (6 f) has the same direction as V L= (l) Thus
the vector field N = — Vf/|Vf| gives the orientation assumed for a Finsler space.

Since on the indicarix Iz we have

fu fi
fi 0

gii—bib; L(li+by) _
LU+b) 0 £

applying Theorem 2.1 to _(4.2) we have the Gaussian curvature K of the indicatrix L
of the Finsler space (R”, L) as

(4.3) K=g/(L|V L))"

Since the Gaussian curvature K of the indicatrix I; of the Finsler space (R", L) is ex-
pressed as K=g/|V L|**!, we have

Theorem 4.1. Let (R”, Z) be the Finsler space obtained from a Finsler space
(R", L) by a Randers change L—L=L+[(. Then the Gaussian curvature of the in-
dicatrix is changed as

(4.4) K=(VL/LIVL)*K.
In the same way, we can treat a change
(4.5) L—L=1%*p

called a Kropina change (cf. Shibata [4]). The indicatrix I at £€ R” of a Finsler
space (R”, L) may be expressed as
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(4.6) flx, y)=Lx, y)—B(z, y)=0.

Then we have f,—ZLl bi, f,, 2gi;. Since on the indicatrix Ix we have f, L*1;
where ;= d;L, the vector Vf— (6 ;f) has the same direction as VL= (1;). Thus the
vector field N:— — Vf/| Vf| gives the orientation assumed for a Finsler space. Since on
the indicatrix I we have

2g,, ZLI,_‘b,

:_Zn—lbz ,
2L1;—b; 0 £

fii fi
fi 0

applying Theorem 2.1 to (4.6) we have the Gaussian curvature K of the indicatrix L of
the Finsler space (R”, L) as

4.7) K=2""1p2g/(L?|V L|)"*".

Since the Gaussian curvature K of the indicatrix I of the Finsler space (R”, L) is ex-
pressed as K=g/|V L|**!, we have

Theorem 4.2. Let (R, Z) be the Finsler space obtained from a Finsler space
(R", L) by a Kropina change L— L= L*/B. Then the Gaussian curvature of the in-
dicatrix is changed as

(4.8) K=2""'p2(|V L|/L¥ V L))""'K.

Remark 4.1. Applying (4.3) and (4.7) to L=a, we also have Theorem 3.2 and
Theorem 3.3 respectively.

Remark 4.2. Let (R”, l_,) be the Finsler space obtained from a Finsler space (R”,
L) by a Randers change I~ L= L+pB. By Theorem 3.1 the Gaussian curvature of the
indicatrix I; of (R", L) is given by K= g/|VL|”+1 If we compare this formula with
(4.3), we have Z=g/L"" on the indicatrix I. Since y/LE I, for any yE R%, we gener-
ally have g = (L/L)"*'g. 1t is interesting that we can get g without knowing the con-
crete form of Zi;. Especially, we have g = (L/a)"*' det(a;;) for a Randers space (R”,
L), where L=a+§.

Let (R”, L) be the Finsler space obtained from a Finsler space (R”", L) by a Kropi-
na change L— L= L?/B. In the same way, we have g=2""'p?(L/L)*"*Vg. Especially,
we have g=2""1p2(L/a)*"*Vdet (a;;) for a Kropina space (R", L), where L=a?/B.
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