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Abstract

For two types of difference equations for close-packed structures with stacking

faults, one was introduced by Wilson 〔Proc. Roy. Soc. (1942), A180, 277〕 and the

other was done by Prasad and Lele 〔Acta Cryst. (1971), A27, 54〕 the former one is

shown to be derived by P matrix of Kakinoki & Komura 〔Acta Cryst. (1964), 19,

137j and the latter one is done similarly by Q matrix of Allegra [Acta Cryst.

(1964), 17, 579). By solving the characteristic equation of Q matrix, the intensity

distribution, the integrated intensity, the intensity maximum position, the integ-

rated breadth and the center of gravity for a peak in a diffraction pattern of close-

packed structure with stacking faults are formulated.

1. Introduction

Calculation of X-ray diffraction intensity from a close-packed structure with

stacking faults is carried out either by the use of difference equation originated by

Wilson (1942) or by means of matrix intensity equation introduced by Hendricks　&

Teller (1942). Difference eqqations so far appeared in literatures are divided into

two kinds, one was introduced by Wilson (1942) and is constructed for the probabi-

hty of丘nding a kind of layers, and the other was used by Prasad　& Lele (1971)

and is constructed by taking into account of phase shifts of layers in addition to

the probability. Matrix intensity equation of Hendricks & Teller was improved

slightly by Kakinoki　&　Komura (1949).　Then, Allegra (1964) showed that the

matrices can be reduced by taking into account of phase shifts between adjacent layers.

Allegra's intensity equation is the most easy to deal with close-packed structures

with stacking faults. His equation can be obtained directly by changing complexions

of layers of Kakinoki & Komura to those of vector sequence as shown by the

present author (1976).

The greatest progress in intensity calculation is the study of Gevers (1954),

who showed that the intensity could be calculated by the use of the coe氏cients of

characteristic equation of difference equation without solving the characterisic

equation. With his method, we can calculate diffraction intensity for higher order
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difference equation of which characteristic equation can not be solved algebraically.

Applying Gevers's method to matrix intensity equation, Kakinoki & Komura (1965)

gave X-ray diffraction intensity equations by which we can calculate the intensity

directly if we give the elements of the matrices.

Although we can assure the agreement of the calculated intensities by the both

difference equation and matrix intensity methods, the direct derivation of the

difference equation from the matrices has not been discussed. In this paper, the

present author shows that difference equations of ordinary type can be derived by

P matrix of Kakinoki & Komura and those of Prasad & Lele (1971) by () matrix of

Allegra. At present time, we can solve numerically higher order algebraic equa-

tions by electronic computer. By solving numerically the characteristic equation

of Q matrix, the intensity distribution, the integrated intensity, the intensity

maximum position, the integrated breadth and the center of gravity for a peak are

formulated in the form of easy calculation by electronic computer. Recently, Lele

(1980) gave analytic solution for integrated intensity. His result is examined in

this paper for our practical point of view.

2. Ordinary differences equations

Let fi and Pu be the probabilities defined by Kakinoki & Komura (1965),

that is, fi is the probability finding a layer of ith kind at any position and Ptj is

the one finding a layer ofjth kind after a layer of ith kind. Then, the probabi-

lity finding a layer of /th kind at the first layer of layer sequence is /, and the

one finding a layer of jth kind at the second layer becomes ∑ftPij. When we
i

form two matrices F and P as follows, ij element of F is /, and ij element of P is

Pij, the probability finding a layer of jth. kind at the first layer, P{, is fj-Fij, and

the one finding the layer of jth kind at the second layer, Pj, becomes

P書- HAP,,
1

-(FP)fei for any k

- ∑P王P,J.
i

J".-SCFP　)ォ/>
一

We have

(1)

(2)

-llpipti
t

by mathematical induction and taking into account that (FP仇)サ-(*p耕)kj for any /

and k. From equation (2), we can obtain simultaneous difference equations for Pi.

When托h row of Pis equaltoノth row of P, ∫ i, we can transform P so

that the ノth row of APA * becomes zero. Matrix A is given by

A-E+B, (3)
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where E is the unit matrix of the same dimension as that of P and B has　-1 as

the ji element and zero as the other elements.　Since the /th row of F becomes

zero by the same transformation, the jth row of FP also becomes zero by the

transformation. Hence, we can reduce the number of equations by the transforma･

tion.

Example 1.

Howard and Kuwano (1979) gave the P matrix of extrinsic faults of second

problem of f.c.c. extended by Takahashi (1978) by

^14-P<　　Pn-l-p,

p,

1-9,

1.59-*蝣62　　*83-*9!　^.

R
n
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^
^
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If we put p - q in equations (4), we obtain P matrix of Howard (1977).

