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Abstract
In this paper we shall clarify the structure of a discrete dynamical system, called by
the name “iteration scheme of modular type” in [1], see an isomorphism between an itera-
tion scheme of modular type of order # and a product of some iteration scheme of modular
type of different orders, which constitutes the prime number factorization of the number #,
and show fundamental properties of the iteration schemes by example.
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1. Notations and Definitions.

Let X be a finite set, and f a mapping from X into itself. We call the system <X,
f> an iteration scheme over X: starting with an x° from X, we are interested in the
sequence of successive iterations to f defined by

z¥=f(x* (k=0,1,2-).

The fundamental problem is to investigate the behavior of this sequence, given par-
ticular assumptions for f.

In [1] we assume that X is a finite set Z,=1{0,1,2:-,m—1}, and f a function of the
following form:

f(x)=ax+b mod m (a,bEZy,)
or X a finite set Zj, and f a mapping from Zj, into itself defined by
f(x)=Ax+b mod m,

where A is an # X # matrix with elements from Z,, and b a vector with elements from Zy,.
In this paper we assume that X is a set Z,=10,1,2:--,m—1}, and f a polynomial
with coefficients in Z,, computed by the operation of mod m, that is,

n

f(x) =Z a;ix"" mod m (xEZn),

i=0
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where @o,a1,"**,a, are elements in Zy,.

Definition 1.1. We call a system Py, m,a= <X, f> an iteration scheme of modu-
lar type of order # (scheme, for short), where # and m are natural numbers, a= (ao,d1,
+,@y) is an (n+1) dimensional vector with elements in Z,, X is a set Z,=10,1,2-*-,m
—1}, and fis a polynomial of the following form:

n

f(x) =Za;~x”"' mod m (xEZn),
i=0
that is, the value f(x) is computed by mod m operations.

Definition 1.2. The iteration graph of the scheme Py, », a= <X, f> is the graph
consisting of vertices which are elements of X and the following arcs: for all x in X, an
arc conects x to f (x).

Example 1.1. Let us take a scheme Pa,15,1,01= <X, f>, where
X=7,s=1{0,1,2--,14}, and f () =2%+11 mod 15 (x€X)

The iteration graph of the scheme Py,15,1,0,11) is as follows:

llO
I
3— 35 2+ 9
1\] l/ 7
4—12 0+

The longest stable period of the scheme is 6, and scheme has no fixed points as seen in
the iteration graph.

Definition 1.3. Let <X, fi> and <X, fo> be two iteration schemes. If there
exists a bijection ¢ from X; onto X such that the following diagram commutes, then the
scheme <Xj, fi> is called to be isomorphic to the scheme <X, f2>:

X1 — Xl
0| ® | o
Xz —_ XZ ’

that is,
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¢ fi=f .
We write the above isomorphism as follows:

<Xy, > =X, 2>

2. Isomorphism of schemes.

Next we shall consider a product of two iteration schemes of modular type of order
71 and 7.

Definition 2.1. Let Py, m,a, = <Xi, fi> and Py, m, 2, = <Xz, 2> be two itera-
tion schemes of modular type of order #; and #,, respectively, where %1, mi, n; and m;
are natural numbers,

— (1) (1) - (1)
ai=(ao’, ai’,**,an,),
and

(2) (2)

aZZ(aO y a1 7“')‘1’(122)))

two (#,+1) and (n,+1) dimensional vectors with elements in Zy, and Znu,, respectively,

Xi=Zm,, Xo="Zm, and

71
fi(z) =Z a’x™ " mod m, (xEZn,),
i=0

)
f2(x) =Z aPx™ " mod my (xEZm,).
i=0
Then we call a scheme <X, f> a product of two schemes Pu,, m,, a, and Pu, m,, a,»
where
X=Xi X Xz (ZZm, X Ln,)

and

f(@):= (@), fo(x2)) (z= (21, 22) EX).
We shall write the product by

P, my, a0, X Puymy, a, -

Notice that product of finite number of schemes is defined similarly. We get the fol-
lowing result:

Theorem 2.1. Let m, and my be two relatively prime positive integers, and let m
be the product: m=my x ms.
Given an iteration scheme of modular type of order n

Pn,m,a=<X,f>,

where X=127Z,,, a= (ao,a1,"**,an) EX"*" and
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n

f(x)= Z aix”' modm (zeX),
i=0
we construct two tteration schemes of modular type of same ovder n:

Pn, my, a1:<Xl, ﬁ> and Pn, my, aZ=<X2, ﬁ>,

where
Xi=Zm,, Xo=Zn,
a,= (d(()l), a{”,---,a,‘,”) €X1n+l,
a,= (aé”, 0{2),”',01(12)) €X2n+l’
ao=as” (mod my), ap=as® (mod m,),
ai=ai’ (mod my), a;=a? (mod my),
— (1) — (2)
ar=a,’ (mod m,), a,=a;’ (mod m,),
and

fi(x) =Z aPz"" mod m; (x€X)),
i=0

f(x) =Z aPz"' mod m; (x€X,),
i=0

Then the scheme Py, m, a is isomorphic to product Pu, m,, a, X Pn, m,, a,, that is,
Pum a=Pu my, 0, X P, my, a,
Proof. The product of the schemes Py, m,, a, and Py, m,, a, is the scheme
Py oy, ay X Puomy a,= <Xi X X3, g2,
where
g (@1, ) = (fi(x), f2(x2)) (mEX), TEX,).

