# ACETYL MIGRATION OF TRICHILINS WITH ZINC BOROHYDRIDE

| 著者                | NAKATANI Munehiro, NAKANISHI Koji    |
|-------------------|--------------------------------------|
| journal or        | 鹿児島大学理学部紀要.数学・物理学・化学                 |
| publication title |                                      |
| volume            | 25                                   |
| page range        | 59-63                                |
| 別言語のタイトル          | 水酸化ホウ素亜鉛を用いた Trichilin 類のアセチ         |
|                   | ル基転移反応                               |
| URL               | http://hdl.handle.net/10232/00010068 |

Rep. Fac. Sci. Kagoshima Univ., (Math., Phys. & Chem.), No. 25, 59-63, 1992

# ACETYL MIGRATION OF TRICHILINS WITH ZINC BOROHYDRIDE

by

Munehiro NAKATANI\* and Koji NAKANISHI\*\*

(Received August 28, 1992)

#### Abstracts

Treatment of trichilin A (1a), insect antifeedant limonoid, with zinc borohydride in 2propanol led to acyl migration in ring A and gave its 1,2-diacetyl and 1,3-diacetyl isomers. Similar treatment of trichilin B (1b, 12-epimer of 1a) and its 7,12-diacetate also induced 1,3-and 1,2-acetyl migrations.

Key words: Acyl migration, Zinc borohydride, Trichilins, Limonoid, Antifeedant

## Introduction

Trichilin A and B (1a and 1b) are insect antifeeding limonoids from East African medicinal plant *Trichilia roka*.<sup>1,2)</sup> In structural and structure/activity relation studies, their 11-hydroxy derivatives were particulary interesting, for the potent active were the compounds with a 12-OH function, independent of the substitution pattern in ring A. A 11-hydroxy-12-oxo isomer (trichilin C) was inactive.<sup>3)</sup> As trichilins are sensitive to



\*Department of Chemistry, Faculty of Science, Kagoshima University, Kagoshima 890, Japan \*\*Department of Chemistry, Columbia University, New York 10027, U. S. A. traces of acid or base, treatment of 1a with neutral zinc borohydride in attempt to reduce the 11-one led unexpectedly to acyl migration in ring A and gave a mixture of 1a and its 1,2-diacetyl 2a and 1,3-diacetyl isomers 3a derived by 1,3- or 1,2-shift of acetyl group. Similar treatment of trichilin B (1b) and its 7,12-diacetate (1c) also induced a similar acetyl migration.

### **Results and Discussion**

When a solution of **1a** (10 mg, 0.015 mmol) and 1.3 M ether solution (0.1 ml, 0.13 mmol) of zinc borohydride<sup>4)</sup> in dry 2-propanol (0.5 ml) was stirred at room temperature for 40 h, the product gave two compounds, **2a** (6%) and **3a** (11%) along with **1a** (79%) (Scheme 1 and Table 1). This reaction did not reduce the **11**-keto group and the products, **2a** and **3a**, showed  $n-\pi^*$  absorption of > C = O at 303 ( $\Delta \varepsilon - 4.3$ ) and 300 nm ( $\Delta \varepsilon - 3.7$ ) in their CD spectra, respectively. Both **2a** and **3a** had the same molecular formula,  $C_{35}H_{46}O_{13}$ , as **1a** and their <sup>1</sup>H NMR spectra were also very simular to that of **1a** except for the acylation pattern in ring A (Table 2). The acylation pattern in **1a**, namely, that **1a** has a free 1-OH, was shown by the fact that the 9-H signal in **1a** was at  $\delta$  4.72, whereas in **2a** (1,2-diacetate) and **3a** (1,3-diacetate) they were shifted upfield to  $\delta$  4.13 and 4.17, respectively. The low shift of  $\delta$  4.72 in **1a** has been attributed to the effect of the 1-OH in a **1**,3-diaxial relation (Fig. 1). The isomers, **2a** and **3a**, were identical with trichilin F and E isolated from *T. roka*.<sup>5</sup>



| Table I. | Acetyl | Migration | of | Trichilins | with | Zinc | Borohydride |  |
|----------|--------|-----------|----|------------|------|------|-------------|--|
|----------|--------|-----------|----|------------|------|------|-------------|--|

| Compound | Solvent    | Reaction<br>time, h | Products, Yields % |    |            |    | Recovered, % |
|----------|------------|---------------------|--------------------|----|------------|----|--------------|
| 1a       | 2-Propanol | 40                  | 2a                 | 6  | 3a         | 11 | 79           |
| 1b       | 2-Propanol | 50                  | 2b                 | 4  | 3b         | 2  | 88           |
| 1c       | 2-Propanol | 30                  | <b>2c</b>          | 30 | 3c         | 23 | 45           |
| 1c       | EtOH       | 17                  | 2c                 | 13 | 3 <b>c</b> | 7  | 75           |