To examplify the reduction of the number of equations, we put p-q, and

rearrange P so that the lst, 2nd and 3rd rows become equal to the 7th, 8th and9th

rows, respectively. Then, we obtain the simultaneous difference equations after

the transformation that the 7th, 8th and 9th rows become zero,

pi - n-iO.-p)+n-i(x-p)+n-df,

PI -ォーl(l-　>+n-iP+p急-id-p) ,

n - n-iQ-pi+Pi-ia-pi+Pi-iP >

Pl - pl-d>,

ps--　pz n
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Substituting equations (5e), (5d) and (5f) into (5a), (5b) and (5c), and rewriting

superfices 1, 2 and 3 by A, B and C, respectively, we obtain the three simultaneous

equations for PJf Pi and P£,

K - P｣-iO.-p) +P2-,+P｣-2P*

pB - UA_,(1-/0 +Pi-zf+Pi-td-

Pi-i d-p) +PS-i(l-p)p+PZ-*p!.

The above simultaneous equations can be solved by putting

Pi- Qp".

The characteristic equation is

(p-i)(p+py{p3+a-2p)p2+a-2p)p+pa-3p+3p2)} - o
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(7)

(8)
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Although equation (8) is different from equation (12) of Howard by multiplying (p+

p)2, the difference will be eliminated by boundary conditions.

3. The difference equations of Prasad and Lele

In this section, the author shows that another kind of diぽerence equations can

be obtained by the use of (3 matrix of matrix intensity equation of Allegra and that

the dはerence equation is the same as that of Prasad & Lele (1971), although their

derivation of the equation was more complicated than that of ours.

In general, P matrix is a transition probability matrix. The states (complex-

ions) de丘ning the P matrix of Kakinoki and Komura and many other investigators

are represented by the kinds of layers. Our states are represented by displace-

ment vectors of layer origins parallel to layer planes, that is, the three states Aβ,

BC and CA are represented by a state dx - (2/3)a+(1/3)b.

The author's methods of defining states (Takahashi (1976)) are different for

those of growth stacking faults, which change the sequence of layers to that of

twin of original structures, and for those of deformation stacking faults. For the

cases of deformation stacking faults, states are de丘ned by the kinds of displace･

ment vectors which are distinguished by the positions in fault free ordered struc-

tures and by fault probabilities.

Our ij element of Q matrix is given by the product of ij element of P matrix

and s;-expト2m(s-s｡XdJ+c)/ス} where d5 is the displacement parallel to layer

planes of layer origin of the last layer of ith state to that of jth state and c isthe

displacement vertical to layer planes of the layer origin of the last layer of the z'th

state to that of the ノth state.

Matrix intensity equation for close-packed structures can be rewritten by the use

of our F and Q matrices by

7(0) - JVFoFo* 1

fflBl

+∑け(1諸Jspur FQ* exp(-imO)+cony. } ,m-l

where N is the number of layers and Fo is the structure factor of layers.

Since

(FQ ) -(FQ )w for any/and k,

rewriting

(FCr^^/Cm,/)　for any /,

we can express (FQ I )jj by a type of difference equation

CFQ　)ォ-/(ォ,./)

- ∑(F<r~ ')rtC*
k

(9)

do

(ll)

(12)
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- ∑J(m-l, k)Qki
A

- ∑J(m-l, K)Pue, ,
k

KmJ) - ∑J(m-1. t)Pii*i�"
i

(13)

We obtain the same number of the difference equations as that of the dimen-

sion of Q matrix. If two rows of P matrix are equal to each other, the corres-

ponding two rows of our Q matrix become equal to each other.　Hence, we can

reduce the number of the simultaneous difference equations of this type by the same

procedure as that of reduction of the number of the equations of ordinary type of

the difference equations.

Although Prasad and Lele's derivation of their difference equations is very

difficult to follow, their difference equations can be derived easily from equation (13).

The following example shows that our and their methods give quite the same

results.

Example 2.

For this example, we describe the method obtaining the difference equations

for extrinsic-4c faults of d.h.c.p. discussed by Prasad & Lele (1971).

The complexions and the probability trees are given in Fig. 1. The complex-

ions are numbered as follows,

Ao

A2

1.0

dl(l)

1.0

d2(3)

Bl

C8

Bl

C3

1.0-α
A2

α　　　　　　1.0

dl　　〉　　dl′

1.0-α
A.I

α　　　　　　　1.0

d2　　　　　d2′

A8

Al

Fig. 1. Probabilities Pih complexions (states) and probability tree for extrinsic-4c

faults in d.h.c.p. structures.
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*(!) -1, d,(2)-2, d,(3)-3, <fx(4) -4,

<fi-5,　d2-6,　di'-7,　d2'-8.

