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Group-theoretical treatment of X-ray simultaneous diffraction in the symmetric Laue

case is discussed by developing the theory of Kogiso and Takahashi [J. Phys, Soc. Japan, 42

(1977), 223] for electron diffraction. An application of the theory is shown by a solvable ex-

ample of the four-wave case in which the little c0-group of wave vector is C2ォ

1. Introduction

The author and his collaborator have studied application of group theory to many-beam

electron diffraction.1' This article describes development of their theory to the case of

simultaneous diffraction of X-rays.4-6)

One of the di侃culties in X-ray diffraction lies in the fact that X-rays are transverse and

their wave-fields are vector fields. It is necessary to define two unit polarization vectors

which are perpendicular to a wave vector m order to describe the direction of vibration of

the wave. The form of fundamental equations of X-ray diffraction depends on the choice

of the directions of the polarization vectors and the number of the equations becomes 2n

m the case of n-wave approximation. The symmetry of the fundamental equations of

X-ray diffraction can not be seen easily in contrast to that of electron diffraction. X-rays

in a crystal should be subject to the symmetry of the crystal and satisfy the boundary con-

dition. These conditions are quite similar to those of electrons in crystal.1' The symmetry

group of a wave一点eld of X-rays should be also the little group of the wave vector. Funda-

mental equations of X-ray di軌action can be reduced if the representations of symmetry

operations which transform invariantly the equations are obtained. The representations

become very simple if the polarization vectors are de丘ned in proper manner such as Joko

and Fukuhara's.6)

In this article, we discuss the symmetric Laue case where all the waves satisfy Bragg

condition. The fundamental equations are rewritten as a matrix form in section 2. Polari-

zation vectors are defined in order that they should be transformed into those of the same

kind by symmetry operations and the forms of the representation of the symmetry operations

are given in section 3. Reduction of matrices in the matrix form of fundamental equations

is described in section 4. The method is quite similar to the case of electron di駄action.x)

Boundary conditions in our case are also given as a matrix form. Finally, an example of

solution is shown in section 5 where the number of waves is four and the little c0-group is
●
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2. Matrix Form ofFundamental Equations

When a plane monochromatic X-ray wave is incident over a crystal, a wave一点eld (electric=

displacement-field) vector D in the crystal can be written as a superposition of plane waves,

D-exp(ivt)∑Dhexp(-ikhr) ,　　　　　　　　　　　　　　　　　　(1)
h

where kh-ko+2nh is the wave vector of hth wave, and direction of Dh is perpendicular to

kh. The component wave-field vector Dh is given by the sum of D%ah and D紳　where

ah and打h are unit polarization vectors.

The fundamental equations of X-ray diffraction are given by
●

xhD冨- ∑ Vォ{(ォVォOD冨+(サ*汀g)D芸)
Q

(2)

xhD芳- ∑′サ*-.{(汀蝣ォOJ>冨+(汀h ･汀g)D芸)
9

where xh is defined by the relation

K>xh-K¥¥ -v｡)一機,

and vg is the gth Fourier coefficient of the polarizability of the crystal.

Equation (2) can be rewritten as a matrix form,

仙W-x･,

where matrices仙and X have ha submatrices

Mft9 -

**.-

mw

oo

ooforh-g,

h-e¥forhアg,

(10

xJforh-g,

01

:::forh-a

and a column vector W has hth subvector

･:-[ml

(3)

(4)

(5)

(6)

(7)

Equation (4) is similar to the fundamental equation of electron diffraction,1) although
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matrix elements and vector components are replaced by submatrices and subvectors of order

2. If all the waves satisfy Bragg condition, all the values of xh become equal to one an-

other and eq. (4) reduces to an eigenvalue problem. We can easily see that仙is Hermitian

for non-absorbing crystals.

3. Symmetry Representation

Similarly to the case of electron diffraction,1} the wave vector k｡ of a wave-field of

X-rays m a crystal should satisfy

Ako -ko + 2nH(A)　　　　　　　　　　　　　　　　　　　　　　　　(8)

Blfl剰

Akn - kn,　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(9)

where A is a rotation of symmetry operation of the space group of the crystal, H(A) is a
●

reciprocal lattice vector normal to few, and kn is the normal component of ko to the crystal

surface. The symmetry operations satisfying eqs. (8) and (9) form a subgroup of the space

group of the crystal. The subgroup is called the little group of the wave vector fe｡, G(Jfco),7)

and the symmetry group of the wave一点eld.

