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§1. Introduction

Let V be a Hilbert space, a(-,-): Vx V=R be a continuous V-elliptic bilinear form, and
f: V>R be a continuous linear form. Then the abstract variational problem is: Find an
element u such that

ueV and YveV, a(u, v)=f(v). (1.1)

By the well known Lax-Milgram lemma, the problem has one and only one solution.

Given a bounded domain Q with boundary I' in R", the space 2(Q2) consists of infinitely
differentiable functions v: Q— R with compact supports. For each integer m >0, the Sobolev
space H™(Q) consists of functions ve L?(Q), for which all partial derivatives 0*v (in the
distribution sense) || < m, belong to the space L?(Q), i.e. for each multi-index o with |a|<m,
there exists a function 0*v € L%(Q) which satisfies

Ve 2(Q), SQ Fopdx=(—1)l=! gg 06* px.

We note the space H™(Q) is provided with the norm

1
2
’

lolmo=( 3 S |6%0|2dx)
la|<m JR

and

1
2

olwa=( E_{_16%02dx)
la|=m JQ

is a semi-norm over it. Now corresponding to the Sobolev space H™(Q) another Sobolev
space is effectively considered, which is H3(Q)=2(Q), closure being taken with respect to
the norm | - |0

Now as an explanatory example of the aim of this report we mention the problem (1.1)
with the following specifications:

{ V=Hy(Q),

a(u, v)= gn (é‘i 0;ud;v +auv) dx, (1.2)

f@ = roax,

where ae L¥(Q), a>0 a.e. on Q, fe L%Q). In order that the problem (1.2) satisfies the
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condition of Lax-Milgram lemma, it is useful to use the fact that the semi-norm | - |; o is a
norm over the space H§(Q), equivalent to the norm | - ||, o, (cf. theorem 2-1). Indeed, by
dint of the relation

WeHYQ),  a 0> | % @ordx=la
2i=1

it holds that a(-,-) is V-elliptic.
Furthermore, to the solution of (1.2) we can associate the solution of the following
boundary value problem:
—Adu+au=f in Q
(1.3)
u=0 on [I. .
~In this paper, we shall study various relations between the norm and the semi-norm
over several Sobolev spaces which are found useful in the finite element method. (cf. Ciarlet

[2] and [3]).

§2. The norm and the semi-norm over the Sobolev space H"(£2)

Theorem 2-1 is well known but since it forms the basis of our argument, we dare to
give its proof. Theorem 2-2 is about a mixed boundary value problem, and Theorem 2-3
deals with the space of the type H™(Q) n HF~1(Q).

ProrosiTION 1. Let a function f defined on an interval I be locally integrable.
Assume that the distributional derivative g of the function f is also a locally integrable
function. Then the function f is absolutely continuous on I and it holds f'(x)=g(x) a.e. in

I. O

The proof may be found in Shibagaki [8] or Liusternik and Sobolev [6].

Throughout this paper, let C (or C(Q)) denote constant, not necessarily the same in its
various occurrences.

THEOREM 2-1. Let m be an integer>1. Let Q be a bounded domain in R*. Then
the semi-norm | - |,, o is a norm over the space Hg(Q), equivalent to the norm || - ||, o-

Proof.  being bounded, there exists a constant C(Q) such that
Voe HYQ),  [vloo<C(@) ol @.1)

the inequality being known as Poincaré-Friedrichs inequality.
Now since the relation Vv e H3(Q), 0*ve H{(Q) with |a|=1 holds, we can write [0%v]y o
< C(Q)|0*v]y g for x| =1 by means of the above inequality (2.1). Thus we have immediately

[vl1,e<C(Q) |v]2,0
and consequently

[v]o,0 < C(2) 0] 0.
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By repeating the same procedure, we obtain

Vlm-1,0< C(Q) [Vl 0 (2.2)
and

[vl0,0< C(Q) [V]m,0- (2.3)

Assume that v is a function H3(Q) which satisfies |v],, o=0. Owing to (2.2) and (2.3), it
follows |v]o =0, which implies that v=0 a.e. in Q, so that v=0 in the space HE(Q). (More
precisely, by Proposition 1 we can conclude that the function v is absolutely continuous, so
that v=0in Q.) Thus | |, is a norm over the space H%(Q).

Next we show that the norm | - |,, o is equivalent to || - ||, o, .. that there exists a con-
stant C(Q) such that

VoeHY(Q),  [|vllme<C(Q) [0y, (2.4)
Using (2.1), we have for Yve H}(Q),

01 o=v3,0+ v} o< CHQ) [v]} 0 + VI3 0- (2.5)
Thus lolly,0< C(Q) [v]4,0-
Assume that for Yv e H§~1(Q),

[0llm-1,0< C(2) [V m-1,0-

Then using (2.5) and (2.2), we have (2.4) for Yve H%(Q). So the proof is complete. [J
The following theorem may be considreed as an extension of Theorem 2-1.

