ACETYL M GRATI ON OF TRI CH LI NS W TH ZI NC BOROHYDRI DE

著者	NAKATAN Munehi ro，NAKAN SH Koj i
j our nal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	25
page range	$59-63$
別言語のタイトル	水酸化ホウ素亜鉛を用いた Tri chi I in 類のアセチ ル基転移反応
URL	http：／／hdl ．handl e．net／10232／00010068

ACETYL MIGRATION OF TRICHILINS WITH ZINC BOROHYDRIDE

by
Munehiro Nakatani* and Koji NakaniShi**

(Received August 28, 1992)

Abstract

s Treatment of trichilin A (1a), insect antifeedant limonoid, with zinc borohydride in 2 propanol led to acyl migration in ring A and gave its 1,2 -diacetyl and 1,3 -diacetyl isomers. Similar treatment of trichilin B ($\mathbf{1 b}, 12$-epimer of $\mathbf{1 a}$) and its 7,12 -diacetate also induced 1,3-and 1,2 -acetyl migrations.

Key words: Acyl migration, Zinc borohydride, Trichilins, Limonoid, Antifeedant

Introduction

Trichilin A and B (1a and 1b) are insect antifeeding limonoids from East African medicinal plant Trichilia roka. ${ }^{1,2)}$ In structural and structure/activity relation studies, their 11-hydroxy derivatives were particulary interesting, for the potent active were the compounds with a $12-\mathrm{OH}$ function, independent of the substitution pattern in ring A. A 11-hydroxy-12-oxo isomer (trichilin C) was inactive. ${ }^{3)}$ As trichilins are sensitive to

Fig. 1

[^0]traces of acid or base, treatment of $\mathbf{1 a}$ with neutral zinc borohydride in attempt to reduce the 11 -one led unexpectedly to acyl migration in ring A and gave a mixture of $\mathbf{1 a}$ and its 1,2 -diacetyl $\mathbf{2 a}$ and 1,3 -diacetyl isomers $3 \mathbf{a}$ derived by 1,3 or 1,2 -shift of acetyl group. Similar treatment of trichilin B (1b) and its 7,12-diacetate (1c) also induced a similar acetyl migration.

Results and Discussion

When a solution of $\mathbf{1 a}(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ and 1.3 M ether solution (0.1 ml , 0.13 mmol) of zinc borohydride ${ }^{4)}$ in dry 2 -propanol (0.5 ml) was stirred at room temperature for 40 h , the product gave two compounds, $\mathbf{2 a}(6 \%)$ and $\mathbf{3 a}(11 \%)$ along with 1a (79%) (Scheme 1 and Table 1). This reaction did not reduce the 11 -keto group and the products, $\mathbf{2 a}$ and 3 a, showed $n-\pi^{*}$ absorption of $=\mathrm{C}=0$ at $303(\Delta \varepsilon-$ 4.3) and $300 \mathrm{~nm}(\Delta \varepsilon-3.7)$ in their CD spectra, respectively. Both $\mathbf{2 a}$ and $\mathbf{3 a}$ had the same molecular formula, $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{13}$, as $\mathbf{1 a}$ and their ${ }^{1} \mathrm{H}$ NMR spectra were also very simular to that of $\mathbf{1 a}$ except for the acylation pattern in ring A (Table 2). The acylation pattern in 1a, namely, that $\mathbf{1 a}$ has a free $1-\mathrm{OH}$, was shown by the fact that the $9-\mathrm{H}$ signal in $\mathbf{1 a}$ was at $\delta 4.72$, whereas in $\mathbf{2 a}$ (1,2-diacetate) and $\mathbf{3 a}$ (1,3 -diacetate) they were shifted upfield to $\delta 4.13$ and 4.17 , respectively. The low shift of $\delta 4.72$ in 1 a has been attributed to the effect of the $1-\mathrm{OH}$ in a 1,3 -diaxial relation (Fig. 1). The isomers, $\mathbf{2 a}$ and $\mathbf{3 a}$, were identical with trichilin F and E isolated from T. roka. ${ }^{5)}$

Table 1. Acetyl Migration of Trichilins with Zinc Borohydride

Compound	Solvent	Reaction time, h		Products, Yields $\%$	Recovered, $\%$		
$\mathbf{1 a}$	2-Propanol	40	$\mathbf{2 a}$	6	$\mathbf{3 a}$	11	79
$\mathbf{1 b}$	2-Propanol	50	$\mathbf{2 b}$	4	$\mathbf{3 b}$	2	88
$\mathbf{1 c}$	2-Propanol	30	$\mathbf{2 c}$	30	$\mathbf{3 c}$	23	45
$\mathbf{1 c}$	EtOH	17	$\mathbf{2 c}$	13	$\mathbf{3 c}$	7	75

