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Abstract

We improve numerical integration with a fixed number of evaluation points based
on iterated cubic splines. Some numerical examples are given to illustrate usefulness

of our methods.

1. Introduction and Description of Methods

Iterated cubic splines are useful for order-preserving approximation to a given function.
There is computational evidence that they give better results than a single spline ([1], [3]).
Recently we have considered an application of the iterated cubic splines to evaluation of
integrals on subintervals [x;, xj:1] or the ratios to the whole interval [0, 1] required in
statistics:

1) fsz(x)dx or jjﬂf(x)dx/j:f(x)dx for some or allj (0<j<n—1)

xi

where let n>1, ;=jh (=j/n) ([5]). Use the notation: f,=1(x;), Sm;=>5m (L), Smi=s5m(Z;)
and fi412=f((z;+2j41)/2). Then, the iterated cubic splines s, (m=0) are recursively
defined as follows. First, let s, be the usual cubic spline interpolant of f on the uniform
partition of [0, 1] with knots z;, ie,

2 so;=f; (0<j<n) subjectto A*s4o=V*s;,=0

where from now on, k€ {0, 1,...,n—1} is fixed and 4 (V) is the forward (backward)
difference operator. Next, let s,, (m=1) be the cubic spline interpolant of s;-; on the same
uniform partition, ie.
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3) Smi=Sm-1; (0<j<n) subject to A*spo=V*s,,=0.

In computation of the iterated cubic splines s, (m=0), it is convenient to rewrite the end
condition A* s;,0=0 as follows:

(4) Ck s;,,,o-l-s;,,,l:Lk(dl, dz, veey dk—1)

where for ¢;, L, and computational comment, see [3] or [5]. The end condition 4°s;,,=0
used in the numerical examples is equivalent to

+13d;,—ds) /57240
where d; is the right hand side of the consistency relation for the cubic spline:
(6) (Smiv1t4smitsmi—) /6= (Smis1—Smi-1) / (2h) (=dj).
For a periodic function f, the end conditions (2)—(3) are to be replaced by
@) syh=swn (0<r<2,m>0).
The following asymptotic error estimates for the m-th derivative f™ by the m-th iterated

cubic spline s, are based on results in [3] (nonperiodic) and [6] (periodic) where C{[0, 1]
denotes the set of periodic functions in C?(—oo, o) with period one.

Lemma ([3]1—[6]). For 1<m<9 and f€ C}°[0, 11 (periodic case) and 1<m<k<n—1, k
<9 and f€CY [0, 11 (nomperiodic case), then

h4 f}(m+4)_ h6
180 1512

(8) Sm.j =f;(m) _m{ f}(m+6)] —Cm hé f;‘(m+4) +0 (hL) (0 Sjén)

where ¢1=1/25920, L=10—m or L=k~+1—m for periodic case or nonperiodic case. Note that
the h® term is absorbed into the order term for m=2.

By making use of the iterated cubic splines s, as apporximation to the derivatives in the
asymptotic error estimate in Simpson’s rule:

@ [ @ dr— (1/6) it Mt fie) = S (< DE R C A0 (),
xj k=1
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we can get an improvement of the rule based on the iterated splines:
(10) S (h) = (1/6) (f+4fntfin)) + 2 (1) % B2 C Asgiesny (0<m<3)
k=1

where (Ci, C,, Cs)=(1/2880, 1/96768, 1/3686400) and (C,, C,, Cs) = (1/2880, 1/96768,
67/1059200). For the errors in S,, (%), we obtain

Theorem 1. Let k€ 2m—+3, 2m+4, ..., n—1} and k<9 be fixed. (This restriction on k,

defined in (2) and (3), is necessary in the nonperiodic case only.) If f€C}°[0, 11 or €CY
[0, 11, then

" H(2) dz— S, (h) =0 (h™*%) (0<m<3).

Zj

Similarly as in Simpson’s rule, the asymptotic relation is known for the midpoint one:

(11) j;sz(.];) dx—h/f}+1/2: zi: (_1) k+1 J2k Dk Aﬁ(zk—1)+0(h9)

from which we get the following formulas:
(12) Min; (B) =hfierot 3 (—1) ¥ 12 D, Asyeer, (0<m<3)
k=1

where (D, D,, Ds) = (1/24,7/5760, 31/967680) and (D, D,, D3) = (1/24,7/5760, 17/64512).
For the errors in M, ;(h), we obtain

Theorem 2. Let k€ (2m—+1, 2m+2, ..., n—1} and k<7 be fixed. (This restriction on k,

defined in (2) and (3), is necessary in the nonperiodic case only.) If f€ C510, 11 or € C?[0, 1],
then

f:mf(x)dx—Mm,j(h)=0(h2m+3) 0<m<3).