As in the case of **1a**, the treatment of trichilin B (**1b**) having same acylation pattern with **1a** in ring A induced acyl migration to give its **1**,2-diacetate **2b** (4%) and **1**,3-diacetate **3d** (2%), the latter of which was identifield as the cytotoxic aphanastatin.<sup>6)</sup> As its structure has been determined by X-ray analysis, this novel conversion established the structure of trichilin B. When 7,12-diacetyltrichilin B (**1c**) was treated with zine borohydride, the reaction proceeded smoothly, yielding **1**,2-diacetate **2c** (30%) and **1**,3-diacetate **3c** (23%). The reaction of **1c** in ethanol also gave a similar result to that in propanol (Table **1**).

These results suggest that the 2- or 3-acetyl group in 1 would migrate to 1-position via five- or six-membered cyclic intermediate such as 4 (Fig. 2) to give the isomers, 3 or 2, and that this acetyl migration would have been affected by another OH function or by the conformational change of the ring C in 1.

Inspite of the change of the acylation pattern in ring A, the reaction products of 2a-c and 3a-c showed similar antifeeding activities (leaf disk method),<sup>7)</sup> respectively, with their starting materials, 1a-c, against a North American pest insect, *Spodoptara eridania*.



#### **Experimental**

 $^{1}\text{H}$  NMR spectra were measured in CDCI<sub>3</sub> at 250 MHz. UV and CD spectra were measured in MeOH. Final purification of compounds was done by HPLC with adsorption column using a MeOH/CH<sub>2</sub>Cl<sub>2</sub> solvent system.

**Trichilin A (1a) and B (1b).** Trichilin A (1a) and B (1b) were isolated from African Meliaceae plant *T. roka*.<sup>1)</sup> 1a:  $C_{35}H_{46}O_{13}$ ; UV 213 nm ( $\varepsilon$  4050); CD 213 ( $\Delta \varepsilon + 2.5$ ) and 304 nm ( $\Delta \varepsilon - 3.7$ ). 1b:  $C_{35}H_{46}O_{13}$ ; UV 209 nm ( $\varepsilon$  4600); CD 217 ( $\Delta \varepsilon + 1.2$ ) and 306 nm ( $\Delta \varepsilon - 1.9$ ).

7,12-Diacetyltrichilin B (1c). Trichilin B (1b, 15 mg) was acetylated with Ac<sub>2</sub>O in pyridine at 55°C for 30 h to give the 12-acetate (2 mg) and 7,12-diacetate (1c, 8 mg). 1c:  $C_{39}H_{50}O_{15}$ ; CI-MS m/z 759 (M+1)<sup>+</sup>; UV 210 nm ( $\varepsilon$  4200); CD 215 ( $\Delta\varepsilon$ +1.9) and 305 nm ( $\Delta\varepsilon$ -2.3). 12-Acetyltrichilin B:  $C_{37}H_{48}O_{14}$ ; CI-MS m/z 717 (M+1); UV 210

