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The Generation of Pseudo-Random Numbers on Computers

Katsuhiko SANADA

1. Introduction

An indispensable requirement of the Monte Carlo Method is a copious and re-
liable source of “uniformly distributed random numbers”. More precisely, a facile
method is needed for the generation of a, sequence, called pseudo-random number,
which strongly resembles a sample sequence drawn by repeated independent trials
from a probability distribution uniform on the unit interval [0,1]. Numbers gen-
erated by a formula cannot of course be random, but their use is almost a neces-
sity in the computers now generally available. Ever since John Von Neumann in-
troduced the “mid-square method” some twenty years ago, methods for the gener-
ation of such pseudo-uniform sequence in computer have received much atten-
tion.

Recently, the methods most widely accepted are the “mixed congruence meth-
od” proposed by R.R. Coveyou,

Xpn=A4X,+C (mod M)
and the “multiplicative congruence method” proposed by D.H. Lehmer,
X,1=A4X, (mod M)

Here the modulus M generally equals one more than the largest (fixed point)
integer which the computer can store, e.g. 2" (for binary machines) or 10" (for
decimal machines; m is the word-length of the computer).

The sequence {X,} is the non-negative integers less than M. Finally, the se-
quence X,/M, X,/M, X,/M, ...... is taken to be the sequence of random numbers.

The hope is the parameters X,, 4, C and M have been chosen so that the re-
sulting sequence appears to be drawn at random from the uniform distribution
on [0,1]. Length of period of the random sequence is one standard that has been
used in the selection of parameters. Speed of generationis a second. But a great
deal of freedom still remains, and the question of how best to use this freedom
never has been fully answered.

If we had a complete understanding of relationship between the number the-
oretic properties of 4, C and M, on the one hand, and the statistical properties
of the sequence they generate, on the other hand, the selection problem essential-

ly would be solved.
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2. Mixed Congruence Method (1)

X,u=4x,+C (mod ) . (2-1)

The multiplier 4 and the addend C are optional parameters of (2-1); both
parameters are positive integers less than M and relatively prime to M.

The first problem is to choose X, 4 and C so that the period of the resulting
sequence is as great as possible. This formula shows that the period of the se-
quence {X,) is not greater than M. When the period is short, the sequence comes
to no good in randomness and too uniform. So it is to be desired that the period
is as long as possible.

Next two theorems are ture. ([4], [8])

(Theorem 2-1]

If A=1 (mod 4) and C=1 (mod 2),

then the formula

X, =A4X,+C (mod 2™)
takes the longest period 2", on whichany initial value X, has no effect.
[Theorem 2-2]

If A==1 (mod 20) and C:=1,3,7 or 9 (mod 10),
then the formula

X,n=AX,+C (mod 10™)
takes the longest period 107, on which any initial value X, has no effect.

Theoretically these generators have a number of small advantages over the
multiplicative generators. They can have longer periods, they may be used with
any starting value, and on most machines, they can be faster than the fastest
multiplicative generators. The fastest such generators have 4=2?+1 or 4=10?+1
for p>1, because these generators are easily effected by shift-and-add instructions
in computer.

3. Mixed Congruence Method (2)
X,=A4X,+C (mod 2 (3-1)

Here the parameter 4 is of the form (2’+1) where p is an integer greater
than 1; C may be any odd number, and m any positive integer. We start with
any convenient X,; the formula then generates all the integers from 0 to (2#—1).

To illustrate the formula, suppose we take p=2, m=3, X,=0, C=1. The for-
mula then becomes

X,1=5X,+1 (mod 8)
whence X,=1, X,=6, X,=7, X,=4, X;=5, X;=2, X;=3, X;=0.
Now we make the proofs not to use number theory. ([2])
Consider the special case
| Xyu=AX,+1 (3-2)

R
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with X,=0, 4=2?+1, p>1 (integer)

By (3-2)

X, =1+A4A+A+......... +Ar!
If n is odd, X, is odd. Because the X, are alternately even and odd. ...... (3-3)
If n=2%, L any positive integer. Then X, contains 2% but not 2+, ... (3-4)

By induction,
Assume it true for some L. Then
Xo=1+A4+......... +A,,+A"(L+A4+...... A" )
=(1+4"X,
Here 144" contains 2 exactly once. Because

1 n — 1 b n
o (1) =5 (22 +1)"+1)

= 5 ((L+terms in 22 +1)