As in the case of $\mathbf{1 a}$, the treatment of trichilin B (1b) having same acylation pattern with $\mathbf{1 a}$ in ring A induced acyl migration to give its 1,2 -diacetate $\mathbf{2 b}$ (4%) and 1,3 -diacetate $\mathbf{3 d}(2 \%)$, the latter of which was identifield as the cytotoxic aphanastatin. ${ }^{6}$) As its structure has been determined by X-ray analysis, this novel conversion established the structure of trichilin B. When 7,12-diacetyltrichilin B (1c) was treated with zine borohydride, the reaction proceeded smoothly, yielding 1,2-diacetate $\mathbf{2 c}$ (30%) and 1,3diacetate $3 \mathbf{c}(23 \%)$. The reaction of $\mathbf{1 c}$ in ethanol also gave a similar result to that in propanol (Table 1).

These results suggest that the 2 - or 3 -acetyl group in 1 would migrate to 1 -position via five- or six-membered cyclic intermediate such as 4 (Fig. 2) to give the isomers, 3 or 2, and that this acetyl migration would have been affected by another OH function or by the conformational change of the ring C in $\mathbf{1}$.

Inspite of the change of the acylation pattern in ring A , the reaction products of $\mathbf{2 a - c}$ and 3a-c showed similar antifeeding activities (leaf disk method), ${ }^{7)}$ respectively, with their starting materials, 1a-c, against a North American pest insect, Spodoptara eridania.

Fig. 2

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were measured in CDCI_{3} at 250 MHz . UV and CD spectra were measured in MeOH . Final purification of compounds was done by HPLC with adsorption column using a $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent system.

Trichilin A (1a) and B (1b). Trichilin A (1a) and B (1b) were isolated from African Meliaceae plant T. roka. ${ }^{1)}$ 1a: $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{13}$; UV 213 nm (ε 4050) ; CD $213(\Delta \varepsilon+$ 2.5) and $304 \mathrm{~nm}(\Delta \varepsilon-3.7)$. 1b: $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{13}$; UV $209 \mathrm{~nm}(\varepsilon 4600)$; CD $217(\Delta \varepsilon+1.2)$ and $306 \mathrm{~nm}(\Delta \varepsilon-1.9)$.

7,12-Diacetyltrichilin B (1c). Trichilin B (1b, 15 mg) was acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine at $55^{\circ} \mathrm{C}$ for 30 h to give the 12 -acetate (2 mg) and 7,12 -diacetate ($\mathbf{1 c}, 8 \mathrm{mg}$). 1c: $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{15}$; CI-MS m/z $759(\mathrm{M}+1)^{+}$; UV $210 \mathrm{~nm}(\varepsilon 4200)$; CD $215(\Delta \varepsilon+1.9)$ and $305 \mathrm{~nm}(\Delta \varepsilon-2.3)$. 12-Acetyltrichilin B: $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{O}_{14}$; CI-MS m/z 717 (M+1); UV 210