| TT         | la                   | 1b                   | lc              | 2a                    | 2b                 | 2c                 | 3a                 | 3b                 | 3c                               |
|------------|----------------------|----------------------|-----------------|-----------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------|
| Н          | δ Mult               | δ Mult               | δ Mult          | δ Mult                | δ Mult             | δ Mult             | δ Mult             | δ Mult             | δ Mult                           |
| 1          | 3.98 brt<br>(4.5)    | 4.58 brt<br>(4.5)    | 4.42 m          | 5.40 dd<br>(5.0, 1.0) | 5.93 d<br>) (3.5)  | 5.75 d<br>(5.2)    | 5.32 d<br>(4.2)    | 5.86 d<br>(4.8)    | 5.69 brd<br>(5.0)                |
| 2          | 5.90 t<br>(4.5)      | 5.91 t<br>(4.5)      | 5.88 t<br>(4.5) | 5.91 t<br>(5.0)       | 5.91 t<br>(3.5)    | 5.92 t<br>(5.2)    | 4.80 m             | 4.80 m             | 4.81 t<br>(5.0)                  |
| 3          | 5.54 brd<br>(4.5)    | 5.53 brd<br>(4.5)    | 5.46 d<br>(4.5) | 4.05 m                | 4.05 m             | 4.00 m             | 5.46 d<br>(4.2)    | 5.45 d<br>(4.8)    | 5.43 brd<br>(5.0)                |
| 7          | 3.72 m               | 3.66 m               | 4.75 m          | 3.69 m                | 3.63 m             | 4.80 m             | 3.71 m             | 3.66 m             | 4.76 m                           |
| 9          | 4.72 s               | 4.56 s               | 4.63 s          | 4.13 s                | 4.04 s             | 4.02 s             | 4.17 s             | 4.09 s             | 4.11 s                           |
| 12         | 3.72 d<br>(2.5)      | 4.10 s               | 5.39 s          | 3.50 d<br>(1.7)       | 4.05 brd<br>(1.0)  | 5.45 s             | 3.55 d<br>(1.0)    | 4.04 brd<br>(2.0)  | 5.45 s                           |
| 15         | 3.53 s               | 3.78 s               | 3.58 s          | 3.48 s                | 3.71 s             | 3.58 s             | 3.47 s             | 3.72 s             | 3.59 s                           |
| 17         | 3.39 dd<br>(11, 6.0) | 3.02 dd<br>(11, 6.0) | 2.95 m          | 3.42 dd<br>(11, 6)    | 2.88 dd<br>(11, 6) | 2.95 dd<br>(11, 6) | 3.45 dd<br>(11, 6) | 3.27 dd<br>(11, 6) | 2.97 dd<br>(11, 6)               |
| 18 (Me)    | 1.32 s               | 1.15 s               | 1.30 s          | 1.16 s                | 1.12 s             | 1.19 s             | 1.18 s             | 1.11 s             | 1.20 s                           |
| 19A<br>19B | 4.50 brs*            | 4.35 brs*            | 4.31 brs        | 4.53 brs              | 4.36 brs           | 4.34 m             | 4.55 brs           | 4.38 brs           | 4.31 d<br>(13)<br>4.45 d<br>(13) |
| 21         | 7.19                 | 7.22                 | 7.10            | 7.17                  | 7.20               | 7.10               | 7.16               | 7.19               | 7.10                             |
| 22         | 6.35                 | 6.53                 | 6.09            | 6.32                  | 6.48               | 6.07               | 6.32               | 6.51               | 6.06                             |
| 23         | 7.37                 | 7.33                 | 7.32            | 7.35                  | 7.29               | 7.31               | 7.35               | 7.30               | 7.32                             |
| 28 (Me)    | 0.88 s               | 0.83 s               | 0.76 s          | 0.99 s                | 1.00 s             | 0.96 s             | 0.82 s             | 0.82 s             | 0.78 s                           |
| 29         | 5.76 s               | 5.75 s               | 5.71 s          | 5.77 s                | 5.77 s             | 5.76 s             | 5.75 s             | 5.74 s             | 5.71 s                           |
| 30 (Me)    | 1.02 s               | 1.14 s               | 1.20 s          | 1.01 s                | 1.00 s             | 1.19 s             | 1.00 s             | 1.03 s             | 1.20 s                           |
| 2′-Me      | 1.19 d<br>(7.0)      | 1.19 d<br>(7.0)      | 1.16 d<br>(6.8) | 1.15 d<br>(7.1)       | 1.14 d<br>(7.0)    | 1.13 d<br>(7.0)    | 1.15 d<br>(6.9)    | 1.15 d<br>(7.5)    | 1.15 d<br>(7.8)                  |
| 3'-Me      | 0.92 t<br>(7.5)      | 0.92 t<br>(7.0)      | 0.88 t<br>(7.3) | 0.89 t<br>(7.3)       | 0.89 t<br>(7.0)    | 0.88 t<br>(7.3)    | 0.89 t<br>(7.2)    | 0.89 t<br>(7.6)    | 0.88 t<br>(7.1)                  |
| Ac         | 2.03                 | 2.03                 | 1.96            | 2.02                  | 2.01               | 1.97               | 2.04               | 1.99               | 1.99                             |
|            | 2.14                 | 2.12                 | 1.99            | 2.06                  | 2.02               | 2.01               | 2.10               | 2.09               | 2.04                             |
|            |                      |                      | 2.07            |                       |                    | 2.06               |                    |                    | 2.06                             |
|            |                      |                      | 2.16            |                       |                    | 2.18               |                    |                    | 2.18                             |

