On the structure of iter ation scheme of modul ar type of order n

著者	HUZI NO Sei iti，TOGASH Aki ra
j our nal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	25
page range	$29-36$
別言語のタイトル	高次合同型反復模型の構造について
URL	ht t p：／／hdl ．handl e．net／10232／00010066

On the structure of iteration scheme of modular type of order n

Akira TogASHil ${ }^{1)}$ and Seiiti HuZinO2)

(Received September 10, 1992)

Abstract

In this paper we shall clarify the structure of a discrete dynamical system, called by the name "iteration scheme of modular type" in [1], see an isomorphism between an iteration scheme of modular type of order n and a product of some iteration scheme of modular type of different orders, which constitutes the prime number factorization of the number n, and show fundamental properties of the iteration schemes by example.

Key word : discrete dynamical system, finite graph, iteration process, limit cycle.

1. Notations and Definitions.

Let X be a finite set, and f a mapping from X into itself. We call the system $<X$, $f>$ an iteration scheme over X : starting with an x^{0} from X, we are interested in the sequence of successive iterations to f defined by

$$
x^{k+1}=f\left(x^{k}\right) \quad(k=0,1,2 \cdots) .
$$

The fundamental problem is to investigate the behavior of this sequence, given particular assumptions for f.

In [1] we assume that X is a finite set $\mathbf{Z}_{m}=\{0,1,2 \cdots, m-1\}$, and f a function of the following form:

$$
f(x)=a x+b \quad \bmod m\left(a, b \in \mathbf{Z}_{m}\right)
$$

or X a finite set \mathbf{Z}_{m}^{n} and f a mapping from \mathbf{Z}_{m}^{n} into itself defined by

$$
f(x)=A x+b \quad \bmod m,
$$

where A is an $n \times n$ matrix with elements from \mathbf{Z}_{m} and b a vector with elements from \mathbf{Z}_{m}.
In this paper we assume that X is a set $\mathbf{Z}_{m}=\{0,1,2 \cdots, m-1\}$, and f a polynomial with coefficients in \mathbf{Z}_{m}, computed by the operation of $\bmod m$, that is,

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{n-i} \bmod m\left(x \in \mathbf{Z}_{m}\right)
$$

[^0]where $a_{0}, a_{1}, \cdots, a_{n}$ are elements in \mathbf{Z}_{m}.
Definition 1.1. We call a system $\mathbf{P}_{n, m, \mathbf{a}}=\langle X, f\rangle$ an iteration scheme of modular type of order n (scheme, for short), where n and m are natural numbers, $\mathbf{a}=\left(a_{0}, a_{1}\right.$, $\left.\cdots, a_{n}\right)$ is an $(n+1)$ dimensional vector with elements in \mathbf{Z}_{m}, X is a set $\mathbf{Z}_{m}=\{0,1,2 \cdots, m$ $-1\}$, and f is a polynomial of the following form:
$$
f(x)=\sum_{i=0}^{n} a_{i} x^{n-i} \bmod m\left(x \in \mathbf{Z}_{m}\right)
$$
that is, the value $f(x)$ is computed by $\bmod m$ operations.
Definition 1.2. The iteration graph of the scheme $\mathbf{P}_{n, m, \mathbf{a}}=\langle X, f\rangle$ is the graph consisting of vertices which are elements of X and the following arcs: for all x in X, an arc conects x to $f(x)$.

Example 1.1. Let us take a scheme $\mathbf{P}_{2,15,(1,0,11)}=\langle X, f\rangle$, where

$$
X=\mathbf{Z}_{15}=\{0,1,2 \cdots, 14\}, \text { and } f(x)=x^{2}+11 \bmod 15(x \in X)
$$

The iteration graph of the scheme $\mathbf{P}_{2,15,(1,0,11)}$ is as follows:

The longest stable period of the scheme is 6 , and scheme has no fixed points as seen in the iteration graph.

Definition 1.3. Let $\left\langle X_{1}, f_{1}\right\rangle$ and $\left\langle X_{2}, f_{2}\right\rangle$ be two iteration schemes. If there exists a bijection φ from X_{1} onto X_{2} such that the following diagram commutes, then the scheme $\left\langle X_{1}, f_{1}\right\rangle$ is called to be isomorphic to the scheme $\left.<X_{2}, f_{2}\right\rangle$:

that is,

$$
\varphi \cdot f_{1}=f_{2} \cdot \varphi
$$

We write the above isomorphism as follows:

$$
<X_{1}, f_{1}>\cong<X_{2}, f_{2}>
$$

2. Isomorphism of schemes.

Next we shall consider a product of two iteration schemes of modular type of order n_{1} and n_{2}.