Table 2. ${ }^{1}$ H NMR Spectra of Trichilins and Their Acyl Migration Products

H	1a	1b	1c	2a	2b	2c	3a	3b	3c
	δ Mult								
1	$\begin{aligned} & 3.98 \mathrm{brt} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 4.58 \mathrm{brt} \\ & (4.5) \end{aligned}$	4.42 m	$\begin{aligned} & 5.40 \mathrm{dd} \\ & (5.0,1.0) \end{aligned}$	$\underset{(3.5)}{5.93 \mathrm{~d}}$	$\begin{aligned} & 5.75 \mathrm{~d} \\ & (5.2) \end{aligned}$	$\begin{aligned} & 5.32 \mathrm{~d} \\ & (4.2) \end{aligned}$	$\begin{aligned} & 5.86 \mathrm{~d} \\ & (4.8) \end{aligned}$	$\begin{aligned} & 5.69 \mathrm{brd} \\ & (5.0) \end{aligned}$
2	$\begin{aligned} & 5.90 \mathrm{t} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 5.91 \mathrm{t} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 5.88 \mathrm{t} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 5.91 \mathrm{t} \\ & (5.0) \end{aligned}$	$\begin{aligned} & 5.91 \mathrm{t} \\ & (3.5) \end{aligned}$	$\begin{aligned} & 5.92 \mathrm{t} \\ & (5.2) \end{aligned}$	4.80 m	4.80 m	$\begin{aligned} & 4.81 \mathrm{t} \\ & (5.0) \end{aligned}$
3	$\begin{aligned} & 5.54 \mathrm{brd} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 5.53 \mathrm{brd} \\ & (4.5) \end{aligned}$	$\begin{aligned} & 5.46 \mathrm{~d} \\ & (4.5) \end{aligned}$	4.05 m	4.05 m	4.00 m	$\begin{aligned} & 5.46 \mathrm{~d} \\ & (4.2) \end{aligned}$	$\begin{aligned} & 5.45 \mathrm{~d} \\ & (4.8) \end{aligned}$	$\begin{aligned} & 5.43 \mathrm{brd} \\ & (5.0) \end{aligned}$
7	3.72 m	3.66 m	4.75 m	3.69 m	3.63 m	4.80 m	3.71 m	3.66 m	4.76 m
9	4.72 s	4.56 s	4.63 s	4.13 s	4.04 s	4.02 s	4.17 s	4.09 s	4.11 s
12	$\begin{aligned} & 3.72 \mathrm{~d} \\ & (2.5) \end{aligned}$	4.10 s	5.39 s	$\begin{aligned} & 3.50 \mathrm{~d} \\ & (1.7) \end{aligned}$	$\begin{aligned} & 4.05 \mathrm{brd} \\ & (1.0) \end{aligned}$	5.45 s	$\begin{aligned} & 3.55 \mathrm{~d} \\ & (1.0) \end{aligned}$	4.04 brd (2.0)	5.45 s
15	3.53 s	3.78 s	3.58 s	3.48 s	3.71 s	3.58 s	3.47 s	3.72 s	3.59 s
17	$\begin{aligned} & 3.39 \mathrm{dd} \\ & (11,6.0) \end{aligned}$	$\begin{aligned} & 3.02 \mathrm{dd} \\ & (11,6.0) \end{aligned}$	2.95 m	$\begin{aligned} & 3.42 \mathrm{dd} \\ & (11,6) \end{aligned}$	$\begin{gathered} 2.88 \mathrm{dd} \\ (11,6) \end{gathered}$	$\begin{aligned} & 2.95 \mathrm{dd} \\ & (11,6) \end{aligned}$	$\begin{aligned} & 3.45 \mathrm{dd} \\ & (11,6) \end{aligned}$	$\begin{aligned} & 3.27 \mathrm{dd} \\ & (11,6) \end{aligned}$	$\begin{gathered} 2.97 \mathrm{dd} \\ (11,6) \end{gathered}$
18 (Me)	1.32 s	1.15 s	1.30 s	1.16 s	1.12 s	1.19 s	1.18 s	1.11 s	1.20 s
$\begin{aligned} & 19 \mathrm{~A} \\ & \text { 19B } \end{aligned}$	4.50 brs*	4.35 brs*	4.31 brs	4.53 brs	4.36 brs	4.34 m	4.55 brs	4.38 brs	$\begin{aligned} & 4.31 \mathrm{~d} \\ & (13) \\ & 4.45 \mathrm{~d} \\ & (13) \end{aligned}$
21	7.19	7.22	7.10	7.17	7.20	7.10	7.16	7.19	7.10
22	6.35	6.53	6.09	6.32	6.48	6.07	6.32	6.51	6.06
23	7.37	7.33	7.32	7.35	7.29	7.31	7.35	7.30	7.32
28 (Me)	0.88 s	0.83 s	0.76 s	0.99 s	1.00 s	0.96 s	0.82 s	0.82 s	0.78 s
29	5.76 s	5.75 s	5.71 s	5.77 s	5.77 s	5.76 s	5.75 s	5.74 s	5.71 s
30 (Me)	1.02 s	1.14 s	1.20 s	1.01 s	1.00 s	1.19 s	1.00 s	1.03 s	1.20 s
2^{\prime}-Me	$\begin{aligned} & 1.19 \mathrm{~d} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1.19 \mathrm{~d} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1.16 \mathrm{~d} \\ & (6.8) \end{aligned}$	$\begin{aligned} & 1.15 \mathrm{~d} \\ & (7.1) \end{aligned}$	$\begin{aligned} & 1.14 \mathrm{~d} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1.13 \mathrm{~d} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1.15 \mathrm{~d} \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1.15 \mathrm{~d} \\ & (7.5) \end{aligned}$	$\begin{aligned} & 1.15 \mathrm{~d} \\ & (7.8) \end{aligned}$
3^{\prime}-Me	$\begin{aligned} & 0.92 \mathrm{t} \\ & (7.5) \end{aligned}$	$\begin{aligned} & 0.92 \mathrm{t} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 0.88 \mathrm{t} \\ & (7.3) \end{aligned}$	$\begin{aligned} & 0.89 \mathrm{t} \\ & (7.3) \end{aligned}$	$\begin{aligned} & 0.89 \mathrm{t} \\ & (7.0) \end{aligned}$	$\begin{aligned} & 0.88 \mathrm{t} \\ & (7.3) \end{aligned}$	$\begin{aligned} & 0.89 \mathrm{t} \\ & (7.2) \end{aligned}$	$\begin{aligned} & 0.89 \mathrm{t} \\ & (7.6) \end{aligned}$	$\begin{aligned} & 0.88 \mathrm{t} \\ & (7.1) \end{aligned}$
Ac	2.03	2.03	1.96	2.02	2.01	1.97	2.04	1.99	1.99
	2.14	2.12	1.99	2.06	2.02	2.01	2.10	2.09	2.04
			2.07			2.06			2.06
			2.16			2.18			2.18