THEOREM 2-2. Let Q be a bounded domain in R". Let I' be the boundary of Q such
that F'=I'yUIl,and 'oNT=@. Let V={ve H(Q); v=0on I'y}, which is a subspace of
HY(Q).

Then if I'y has a strictry positive measure, i.e. meas (I'y)>0, the semi-norm | - |; o is a
norm over the space V, equivalent to the norm | - || o.

Proof. First we show that the space V is a closed subspace of H(Q). Let {v,} be a
sequence of functions v, e V which ocnverges to an element ve HY(Q) with respect to the
norm || - ||; g, i.6. v, € Vove H(Q). From the trace theory, we have that

Vwe H(Q),  [twllor<C(Q) o]0
where t, denotes the trace operator. Thus the inequality
lteox—t,0ll0,r < C(Q) e — 0l 1,0
holds, so that we have
It —t0llo,r = 0 (k= ).

Therefore by a theorem in Lebesgue integration theory, there exists a subsequence {v,} such
that t,v,>t,v a.e. on I'. Since v;€ V, we have v;=0 on I'y, so that we obtain v=0 on I,
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Thus v € ¥, which proves that Vis a closed subspace of H(2).

Next let us show that the semi-norm | - |; o is a norm over the space V. Let v be a func-
tion in the space V which satisfies |v]; =0. |v]; o=0 implies 6*v=0 with |x|=1 a.e. in Q,
but since by Proposition 1, the function v is absolutely continuous, the function v is a con-
stant in Q and hence t,v is the same constant. That this constant is zero follows from the fact
that v=0 on I’y and meas (I"y)>0.

Finally we show that the two norms | - |; o and | - ||; o are equivalent over the space V.
Assume that the two norms are not equivalent over V. Then for an arbitrary large constant
C, there must exist some function veV such that ||v]|; o>C|v|; . Then we may find a
sequence {v;} of functions v, € V such that on the one hand it holds for any k ||v;|l; =1, and
on the other hand lim |v;|; =0. Rellich’s theorem tells us that any bounded sequence in
the space H!(Q) corﬁ;a?ns a sequence which converges in L?(Q). Thus we can conclude that
there exists a subsequence {v;} of functions v,e V which converges in the space L?(22) and
which is such that hm [v)l1,0=0. Now since |v,—vy]p,q—=30 (I, I'=0) and |v;—vp|; o<
o)l 1,0+ vpl1,0—0 (I, f '— ), we have |[v,—v;|; o—0 (I, I'— 00), so that the sequence {v;} is
a Cauchy sequence in the complete space V. Therefore it converges in the norm | - ||; o to
an element ve V. Since |v|; o=1lim |v)|; o =0, it follows that v=0, which is in contradiction
with o], p=1for Vk. 0O

Next we consider the space of the type H™(Q) n HE~1(Q) for any integer m>2. These
spaces are important in the analysis of boundary value problem of biharmonic equation.

THEOREM 2-3. Let Q be a bounded domain in R*. Let V=H™(Q)n HE~Y(Q) for any
integer m>2. Then the semi-norm | - |, o is a norm over the space V, equivalent to the
norm || - ||,q-

Proof. First we show that the semi-norm | - |, o is a norm over the space V. Let v be
a function € ¥, which satisfies |v],,0=0. |v], =0 implies d*v=0 with |¢|=m a.e. in Q, so
that by Proposition 1, the function v is a polynomial of degree<m. And since *v=0 with
le|]<m—2on T, we have v=0in Q. Thus |- |, ¢ is a norm over the space V.

Further we can show by the same procedure as the final part of the proof of Theorem 2-2
that the semi-norm | - |, o is equivalent to the norm | - |, o. But in this case, we must use
the more general Kondrasov-Rellich theorem. [J

§3. The norm and the semi-norm about a three-dimensional elasticity problem ‘
We consider the product space (H'(Q2))3 for a bounded domain 2 in R3 with Lipshitz
continuous boundary. Let '

V={’U=(Ul, U2, U3)E(H1(Q))3; vi=0 on I_'Oa 1<l<3}

where I'y is a subboundary of I.  The space V is provided with the product norm

1
2

[0l.0=(E [0l for Yo=(y, oy, v5) € (HIQ).
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Let a0 =20 =2 +0p),  (,j=1,2,3),

and we define the semi-norm

1
2

[ol=(,3 la(®)Ba)".

Now the following inequality is known as Korn’s inequality, whose proof may be found
in Duvaut and Lions [4], which tells us that there exists a constant C(Q) such that

Vv =(v, vy, v3) € (H(Q))?,
101a<C@( S la®Bat 3 lofa) XY

THEOREM 3-1. Let I'y<=I and I'y have strictly positive measure. Then the semi-norm
|v| is a norm over the space V, equivalent to the norm ||v], o.

Proof. The fact that V is a closed subspace of (H!(2))> may be proved by the same
procedure as the first part of the proof of Theorem 2-2.

It is shown that the vector v e (H!(Q))? which satisfies |v|=0 is of the form v(x)=a x x
+b for some constant vectors @ and b. (cf. Hlavalek and Necas [5]). Since v=0 on I,
and meas (I'5)>0, a=b=0, so that v(x)=0. Thus |v| is a norm over the space V.