Definition 2.1. Let $\mathbf{P}_{n_{1}, m_{1}, \mathbf{a}_{1}}=\left\langle X_{1}, f_{1}\right\rangle$ and $\mathbf{P}_{n_{2}, m_{2}, \mathbf{a}_{2}}=\left\langle X_{2}, f_{2}\right\rangle$ be two iteration schemes of modular type of order n_{1} and n_{2}, respectively, where n_{1}, m_{1}, n_{2} and m_{2} are natural numbers,

$$
\mathbf{a}_{1}=\left(a_{0}^{(1)}, a_{1}^{(1)}, \cdots, a_{n_{1}}^{(1)}\right),
$$

and

$$
\mathbf{a}_{2}=\left(a_{0}^{(2)}, a_{1}^{(2)}, \cdots, a_{n_{2}}^{(2)}\right),
$$

two ($n_{1}+1$) and ($n_{2}+1$) dimensional vectors with elements in $\mathbf{Z}_{m_{1}}$ and $\mathbf{Z}_{m_{2}}$, respectively, $X_{1}=\mathbf{Z}_{m_{1}}, X_{2}=\mathbf{Z}_{m_{2}}$ and

$$
\begin{aligned}
& f_{1}(x)=\sum_{i=0}^{n_{1}} a_{i}^{(1)} x^{n_{1}-i} \bmod m_{1}\left(x \in \mathbf{Z}_{m_{1}}\right), \\
& f_{2}(x)=\sum_{i=0}^{n_{2}} a_{i}^{(2)} x^{n_{2}-i} \bmod m_{2}\left(x \in \mathbf{Z}_{m_{2}}\right) .
\end{aligned}
$$

Then we call a scheme $\langle X, f\rangle$ a product of two schemes $\mathbf{P}_{n_{1}, m_{1}, \mathbf{a}_{1}}$ and $\mathbf{P}_{n_{2}, m_{2}}, \mathbf{a}_{2}$, where

$$
X=X_{1} \times X_{2}\left(=\mathbf{Z}_{m_{1}} \times \mathbf{Z}_{m_{2}}\right)
$$

and

$$
f(x):=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)\left(x=\left(x_{1}, x_{2}\right) \in X\right) .
$$

We shall write the product by

$$
\mathbf{P}_{n_{1}, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n_{2}, m_{2}, \mathbf{a}_{2}} .
$$

Notice that product of finite number of schemes is defined similarly. We get the following result:

Theorem 2.1. Let m_{1} and m_{2} be two relatively prime positive integers, and let m be the product: $m=m_{1} \times m_{2}$.

Given an iteration scheme of modular type of order n

$$
\mathbf{P}_{n, m, \mathbf{a}}=\langle X, f\rangle,
$$

where $X=\mathbf{Z}_{m}, \mathbf{a}=\left(a_{0}, a_{1}, \cdots, a_{n}\right) \in X^{n+1}$ and

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{n-i} \bmod m(x \in X)
$$

we construct two iteration schemes of modular type of same order n :

$$
\mathbf{P}_{n, m_{1}, \mathbf{a}_{1}}=<X_{1}, f_{1}>\text { and } \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}}=<X_{2}, f_{2}>
$$

where

$$
\begin{gathered}
X_{1}=\mathbf{Z}_{m_{1}}, X_{2}=\mathbf{Z}_{m_{2}} \\
\boldsymbol{a}_{1}=\left(a_{0}^{(1)}, a_{1}^{(1)}, \cdots, a_{n}^{(1)}\right) \in X_{1}^{n+1}, \\
\boldsymbol{a}_{2}=\left(a_{0}^{(2)}, a_{1}^{(2)}, \cdots, a_{n}^{(2)}\right) \in X_{2}^{n+1}, \\
a_{0} \equiv a_{0}^{(1)} \quad\left(\bmod m_{1}\right), a_{0} \equiv a_{0}^{(2)} \quad\left(\bmod m_{2}\right), \\
a_{1} \equiv a_{1}^{(1)} \quad\left(\bmod m_{1}\right), a_{1} \equiv a_{1}^{(2)} \quad\left(\bmod m_{2}\right), \\
\vdots \\
a_{n} \equiv a_{n}^{(1)} \quad\left(\bmod m_{1}\right), a_{n} \equiv a_{n}^{(2)} \quad\left(\bmod m_{2}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
& f_{1}(x)=\sum_{i=0}^{n} a_{i}^{(1)} x^{n-i} \bmod m_{1}\left(x \in X_{1}\right), \\
& f_{2}(x)=\sum_{i=0}^{n} a_{i}^{(2)} x^{n-i} \bmod m_{2}\left(x \in X_{2}\right),
\end{aligned}
$$