[^1]$\mathrm{nm}(\varepsilon 4100)$; CD $215(\Delta \varepsilon+1.5)$ and $305 \mathrm{~nm}(\Delta \varepsilon-2.2) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.81(3 \mathrm{H}, \mathrm{s}), 0.89$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2), 1.15(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8), 1.33(3 \mathrm{H}, \mathrm{s}), 1.95,2.00,2.10$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.67(1 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.5)$, $4.61(1 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6), 5.74(1 \mathrm{H}, \mathrm{s}), 5.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 4.6), 6.10, 7.10, 7.31 (each 1 H , furan).

General procedure for treatment of 1 with zinc borohydride. A solution of the compound $1(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ in dry 2 -propanol (0.5 ml) was stirred with 1.3 M ether solution ($0.1 \mathrm{ml}, 0.13 \mathrm{mmol}$) of zinc borohydride for 40 h at room temperature and then acetone (1 ml) was added. After an additional stirring of 2 h , the reacion products were purified by column chromatography and HPLC.

Reaction products. 2a: CI-MS m/z $675(\mathrm{M}+1)^{+}$; UV $210 \mathrm{~nm}(\varepsilon 5100)$; CD 211 $(\Delta \varepsilon+2.2)$ and $303 \mathrm{~nm}(\Delta \varepsilon-4.3)$. 3a: CI-MS m/z 675 (M+1) ${ }^{+}$; UV $215 \mathrm{~nm}(\varepsilon$ 4100) ; CD $211(\Delta \varepsilon+2.7)$ and $300 \mathrm{~nm}(\Delta \varepsilon-3.7)$. 2b: CI-MS m/z $675(\mathrm{M}+1)^{+}$; UV $209 \mathrm{~nm}(\varepsilon 4300)$; CD $214(\Delta \varepsilon+1.6)$ and $306 \mathrm{~nm}(\Delta \varepsilon-2.0)$. 3b: CI-MS m/z 675 (M $+1)^{+}$; UV $209 \mathrm{~nm}(\varepsilon 4000)$; CD $214(\Delta \varepsilon+1.4)$ and $304 \mathrm{~nm}(\Delta \varepsilon-2.9)$. 2c: CI-MS $\mathrm{m} / \mathrm{z} 759(\mathrm{M}+1)^{+}$. 3c: CI-MS m/z $759(\mathrm{M}+1)^{+}$.

Acknowledgement

The authors are grateful to Dr. K. Yoshihara, Suntory Institute for Bioorganic Research, for the supply of zinc borohydride.

References

1) M. Nakatani, J. C. James, and K. Nakanishi, J. Am. Chem. Soc., 103, 1228 (1981).
2) J. O. Kokwaro, "Medicinal Plants of East Africa", East African Literature Bureau, Nairobi, Kenya (1976), p. 157.
3) K. Nakanishi, R. Cooper, and M. Nakatani, 7th International Conference of "Reguration of Insect Development and Behavior", Karpacz, Poland, June 1980; Scientific Papers of the Institute of Organic and Physical Chemistry of Wroclaw Technical University, 1091 (1981).
4) We are grateful to Dr. Y. Yoshihara (Suntory Institute for Bioorganic Research) for this reagent.
5) M. Nakatani, to be submited for publication.
6) J. Polonsky, Z. Varon, B. Arnoux, and C. Poscard, J. Am. Chem.Soc., 100, 2575 (1978).
7) K. Wada and K. Munakata, Agr. Food Chem., 17, 471 (1968).

[^0]: *Department of Chemistry, Faculty of Science, Kagoshima University, Kagoshima 890, Japan
 ** Department of Chemistry, Columbia University, New York 10027, U. S. A.

[^1]: Measured in CDCl_{3}. Coupling constants ($\mathrm{Hz)}$ are in parentheses.
 *observed as two signals at 400 MHz ; 1a $: \delta 4.47(\mathrm{~d} . \mathrm{J}=13)$ and $4.53(\mathrm{~d} . \mathrm{J}=13)$.
 $\mathbf{1 b}: \delta 4.32(\mathrm{~d} . \mathrm{J}=13)$ and 4.36 (d. J=13).