Proof. Under the condition on k, m and f in Theorem 2, we have only to check

13) s,,,,,-=fj('”)—m{

nt f_(m+4)—h—6f'(m+6>]+0(hL) 0<5<n)
1807 15127 o

where L=8—m or L=k+1—m for periodic case or nonperiodic case.
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We can also consider improvement of the product trapezoidal rule when w(x)=x%
(a>—1) or In(x) for which the following asymptotic error formula is obtained:

(14) L7 0@ @) dz—hipy (D a0 (D i)
— i_: p2m {Pm (j)f}Zm—l)+qm (])f}(fi""”} +0 (h9+min(0,a)) or 0(h9 | In (h) |)

Here, first coefficients gn (=¢n (7)) (0<m<3) are determined by substitution of (zx—ux;)*"
(1<m<3), (xr—=z;)" into (14) without order terms, and next coefficients p, (=pn(j)) are

successively done by substituting (z—x;)#* ' (1<m<3) as follows:
17hqo=—4c;+14¢6—35¢,+42¢;, 34hgy=4c¢;—14¢6+35¢,—25¢;
204hq,=—2¢;+7ce—9cst4cz, 12240hq;=12¢;,—25¢6+20¢cs—7c2

(15) 17hp0:467_14CG+35C4_4262+ 17(:0, 34h171=4(:7°"14C5+35C4_5962+34C1
204hp2= _267+7CG_2604+34C3— 136‘2,

1224th3= 17C7""59€6+ 1026‘5_6564"_ 10C2

1
where ¢, (=cn (7)) = j; 6™ w(x;+h0)dl are successively determined as follows:
for w(x)=x% h(l+a)co=x}*—x}* h(m+1+ta)cp,=xrE—mihcn-y (m=1);
for w(x)=In(x), hco=xj41 In(xj+1) —x; In(x;) —h,
h(m~+1) cn=1xj41 In(xj41) —mjhcp—y+mh/ (m+1) (m=1).
For a=09 (p09 ply pZy p3) = ((10, —q1, — (3, —q3) = (1/21 _1/12y 1/720y —1/30240)9 i-e-y (14)

reduces to a special case of the well-known Euler-Machaurin summation formula. Use s, as

an approximation of f™ to give the following integration formulas:
(16) Ton.i (h)=h {Po (j)ﬁ+40 (])f;ﬂ} + 22 h#* {Pk (j)SZk—l,j+qk (j)SZk—l,j+1} 0<m<3)
k=1

with (pc (1), g (1)) = B (7), ¢ (5)) (k=1, 2) and (ps(J), g5()) = (ps(5), gs()) + (P (y),
¢1(7))/180. As in the proof of Theorem 2, we have

Theorem 3. Under the same assumption on k, m and f in Theorem 2,

fz " 0(2) f(@) dz— Ty (h) = 0 (2n+3+min0@) 5p O (B3 |In(B)|) (0<m<3)
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for w(x)=x% (a>—1) or In(x).

Similarly we improve the trapezoidal rule for integrals of the form f J‘“H w(x)f(x)dx with

an oscillatory weight w(x) =cos(kx) or sin(kx) for a relatively large value of k. For

cos (kx) or sin(kx), cw(=cn (7)) =f01 6™ w(x;+h0)dl are determined by

hkcy(5) =sin (kxj+1) —sin (kxy), h? k% ¢, (j) = hk sin (kxj4+1) +cos (kxjy1) —cos (kx;),

an

h? k2 ¢, (§) =hk sin (kxjy1) +m cos (kxjp1) —m(m—1) cp—z (7)) (m=2)
or

hkco(j) =cos (kx;) —cos (kxjy1), h% k% ¢1 () = —hk cos (kxjy1) —sin (kxjyy) +sin (kx;)
(18)

h? k% ¢y (§) = —hk cos (kxjy1) —m sin (kxjyy) +m(m—1) cpz(j) (m=2).
2. Numerical Examples

First, we consider an application of the above stated numerical formulas S, ;(%) and
M, ; (h) by taking two functions f(x) =exp (5x) and sin(4zzx). In Tables 1-4, are given the
observed maximum absolute errors in the formulas on subintervals [x;, xjui]l (0 <j
<n—1) and the observed orders of convergence from the numerical results with n=32, 64.
Figures in parentheses behind the observed orders of convergence are the theoretical ones
predicted in Theorems where a-b means aX107%. For reference, the absolute errors in the
composite formulas on the whole interval [0, 1] using S, ;(1/64) (or. M,,;(1/64)), 0<m<3
can be improved with a fixed umber of the evaluation points as 3.81-7 — 6.90-11 — 2.85-13
— 1.15-14 (or 7.50-3 — 1.33-6 — 1.76-9 — 1.92-12) where the orders of convergence in the
composite rules using S, ;(h) (or M, ;(h)) are approximately equal to the theoretical ones,
2m+5 (or 2m+3), respectively. Next, we consider an application of the product trapezoidal
rule when w(z) =1/, In(z) and | to the same functions exp (5z) and sin(dzwzx). We use
Ts,;(h/2) as the unknown exact values to bound the errors in 7)., (k) (0<m<2). In Table
4, note that the theoretical rates of convergence are different from the others since the
maximum absolute errors occurred near at x=0. Finally we improve the product trapezoid-
al rule for evaluating two integrals [2]:

(19) f 11 (2—2)"'(1—2) V4 (1 +1) % dz (=—1.944905429166746..)