=1+terms in 2771, odd if p>1
Then if X, contains 2* but not 2%*!, X,, contains 25*! but not 2:+2,
But (3-4) is true if L=1, since X,=2?+2.
If n=R-2", where R is an odd number, then X, contains 2% but 2:*1...... (3-5)

Xy=Xpor=(14+AR+ AR 4 ... + AR D) X,

= (L4+AD) L+ AF) L+ 475 L (L AT R X
X, has exactly L factors of the form (1+4*); whence X, contains 27 but not 22+,

since X, is odd. v
Thus it follows from (3-3), (3-4) and (3-5) that if 0<#<{29 X, does not con-

tain 2, (3-6)
If Z, is the remainder when X, is divided by s=2", then the sequence Z,, Z,,

Zyyiininnn. , Z,_, includes all the integers from 1 to s—1; that is, every possible re-

mainder occurs exactly once. . 3-7

By (3-6), there is a remainder; i. e, Z;=£0 if 1<i<s.
Assume s>j>i. If Z,=2Z, then X,—X, must contain s. But
X,—X;=A'"+ A" +...... +A
=A'A+A4+...... + A7)
=A'X,_;
This cannot contain s=2", by (3-6).
Thus Z,=#Z, and no remainder occurs more than once. Since (s—1) remainders
occur, (3-7) is.proved.
Zi=Zi+s
The Z, form a periodic sequence with period 2. ... (3-8)
Because if |i—j| contains 29, so does |Z,—Z,].
X,—X,=A'X,_;
=(h—k)2"+(Z,—Z)



NG
pexs
22
&t
W

where X,=Z;+h-2", X,=Z,+k.2"
Let H,=(X, | remainder is Z, when X,/2"}
There are H,, H,, ...... , H,_, associated with Z,, Z,,...... , Ly,
Let X, =AX,+1 . (3-9)
with 0<X,<2"
By (3-7), X, is equal to some Z, say Z,. Then
Z,=X,=1+A4A+...... + At —p . 2m
X, belongs to H,.
Xi=1+4+...... +AF—A-h. 2"
X, belongs to H,,,.
X,=1+A4+...... + A — A2 R 2m
X, belongs to H,,,.
and so on.

Thus, (3-7) remains true for arbitrary X,.

Let Xn+1=AXn +C
with 0<{X,<2" and C any odd number. ... (3-10)
Then Z,=X,=CA+A+A4*+...... + A1) —h.2"

X, belongs to H,.
X, =CA+A+4"+...... +A)—A-h.2"
X, belongs to H,.,.
and so on.
By the same proof with (3-7), it is shwon that no Z is repeated.
Thus we can state
(Theorem 3-1]
If A=2+1, p>1 (integer)
C=any odd number
then the formula (3-1) X,,,=A4X,+C (mod 2") generates a set of identical scqu-
ences of length 2" each containing all the integers 0 to 27—1,

4. Harmonics of Mixed Congruence Method

Since (3-1) generates all the integers from 0 to (2"—1), it follows that for
a sufficiently long sequence the mean and variance must agree exactly with the
theoretical values for a uniformly distributed population. But it is shown that
the sequence has not only the period 2", but also subperiods or harmonics of all
lengths 2/, 0<i<m. These harmonics are subject to define patterns. ([2])
For example consider the series generated by
X,1=9X,+13 (mod 32)
X,=0, X,=13, X,=2, X,=31, X,=4, X;=17, X;=6, X,=3,
X:=8, X,=21, X,,=10, X,,=7, X,,=12, X,,=25, X,,=14, X;=11,
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X,s=16, X,;,=29, X;=18, X,,=15, X,,=20, X,,=1, X,,=22, X,;=19,
X,,=24, X,;=5, X,;=26, X,,=23, X,;=28, X,,=9, X;,=30, X,,=27,
X;,=0, X;;,=13, ......... .
By upper table, we know that |X,.—X,|=16. Whatever the length of the period,
| X, omet — X, | =201
If we consider quarter-periods, |X,,,n-2 —X,| is always a multiple of 272,
This relationship holds whatever the values of p and C; it is an inherent pro-
perty of (3-1).
If X,=0 and X,,,=AX,+C, then
Xoin—2X, 1+ X, =(A"-1).4".C/(A—-1)
Since 4=2?+1,
(A*—1)/(A—1)=k?2?+ (terms in higher powers of 2*)
If k=2° 20=m—p, then
Xpi0e—2X,.+X,=0 (mod 27)
Thus three equally spaced X,, X,., and X, of the sequence {X,) are in arith-
metic progression modulus 2”7, So also if k is a multiple of 2°,
If k=22 2.0 =m—p, then
X,..—X,=const, (mod 2™)
And if 2.0=m—p—1, then
Xoisn—Xpsn=X,1,—X, (mod 27)
We can state the same for decimal system.
Thus we know that p should be kept small. Aside from reducing computer
time, small values of p increase the length of the cycle for arithmetic progression,