To form the representations of G(feO), we define bases by

fg-〔agQxp(-ikgr)〟,exp(-i&jr)〕

-〔Jga Jg花〕 ･

The transform of the base/- is given by

*/.- 〔Rfg* Rfgnl 5

where

K/ォr - C4ォO expトi{ko + 2n(Ag +H(A))} (r - t)〕

Ffilil矧

Rf9n-(A汀,)expトi{ko +2冗(Ag+H(A))} (r-t)〕 ･

(10)

(ll)

(12)

(13)

In general, Aa and A汀are given by linear combinations of oA +H{A) and汀Ag+H(A)' We

define a row vector F by

Jf- C/o-/.-/.--).

Unit polarization vectors ag and打are defined by

at=
kgxKn

kgxKn¥

and

(14)

(15)
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汀9=
¥k.x.o.

(16)

where Kn is the normal component of K, the incident wave vector in vacuum, to the crystal

surface.6*　Then, we have

Aff-¥A¥aAg+H(A)

and

A打9-打Ag+H(AY

whereA|-lforproperrotationsand¥A1--1forimproperrotations.

Therepresentation0(R)ofasymmetryoperation1?isdefinedby

Rfg=JlfhD(R)h
m

(17)

(18)

(19)

From eqs. (12), (13), (17), (18) and (19), each of element of the representation of.R-{A¥t}

becomes

D(R)hg- 0 D(三(tc)

Ml

｡冒
exp(-iM∂h,Ag+H(A)'

(20

4. Reduction of Fundamental Equations

The representation D(JR) can be reduced into a direct sum of irreducible representations

(reps).DW(R) of GQto),1*

J-1D(R)1 - ∑n(X)DW(R) ,
A

where T is a similarity transformation matrix. The values of n{X) are given by

1

n(x)- ¥G¥妄yw(R)*y(R),

(21

(22)

where ¥G¥ is the order of G(fcO), and xw(R) and x(R) are the characters of D^XR) and

D(k), respectively. Furthermore, since D(R) can be rewritten by a block-diagonal form

D(R) - D(R)W +D(RY花),

n(X) becomes

n(X)-n(A, a)+n(A, n),

where

(23

(24)
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n(x, a)-宣T ∑ yW(/l)*y(/9(ォ>　　　　　　　　　(25)R

and x(K){α is the character of D(i?)(α'for α-(J, 71.

We can generate symmetry-adapted bases ¢　f-l,..., /(A), for the X rep from a base /

by

<t>t- wts f

-常吉DW(R)t.Rf,

(26

if Wssf幸0, where i(X) is the dimension of the X rep. Since symmetrically equivalent bases

generate equivalent systems of symmetry-adapted bases for the same 5, we can choose fQa

and/o花as the generating bases if all waves satisfy Bragg condition and they are symmetrically

equivalent with one another. The ln symmetry-adapted functions can be labelled as ¢{kin)

where A-α,…, v,ォ-!,..., n(X) and /-1,… i(X). We define row vectors by

S(加)- 〔¢(X¥n)¢(A2n)... ¢(U(l)nr

and

S-〔S(α1) -S(αn(α)) -. ｣(vn(v))〕.

The similarity transformation matrix T satisfying eq. (21) is obtained by
l

S=FT.

(27

(28)

(29)

The matrix T has the same properties as T of eq. (3.6) of Kogiso and Takahashi.1)

In quite the same way as in electron diffraction,1)仙can be reduced by T to the block=

diagonal form where diagonal submatrices have i(X)n(X) dimension,

T-1仙T-晶-∑仙w
l

(30)

Aswewillshowinthelatersection,wecanmoreeasilysolvethefundamentalequations(2)

bysubstitutingofsuitablelinearcombinationsofsymmetry-adaptedbasestoeq.(2)than

byreducingthematrix仙totheformof仙inthecaseofelectrondiffraction.X)Ourdis-

CUSSlOllinthissectionisforthetheoreticalgroundofsolvingeq.(2).

Equation(4)istransformedbyT,

MCT-iF)-jc(T-i?(31)

Theeigenvaluesandeigenvectorsofeq.(31)areobtainedbysolvingreducedeigenvalue

problems

仙(*>ォ-a-xa,(32)

forX-α,…V.Ifォ(Ai)isiiheigenvectorbelongingtoXrepofeq.(32),thecorresponding

eigenvectorA^ki)ofeq.(31),where-4-T-1sfr,satisfies
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仙ziao-M(AWAt>.(33)

IfTisorthogonalandA(U)sareorthonormalized,theeigenvectorsWsareorthonormalized.