(20) j;l exp (ux) cos (kx)dxr (=exp (u) (u cosk+k sink) —u) (u*+k»)™) (u=1,5)
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The integral (19) whose weight is singular at both end-points is subdivided at £=0 producing
two integrals with a single end-point singularity. For (19), the absolute observed errors in

n—1
the compesite trapezoidal rule > T, ; (k) with =32, ie., 33 function evaluation points on
j=0

[—1, 1] were significantly improved as 1.82-5 — 1.43-7 — 4.40-9 — 1.28-10 for 0<m<3.

1
For (20) with 17 evaluation points, the observed absolute errors in evaluation of fo exp (ur)

X cos (kx)dx with k=1, 10, 10% 10°% 10* were given in Table 5. Our methods with a fixed
number of evaluation points would be useful when finer meshes are not acceptable.

Table 1. Comparison of the maximum absolute errors in the numerical evaluation of

fsz(x)dx using improved Simpson’s rules S, ;(h) (0<j<n—1)

xi

f(x) nonperiodic exp (5x) periodic sin (47x)

n\m 0 1 2 3 0 1 2 3
16 2.63-5 5.34-8 2.10-8 1.81-8 7.57-6 1.89-7 5.44-8 5.83-9
32 8.88-7 6.19-10 2.45-11 1.64-11 2.52-7 1.26-9 1.07-10 2.73-12
64 2.88-8 5.21-12 2.77-14 9.66-15 8.02-9 9.40-12 2.09-13 1.31-15

orders 4.9(5) 6.9(7) 9.8(9) 10.7(11) 5.0(5) 7.1(7) 9.009) 11.04D)

Table 2. Comparison of the maximum absolute errors in the numerical evaluation of

Zj+1

f(z)dx using improved midpoint rulse M,,;(h) (0<j<n—1)

Zj

f(x) nonperiodic exp (5x) periodic sin (47x)

n\m 0 1 2 3 0 1 2 3
16 3.23-2 9.02-5 1.98-6 8.45-8 1.47-3 9.97-5 3.90-6 4.56-7
32 4.37-3 3.09-6 1.65-8 8.61-11 1.97-4 9.10-7 3.03-8 8.68-10
64 5.67-4 1.01-7 1.34-10 1.56-13 2.50-5 2.83-8 2.36-10 1.68-12

orders 2.9(3) 4.9(5) 6.9(7) 9.1(9) 3.003) 5.3(5) 7.0(7) 9.0(9)

Table 3. Comparison of the maximum absolute errors in the numerical evaluation of

f " w(x)sin (47x) dz using improved product trapezoidal rules T,;(h) (0<j<n—1)

x5

w(x) =V In(x) 1

n\m 0 1 2 0 1 2 0 1 2
16 6.51-2 1.03-4 3.56-6 5.00-2 9.09-6 2.88-8 6.47-2 1-02-4 3.81-6
32 8.63-3 3.53-6 3.06-8 6.25-4 291-7 2.25-9 8.73-3 3.52-6 3.11-8
64 1.54-3 3.31-7 4.68-10 1.28-4 4.56-8 5.39-11 1.13-3 1.15-7 2.51-10

orders  2.5(2.5) 3.4(4.5) 6.0(6.5) 2.3(2.7) 2.7(4.7) 54(6.7) 2.9(3) 495) 7.0(7D
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Table 4. Comparison of the maximum absolute errors in the numerical evaluation of

f a.:m w(z) exp (5z) dr using improved product trapezoidal rules T;(h) (0<j<n—1)

w(x) vz In(x) 1

n\m 0 1 2 0 1 2 0 1 2
16 9.55-3 7.99-5 1.32-7 7.15-3 7.08-5 1.01-8 2.92-3 3.68-5 7.23-6
32 1.97-3  2.53-6 1.69-9 8.98-4 2.24-6 8.00-10 3-92-4 1.06-6 5.68-8
64 5.52-4 1.29-7 2.92-11 1.60-4 7.11-8 9.54-12 4.99-5 3.25-8 4.44-10

orders 1.8(2.5) 4.3(4.5) 5.9(6.5) 2.5(2.7) 4.7(4.7) 6.5(6.7) 3.0(3) 5.0(6) 7.0(7)

Table 5. Comparison of the maximum absolute errors in the numerical evaluation of

1 n—1
j; exp (ux) cos (kx) dx using composite improved product trapezoidal rules 2. Ty, (h)
=0

u 1 5

k\m 0 1 2 3 0 1 2 3
1 3.84-4 2.73-8 3.50-11 2.03-14 1.55-1 2.49-4 8.77-6 3.45-8
10 2.33-4 9.01-9 2.41-11 1.40-14 1.18-1 1.60-4 6.63-6 1.13-7

10? 1.88-3 6.45-8 1.63-10 9.00-14 2.70-1 2.94-4 1.47-5 1.07-7
10° 9.30-8 3.10-11  8.61-15 4.88-18 1.61-4 4-36-7 9.05-9 4.19-10
10* 3.59-8 4.6-15 3.04-15 1.42-18 7.12-6 3.75-10 3.78-10  4.06-12
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