5. Statistical Properties

We consider serial correlation o(X,, X,.,) between the consecutive random
numbers X, and X,,,; generated by (2-1). ([1])

Let 4 and C of (2-1) be values for which the period of the {X,} sequence is
M and the sequence contains all integers from 0 to M—1 (chaotically disordered),

with each integer appearing exactly once,

E(Xnv Xn+1)— {E(Xn)}z

p(Xnv Xn+1)= E(X,%)—{E(Xn)}z ............ (5—1)
where E(X,)=(M—1)/2 E(X2)=(M—1)(2M—1)/6
Let AX,+C=q,-M+r, . (5-2)
with 0<q,, r,.<M
E(X,, X,)=(/MZ X, X,
=(1/M)zz;‘,:X(AX+ C—gM)
—A-E(X*)—CE(X) —Zgqu ............ (5-3)

(Dispensing with the subscript # for convenience)
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Assume for the moment. that C=4 and let X, in (5-2) take on consecutive in-
teger values starting with 0. Then g increases from 0 to 4, in increments of 1,
and each g has assocjated with [M/A] or [M/A] +1 consecutive integers X, as well
as the same number of integers r.

Let 7, be the smallest r associated with a given q. Then 7=C, and for ¢g=>1,
7,<A is given by

F,=C—gM (mod 4) 7, <4 . (5-4)
From this it follows that 7, are distinct and (7, 7, ...... , F.) 1s a permutation of
the integers (0, 1, ...... , A=1).

X=(gM+7,—C)/A corresponding to 7, and
X={(¢g+1)M+7,,,—C}/A to F,,, whence
(gM+7,—C)/A<X<{(g+1)M+F,,,—C}/A corresponding to q.
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where S=ZA§ Forq s (5-6)
q=1

We make the assumption that M is so large that any term order of magnitude
is 1/M or less is negligible.

o(X,, Xn+1):§-—%(1—%)+%(%—%) ............ (5-7)
wa—1)|=#

When 4/M<L1/A4, the third term is negligible, But for 4 on the order of M or
larger, the third term may predominate and the complete equation (5-7) must be
used.

For the case C<A4,

12 S A
p(Xn)Xn+1) A A’l (Ag _4_> ............ (5‘8)
where  §=351 7,-q e (5-9)
a=1

The two definitions (5-6) and (5-9) cannot give results for p different by more
than negligible amount. So equation (5-8) shows that equation (5-7) still applies
for the case of C<A4. For this case, however, the middle term of (5-7) is insig-
nificant and the parameter C appears only insofar as it influences the value of S.

(Example 5-1]

Suppose that M=23% 4=2%*+1 and C=1.

Equation (5-7) reduces to

p(Xm Xn+1)

N»—a
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which agrees with the result given earlier.
[Example 5-2]
Suppose that M=2%,6 4=2%4+1, and C=1.
0( Xy Xysy)=2718—-27%
from which we infer that p<L2°%

In some respects the best choice of 4 is approximately M:. One reason is
that this choice ensures an absolute value of g on the order of M_?l, irrespective
of C. For many C, |p| may be much smaller, Example 5-2 shows this fact. But
it is not correct to conclude that this selection of parameters produces an accep-
table generator. For one thing, the first several hundred numbers generated by
this combination, starting with X,=0, are all less than M/2.

(Example 5-3]

Suppose that M=2% and 4=2'7+1.

o(X,, X,1)=3(C*-27—C.27%41)27%

Thus when C=1, p=3(2"*); and when C':.(liz_il)zi“ and approximately divi-
sible by 4, p<L27". '

Finally, if A4 is sufficiently small relative to Ml'i so that 4/M<L1/A4, then

oKX Xui)= g (=S5 +1)
It follows that p:==1/4 when C<LM, whereas p<L1/4 when C'——.M(1i3_%)/2. Here
A and C are restricted to values which afford the full period. One such selection
of M=2%, namely A=27+1 and C=1, has been tested empirically and proposed as
a suitable generator, ([9])
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