It is sufficient to prove the existence of bijection ¢ such that the following diagram com-
mutes:

x L x
¢| Q | ¢
g

Xi XX, E— X1 XX,

For each x& X there exist uniquely two integers x1€ X; and x;€ X; such that
x=x; (mod m,)
and

r=x; (mod my).
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Let ¢ be a mapping from X into X; X X; such that
(@)= (21, 1) (xEX).

The mapping ¢ is a bijection from X onto X; X X,. It is sufficient to prove that the map-
ping ¢ is injective, since both sets X and Xi X X, are finite sets, and

FX)=# (X1 XXp).

Let us assume that ¢(xr)=¢ () (r, y€X). Letting ¢(x)= (1, x2) and ¢(y) = (y1, ¥2),
we get the following relations:

X1=Y1, T2=1Y2 and
r=x, (mod my), x=x, (mod m,),
y=y, (mod my), y=y, (mod m),

Two integers m; and m, being relatively prime, and x and y belonging to X, we have
Z=y by Chinese remainder theorem ([2]). We shall show that the mapping ¢ is com-
mutative, that is, ¢-f=g-¢. For each x in X, we have

9(o(x)) =g (x1, 22) = (fi(21), fo(x2)).
Furthermore we have for each x€X
rx=x; (mod m,;) and x=x, (mod m,)
So we get ([3])
zt=xt (mod m,) and x¥=xf (mod m,), k=2,3,4, .

And, from the relation a;=a" (mod m,), and, a;=a® (mod m,) (:=0,1,2,--,n), we
obtain

n

n
Z a,-x”""EZ aPx!t (mod m,)
i=0

i=0

and
Z afx”‘iEZ aPx?t  (mod my)
=0 i=0
So we have
f@)=f(x) (mod my)
and

f(x)=fo(x:) (mod my).

The numbers fi(x1)) and fo(x:) are uniquely determined in X; and X, respectively.
Hence we have

o(f ()= (), fo(x) (xEX).

The conclusion follows:
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gp@)=e(f(x)) (xeX).
The schemes Py, m, a is, therefore, isomorphic to the product Py, m,, a, X Pn, my, a,
Pn, m, aE Pn, my, ay X Pn, my, ay -

(Q.E.D.)

Example 2.1.

P2,15.1,010 =P2s,a,02 X Pas,a0-

Now m=15, so m;=3 and m,=25,
P23 a0 : filx)=2%+2 mod 3

—~0

P.sa0p : fz(x)=x2*+1 mod 5

N
3— 0 2 —4

We have the following iteration graph of the product of schemes P23,1,0,2 and P25 a.0.1)

(1,0)
|
(0,1)
(0,3) — (2],0) (212) ~—(0,4)
(1:4)\ (1’2)
(1,1)—=(0,2) (0,0) 4(1,3)
@0 N\, ey

This is isomorphic to the iteration graph of the scheme Py,151,011) (See Example 1.1).

3. Main theorem.

We have the following theorem which seems to be important and fundamental to
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analyse behaviors of schemes.

Theorem 3.1. If m is a positive integer of the form

gl 1
m=py'ps? i,

where {p;} are prime numbers such that p, <p,-+ <pir and l; are positive integers
(1=1,2,--,k; k> 1), then an iteration scheme P, m o= <X, f> of modular type of
order n defined by

f(x)=z aix"' mod m (reX),
i=0
where X="17Z,, and a= (a¢,a:"*,a») i X", is isomorphic to the product of iteration
schemes Py, m, o,= <Xj, ;> defined by

n

fi(x) =Z a’x"* mod m; (xeX;),
i=0
where m;=7p), X;="2m, and a,= (ai’a’,-,a?) is in X'+ satisfying the relations

a,-za,‘” (mod m,-) (i=0,1,2,-~,n;j=1,2--'k),
that is,
k
Pu maS HPn mj, aj-
j=1

Proof The product [[}-1 Py, m, a, is a system <Y, g>, where Y=} X, and ¢
is a mapping from Y into itself such that for each y= (x1, X2,***,xx) €Y,

g) = (h(z), fo(x2), ", filx)) EY.

It is sufficient to prove that there exists a bijection ¢ from X onto Y such that the fol-
lowing diagram commutes:

x L x
ol o lo
y Ly

that is, g-@=¢-.f. For each x in X there exists uniquely a vector (xi, Zz,***,2x) in Y
such that

r=x; (mod m;) (j=1,2,--+k).
Let us define a mapping ¢ such that for each r€X
go(‘r) = (xlr x29."’xk) (E Y)-

The mapping ¢ is an injection as easily shown by the Chinese remainder theorem, so is
also surjective, thus, the mapping ¢ is bijective. And the mapping ¢ is commutative,
since for each re X
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9(0@) =g (21, 22, 2)
= (fl(xl)y ﬁ(xZ),'.'9fk(xk)) € Yr

and

(D(f(x)): (fl(xl)y fz(xZ);'“;ﬁf(xk))y

the proof of which follows Similarly from the proof of Theorem 2.1. Hence the scheme
P, m, a is isomorphic to the product of schemes [T P, m;, aj.

(Q. E.D)
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