Table 2. <sup>1</sup>H NMR Spectra of Trichilins and Their Acyl Migration Products

Measured in CDCl<sub>3</sub>. Coupling constants (Hz) are in parentheses. \*observed as two signals at 400 MHz;  $1a: \delta 4.47 (d. J=13)$  and 4.53 (d. J=13).  $1b: \delta 4.32 (d. J=13)$  and 4.36 (d. J = 13).

nm ( $\varepsilon$  4100); CD 215 ( $\Delta \varepsilon$ +1.5) and 305 nm ( $\Delta \varepsilon$ -2.2); <sup>1</sup>H NMR  $\delta$  0.81 (3H, s), 0.89 (3H, t, J=7.2), 1.15 (3H, s), 1.17 (3H, d, J=6.8), 1.33 (3H, s), 1.95, 2.00, 2.10 (each 3H, s, OAc), 3.67 (1H, m), 3.74 (1H, s), 4.32 (1H, s), 4.41 (1H, t, J=4.5), 4.61 (1H, s), 5.40 (1H, s, 12-H), 5.50 (1H, d, J=4.6), 5.74 (1H, s), 5.88 (1H, t, J=4.6), 6.10, 7.10, 7.31 (each 1H, furan).

General procedure for treatment of 1 with zinc borohydride. A solution of the compound 1 (10 mg, 0.015 mmol) in dry 2-propanol (0.5 ml) was stirred with 1.3 M ether solution (0.1 ml, 0.13 mmol) of zinc borohydride for 40 h at room temperature and then acetone (1 ml) was added. After an additional stirring of 2 h, the reacion products were purified by column chromatography and HPLC.

**Reaction products.** 2a: CI-MS m/z 675  $(M+1)^+$ ; UV 210 nm ( $\varepsilon$  5100); CD 211  $(\Delta \varepsilon + 2.2)$  and 303 nm  $(\Delta \varepsilon - 4.3)$ . 3a: CI-MS m/z 675  $(M+1)^+$ ; UV 215 nm ( $\varepsilon$  4100); CD 211  $(\Delta \varepsilon + 2.7)$  and 300 nm  $(\Delta \varepsilon - 3.7)$ . 2b: CI-MS m/z 675  $(M+1)^+$ ; UV 209 nm ( $\varepsilon$  4300); CD 214  $(\Delta \varepsilon + 1.6)$  and 306 nm  $(\Delta \varepsilon - 2.0)$ . 3b: CI-MS m/z 675  $(M+1)^+$ ; UV 209 nm ( $\varepsilon$  4000); CD 214  $(\Delta \varepsilon + 1.4)$  and 304 nm  $(\Delta \varepsilon - 2.9)$ . 2c: CI-MS m/z 759  $(M+1)^+$ . 3c: CI-MS m/z 759  $(M+1)^+$ .

### Acknowledgement

The authors are grateful to Dr. K. Yoshihara, Suntory Institute for Bioorganic Research, for the supply of zinc borohydride.

#### References

- 1) M. Nakatani, J. C. James, and K. Nakanishi, J. Am. Chem. Soc., 103, 1228 (1981).
- J. O. Kokwaro, "Medicinal Plants of East Africa", East African Literature Bureau, Nairobi, Kenya (1976), p. 157.
- 3) K. Nakanishi, R. Cooper, and M. Nakatani, 7th International Conference of "Reguration of Insect Development and Behavior", Karpacz, Poland, June 1980; Scientific Papers of the Institute of Organic and Physical Chemistry of Wroclaw Technical University, 1091 (1981).
- 4) We are grateful to Dr. Y. Yoshihara (Suntory Institute for Bioorganic Research) for this reagent.
- 5) M. Nakatani, to be submited for publication.
- 6) J. Polonsky, Z. Varon, B. Arnoux, and C. Poscard, J. Am. Chem. Soc., 100, 2575 (1978).
- 7) K. Wada and K. Munakata, Agr. Food Chem., 17, 471 (1968).