The fact that ¢;;(v) only involves certain combinations of first derivatives, namely ¢;;(v)
=%(6 v+ 0v;), while |v]; o involves all first derivatives tells us immediately the relation:
There exists a constant C such that for Vv e (H(Q))3,

3 ley®Bat 3 nl.a< Clvlo
Thus the oppOSJte inequality to (3.1) is deduced, so that (3.1) is equilvaent to saying that
(lv)*+ Z v;13, Q)2 is a norm over the space V, equivalent to |||, o.

Next we show the existence of a Cy>0 such that for Yo=(v,, v,, v3) €V,

l&:j(V)lo,0 = Colvilo,0 (i,j=1,2,3) (3.2)
By replacing v; by v|v;|5'o, we may assume that |v]oo=1. Then we have to prove the
existence of a C,>0 such that Yo eV, |¢;i(v)]oo>C,. We argue by contradiction. If the
result were false, there should exist a sequencew ,= (0,1, Vy2, Vy3) With [v,]0, o =1and |g;(v,)]o,0
-0 (n—>o) (i, j=1, 2, 3). According to (3.1), we then have |v,|; o<constant. Then by
Rellich’s theorem, we can select a subsequence {v,} of functions v, e (H 1(Q))3 which con-
verges in the space (L2(Q))® and which is such that hm |vl|2 = 11m Z l&;{(vp)]o,0=0.
Thus the sequence {v,} is a Cauchy sequence in the complete space (H 1(9))3 and therefore it
converges in the norm | - ||; 5 to an element v e (H(Q))3. Since |v| '—,122 |v,|=0, we have

v=0. This contradicts with the assumption |v,|o o=1. Thus we have (3.2), which shows -
by (3.1) that there exists a constant C(Q2) such that for Yv e ¥,

aSCQ)|v|.
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The proof is complete. [

§4. The norm and the semi-norm over the space W™ r(£)

For any integer m >0 and any number p satisfying 1< p< oo, the Sobolev space W™ ?(Q)
consists of those functions v e L?(Q), for which all distributional derivatives d*v with |o|<m
belong to the space LP(Q). |

We provide W™-?(Q) with the norm

1
[olnpa=( Z | 10:0lrdx)?
lal<m JQ

and

1
|vlm,p,9= ( |<1|Z=m SQ IaaUIPdX)P .

We define the Sobolev space W3-2(Q)=2(Q), closure being taken with respect to the norm

II : ”m,p,!)‘
In this section, we study the relation of the norm and the semi-norm over the space

Wm.p(Q) as an extension of the case of the space H™(Q).

THEOREM 4-1. Let Q be a bounded domain in R". The semi-norm | - |,, , o is a norm
over the space W§:?(Q), equivalent to the norm || - |, » 0

Proof. First we prove the next inequality — generalized Poincaré inequality: There
exists a constant C(Q) such that for Yve W3-?(Q),

[0lo,p,0 < C(2) 0] 4 p,0- 4.1)

Let x=(x', x,), where x'=(x,,..., X,—) and let [a, b] be the bound of Q of abscissa along
the axis x,. Then for Yve 2(Q), we can write

o(x) = S"” 0.0(x', D)dt.
Here, using Holder’s inequality,

1o()] <<g" (', t)|pdt)%<Sde)% ,

where —;'7 + %= 1. And there exists a constant C such that

lo(x)lP< C S" 16,0(x", DlPdt.

Therefore |v|g,m=g lo(0)|Pdx
(7]

<C gg(g" 16,0(x', t)[Pdt> dx
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<o), (5 e o)

< ClolE p0

<Clolf p0-

Thus since 2(Q) is dense in W2-P(Q), the inequality (4.1) is shown.
Now, using (4.1) instead of (2.1), the Theorem 4-1 can be proved by the same method

as Theorem 2-1. [

Next from the trace theory (cf. Adams [1]), we have the following inequality on the
Wmp(Q): There exists a constant C(2) such that for Yve Wmr(Q),

” tr”“O,p,I‘< C(Q) ”v”m,p,ﬂ'

Therefore we have the following theorems, i.e. Theorem 4-2 and Theorem 4-3, as the ex-
tension of Theorem 2-2 and Theorem 2-3. Their proofs will be given by the same procedure
as Theorem 2-2 and 2-3.

THEOREM 4-2. Let Q be a bounded domain in R*. Let I" be the boundary of Q such
that '=I' Uy and I'yNIT,=@. Let

V={ve WLp(Q); v=0o0n I'y}.

Then if Ty has strictly positive measure, the semi-norm | - |, ,q is a norm over the
space V, equivalent to the norm | - ||| , 0. O

THEOREM 4-3. Let Q be a bounded domain in R*. Let V=Wm»?(Q)n Wg~1:2(Q) for
any integer m>2.
Then the semi-norm |- |, ,o is a norm over the space V, equivalent to the norm

I llme O
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