Then the scheme $\mathbf{P}_{n, m, \mathbf{a}}$ is isomorphic to product $\mathbf{P}_{n, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}}$, that is,

$$
\mathbf{P}_{n, m, \mathbf{a}} \cong \mathbf{P}_{n, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}} .
$$

Proof. The product of the schemes $\mathbf{P}_{n, m_{1}, \mathbf{a}_{1}}$ and $\mathbf{P}_{n, m_{2}, \mathbf{a}_{2}}$ is the scheme

$$
\mathbf{P}_{n, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}}=\left\langle X_{1} \times X_{2}, g>,\right.
$$

where

$$
g\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)\left(x_{1} \in X_{1}, x_{2} \in X_{2}\right) .
$$

It is sufficient to prove the existence of bijection φ such that the following diagram commutes:

For each $x \in X$ there exist uniquely two integers $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ such that

$$
x \equiv x_{1}\left(\bmod m_{1}\right)
$$

and

$$
x \equiv x_{2}\left(\bmod m_{2}\right) .
$$

Let φ be a mapping from X into $X_{1} \times X_{2}$ such that

$$
\varphi(x)=\left(x_{1}, x_{2}\right) \quad(x \in X)
$$

The mapping φ is a bijection from X onto $X_{1} \times X_{2}$. It is sufficient to prove that the mapping φ is injective, since both sets X and $X_{1} \times X_{2}$ are finite sets, and

$$
\#(X)=\#\left(X_{1} \times X_{2}\right)
$$

Let us assume that $\varphi(x)=\varphi(y)(x, y \in X)$. Letting $\varphi(x)=\left(x_{1}, x_{2}\right)$ and $\varphi(y)=\left(y_{1}, y_{2}\right)$, we get the following relations:

$$
\begin{gathered}
x_{1}=y_{1}, x_{2}=y_{2} \text { and } \\
x \equiv x_{1}\left(\bmod m_{1}\right), x \equiv x_{2}\left(\bmod m_{2}\right), \\
y \equiv y_{1}\left(\bmod m_{1}\right), y \equiv y_{2}\left(\bmod m_{2}\right),
\end{gathered}
$$

Two integers m_{1} and m_{2} being relatively prime, and x and y belonging to X, we have $x=y$ by Chinese remainder theorem ([2]). We shall show that the mapping φ is commutative, that is, $\varphi \cdot f=g \cdot \varphi$. For each x in X, we have

$$
g(\varphi(x))=g\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)
$$

Furthermore we have for each $x \in X$

$$
x \equiv x_{1}\left(\bmod m_{1}\right) \text { and } x \equiv x_{2}\left(\bmod m_{2}\right)
$$

So we get ([3])

$$
x^{k} \equiv x_{1}^{k}\left(\bmod m_{1}\right) \text { and } x^{k} \equiv x_{2}^{k}\left(\bmod m_{2}\right), k=2,3,4, \cdots
$$

And, from the relation $a_{i} \equiv a_{i}^{(1)}\left(\bmod m_{1}\right)$, and, $a_{i} \equiv a_{i}^{(2)}\left(\bmod m_{2}\right)(i=0,1,2, \cdots, n)$, we obtain

$$
\sum_{i=0}^{n} a_{i} x^{n-i} \equiv \sum_{i=0}^{n} a_{i}^{(1)} x_{1}^{n-i} \quad\left(\bmod m_{1}\right)
$$

and

$$
\sum_{i=0}^{n} a_{i} x^{n-i} \equiv \sum_{i=0}^{n} a_{i}^{(2)} x_{2}^{n-i} \quad\left(\bmod m_{2}\right)
$$

So we have

$$
f(x) \equiv f_{1}\left(x_{1}\right) \quad\left(\bmod m_{1}\right)
$$

and

$$
f(x) \equiv f_{2}\left(x_{2}\right) \quad\left(\bmod m_{2}\right)
$$

The numbers $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$ are uniquely determined in X_{1} and X_{2}, respectively. Hence we have

$$
\varphi(f(x))=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right) \quad(x \in X)
$$

The conclusion follows:

$$
g(\varphi(x))=\varphi(f(x))(x \in X)
$$

The schemes $\mathbf{P}_{n, m, \mathbf{a}}$ is, therefore, isomorphic to the product $\mathbf{P}_{n, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}}$.

$$
\mathbf{P}_{n, m, \mathbf{a}} \cong \mathbf{P}_{n, m_{1}, \mathbf{a}_{1}} \times \mathbf{P}_{n, m_{2}, \mathbf{a}_{2}} .
$$

(Q. E. D.)