Inadditiontotangentialcontinuityofwavevectors,thewave-fieldvectorsshouldsatisfy●

2/i∑Diサ-D^∂/サ｡5(34)

ノ=1

wherej,correspondingtotheabove(Ai),indicatesthebranchnumberofdispersionsurface

andD{
oe)istheelectricdisplacementoftheincidentwaveinvacuum.4)
SinceDとcanbeexpressedasa｡cosγ+汀,sinγtheboundaryconditionscanbe●

writtenby

2〝
Zc.

7=1

Icosy

lsiny,∂hO>(35)

where ･£JJ and現JJ are the elements of /th eigenvector WU), and再s the angle between ac
●

and Dke¥　From orthonormality of野(�"^s, Cj turns out to be

cy-nrcosγ+現])*sinγ.

Then, we have

D[j)-c,(W£j)oh+V£ *k)

5. Example of Application

(36

(37)

Joko and Fukuhara6) listed solvable arrangements of reciprocal lattice points in which
●

eigenvalue equations can be reduced to quadratic equations, and showed the eigenvalues and
●                      ■                                 ●                               ■l                   ■                                                                                                                       ■■       ■一■              ●

eigenvectors. Besides, when a crystal class is symmorphic, the little c0-group is C2v and four
●                                                                                                                                                                                                ●

reciprocal lattice points lie exactly on the Ewald sphere, the eigenvalue equations can be

reduced also to four quadratic equations. This is another solvable case.

0

Fig. 1. Arrangement of reciprocal lattice points and directions of unit

polarization vectors ah and打h.

2cr-∠OTP, 20-∠OAQ.
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The arrangement of reciprocal lattice points and directions of unit polarization vectors
●

ah and汀h are shown in Fig. 1. This case was recently studied by Post et al.8) In their

study the crystal system is cubic and the reciprocal lattice points 0, P, Q and jR have the

indices 000, 111, 3汀and 202, respectively.

By putting vF-a, vQ-b and vR-c, the matrix仙becomes

仙=

0 aV, bV2　cV3

ill                              in

aVj 0 cV3　bV2

bV2　cV3　0　aVi

コ

cV3　∂V2　αVI 0

whereVx-仁AB

BC,V2-‖O

D,V3-岩~Bi

38)

,A-cos2∝　5-cosOsin2α, c-i

一ヽ■′                        ~■■′

-2cos20sin2α, D- -cos20, E-1-2cos20cos2∝ Vt and V3 are the transposed matrices of

Vt and V3. Since the directions of our unit polarization vectors ah and汀　are defined

by different principle from those of Post et al.,8) we can not simply relate the elements of仙
●

with eq. (8) of them.

The reps of C2v are all one-dimensional

and denoted by Au A2, B{ and JB2. The

characters of the reps are shown in Table I.

All the values of n(A, o) and n(右n) become

equal to unity, i.e. all the values of n{Å) are

equal to two. Symmetry-adapted bases in

Table I. Character table of C2v,

C2(z)　　mx

Table II. Elements of T.
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eq. (26) are produced by/｡<r and /｡花and elements of T are given in Table II.

Iftwo symmetry-adapted bases belonging to X rep are denoted by ¢<Xl> and ¢<A2> the

eigen-solutions belonging to the X rep, ¢W)-JpSrai)? are given by linear combinations of

¢<Al> and ¢(A2)

¢(Ai):-¢(Al)cos{γm+¢(A2)sin{γm, i-l, 2.　　　　　　(39)

By substituting 珍(U) into eq. (2), the eigenvalues xt(X) and tan {γt(X)} can be obtained as

･1,204J-i(p.±mji+m,

tan{γi.2G*i)}-｣+±　T+a,

*i,2042)-y{M-±mji+ei,

tan {γ1,2042)}-/*一宇J稲,
(40

･1,2(*l)-Ⅰ{v+アnJl+n2+),
▲-

tan {γ1.2(*l)}-fl+芋Ji丁重,

4,2'(52)-i(VカJ珂) ,

tan {γ1.2(B2)}-叩- ± Jf丁重,

where

m-2(a-c)cosOsin2α,

n-2(a+c)cos9sin2a,

IL± - -2fccos20±{a+c-(a-c)cos2a}sin20,

V±-2bcos26±モーa+c+(a+c)cos2a}sin26,

E士-{(a-c)cos2α(1 +cos2 9)+(a+c)sin2 9±2bsin2 0}jm,

叩士-{(a+c)cos2α(1 +cos2 6)+(a-c)sin2 0±2bsin2 6}In.

since鴨and鴨are与cos{γ&)} and与sin{γt(X)}9 respectively, we have

c/A)-与cos {y-γ&)} ,

where ct(X) is the coe缶cient in eq. (37).

(41

(42)
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