Example 2.1.

$$
\mathbf{P}_{2,15,(1,0,11)} \cong \mathbf{P}_{2,3,(1,0,2)} \times \mathbf{P}_{2,5,(1,0,1)} .
$$

Now $m=15$, so $m_{1}=3$ and $m_{2}=5$,

We have the following iteration graph of the product of schemes $\mathbf{P}_{2,3,(1,0,2)}$ and $\mathbf{P}_{2,5,(1,0,1)}$

This is isomorphic to the iteration graph of the scheme $\mathbf{P}_{2,15,(1,0,11)}$ (See Example 1.1).

3. Main theorem.

We have the following theorem which seems to be important and fundamental to
analyse behaviors of schemes.
Theorem 3.1. If m is a positive integer of the form

$$
m=p_{1}^{l_{1}} p_{2}^{l_{2} \cdots} p_{k}^{l_{k}}
$$

where $\left\{p_{i}\right\}$ are prime numbers such that $p_{1}<p_{2} \cdots<p_{k}$ and l_{i} are positive integers $(i=1,2, \cdots, k ; k\rangle 1)$, then an iteration scheme $\mathbf{P}_{n, m, \mathbf{a}}=\langle X, f\rangle$ of modular type of order n defined by

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{n-i} \bmod m(x \in X)
$$

where $X=\mathbf{Z}_{m}$, and $\mathbf{a}=\left(a_{0}, a_{1} \cdots, a_{n}\right)$ in X^{n+1}, is isomorphic to the product of iteration schemes $\mathbf{P}_{n, m_{j}, \mathbf{a}_{j}}=<X_{j}, f_{j}>$ defined by

$$
f_{j}(x)=\sum_{i=0}^{n} a_{i}^{(j)} x^{n-i} \bmod m_{j}\left(x \in X_{j}\right)
$$

where $m_{j}=p_{j}^{l_{j}}, X_{j}=\mathbf{Z}_{m_{j}}$ and $\mathbf{a}_{j}=\left(a_{0}^{(j)} a_{1}^{(j)}, \cdots, a_{n}^{(j)}\right)$ is in X_{j}^{n+1} satisfying the relations

$$
a_{i} \equiv a_{i}^{(j)}\left(\bmod m_{j}\right) \quad(i=0,1,2, \cdots, n ; j=1,2 \cdots k),
$$

that is,

$$
\mathbf{P}_{n, m, \mathbf{a}} \cong \prod_{j=1}^{k} \mathbf{P}_{n, m_{j}, \mathbf{a},}
$$

Proof The product $\prod_{j=1}^{k} \mathbf{P}_{n, m_{j}, \mathbf{a}_{j}}$ is a system $\langle Y, g\rangle$, where $Y=\prod_{j=1}^{k} X_{j}$ and g is a mapping from Y into itself such that for each $y=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in Y$,

$$
g(y)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \cdots, f_{k}\left(x_{k}\right)\right) \in Y
$$

It is sufficient to prove that there exists a bijection φ from X onto Y such that the following diagram commutes:

that is, $g \cdot \varphi=\varphi \cdot f$. For each x in X there exists uniquely a vector $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ in Y such that

$$
x \equiv x_{j} \quad\left(\bmod m_{j}\right) \quad(j=1,2, \cdots, k) .
$$

Let us define a mapping φ such that for each $x \in X$

$$
\varphi(x)=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \quad(\in Y) .
$$

The mapping φ is an injection as easily shown by the Chinese remainder theorem, so is also surjective, thus, the mapping φ is bijective. And the mapping φ is commutative, since for each $x \in X$

$$
\begin{aligned}
g(\varphi(x)) & =g\left(x_{1}, x_{2}, \cdots, x_{k}\right) \\
& =\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \cdots, f_{k}\left(x_{k}\right)\right) \in Y,
\end{aligned}
$$

and

$$
\varphi(f(x))=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \cdots, f_{k}\left(x_{k}\right)\right),
$$

the proof of which follows similarly from the proof of Theorem 2.1. Hence the scheme $\mathbf{P}_{n, m, \mathbf{a}}$ is isomorphic to the product of schemes $\prod_{j=1}^{k} \mathbf{P}_{n, m_{j}, \mathbf{a}_{j}}$.
(Q. E. D.)

References

[1] T. Kitagawa and S. Huzino, An iteration scheme of modular type and its behavior-analysis, RMC6409J, Kyushu Univ. (1989), pp. 171.
[2] M. Davis, Computability and Unsolvability, McGraw-Hill (1958).
[3] T. Takagi, Lectures on the theory of numbers, Kyoritu (1946), pp. 496.

[^0]: ${ }^{1)}$ Dept. of Mathematics, Kagoshima Univ. Japan
 ${ }^{2)}$ Fukuoka College, Tokai Univ. Japan