The elements of Q are given by

ht -Q*2 - (1-α>2,

<?i5 - <?..　αel,

Oes-ゥ2,

On- (1-αK

<?36 - <?76 - αe2,

<?41 - (?57 - 6l,

where ｣i-exp(27ri/3) and e2 - ei*. We obtain the following simultaneous difference

equations by transforming Q so as to the 7th and 8th rows become zero,

J(m, 1) - J(m-l, 4)ei+/(m-l, 6>2,

7O.2) - /(m-l, l)(l-aK

J(m, 3) - /(m-1, 2)e2+/(m-l, 5>i,

/On,4) - /(m-l,3)(l-αK

J(m,5) - J(m-l, X)αEl,

J(m, 6) - /(m-l,3)αe2.

Hence, we have

J(m, 1) - /(/n-1, 4)el+J(m-2, 3)^!,

/(m,2) - /(m-l, l)(l-α)ォサ,

Km, 3) - J(m-1, 2)e,+/(iサー2,1)αe2,

/(m, 4) - J(m-1. 3)(1-α)ォx.

These equations are the same as the difference equations (23), (24), (25) and (22)

of Prasad & Lele (1971) by putting α4C - α,(0 - ｣1 and the other quantities α` - 0.

4. Methods of calculations

a. Coefficients of characteristic equation

For our intensity calculation, we must obtain characteristic equation of Q

matrix. The coe氏cients of the characteristic equation can be numerically calculated

from Newton's formula. When the characteristic equation of Q is expressed by

aopn+alpn-1+'　-+an - 0,　　　　　　　　　　　　　　　　　(14)

the coe氏cients of characteristic equation, ai9　can be obtained from the following

relations,
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st - spurQ-,

do-a0-1,

i

d, - {∑(-I)'*1*/,.,*)//.
i-1

aj - (-!)'</,.

(15a)

(15b)

(15c)

(15d)

b. Solutions of characteristic equation

We can solve numerically higher order algebraic equation by Jarratt-modify

method. However, all the solutions obtained by this method do not necessarily

satisfy the equation. Some of the solutions are not correct solutions.

When the equation is given by

fix) - aoxn+alxn-1+　　+oB-0,　　　　　　　　　　　　　　(16)

if xk is a solution, the equation can be reduced to lower order equation g(x),

/(*) - 0-**M*).

g(x) - boxサー1+blx"-*+　　+bn.u

where α0 - ∂　- 1. The coe氏cients ∂` should satisfy

bi - ai+xkb卜1. (19)

If the number of correct solutions are m, the order of the equation can be reduced

to n-m. We apply the Jarratt-modify method to the reduced equation, and we can

obtain further correct solutions.　Thus, applying successively the Jarratt-modify

method, we can obtain all the correct solutions.

c. Calculation of coefficients C{

In this paper, we discuss only diffraction effects, so that we put the structure

factor to be unity.

When the characteristic values of Q are o*4=0,/-1, 2,...,ォ, where w is the

dimension of Q, squrFQ is given by a linear combination of gtm9

n

spur FQ仇- ∑ciP,a,
iEl

(20)

If all pi are different to each other, the coefficients C, can be obtained from simul-

taneous equations of (20) for m- 0, 1,..., n-1. Characteristic equation of our Q

matrix has sometimes null solutions. Equation (20) is not satis丘ed if the null

solutions are removed in the case of　〝!=0. If we do not remove the null

solutions, the linear equations for the coe氏cients C{ can not be solved numerically by

computer since the determinant of the coe氏cient matrix for C, is zero. In this case,

if the number or null solutions is r, we remove the null solution from equation

～-r

spurFQ仇- ∑ dp?,
f'さ1

(21)

′←■-
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and solve the linear equations obtained by putting m from 1 to n-r. Formula of

Lele (1980) for C` is suitable for the case of all solutions being not zero.

5.　Diffraction effects

a. Intensity distribution

When characteristic values piyi- 1, , n-r, are not zero, and pi9i-n-r+l,....,

n, are zero, X-ray diffracted intensity from a crystal consisting of infinite number

of layers can be expressed by

畑　　　¥<-1 /　¥<-lw=0 / (22)

L-2Re(*gct) +2Re (Ifo/cl-pd),

where Re(jc) means the real part of x.

Taking into account that /(¢) becomes large near蝣Oi9　where p* - /^expfiC^-¢))

and practically zero in the other regions, we can represent /(¢) near ¢-0( by

li(¢),

･,(*) - 2Re(c,孟pimトRe(C,)
･2Re{Ci/(l-(oj)} -Re(Ci).

b. Integrated intensity

Integrated intensity of托h peak is de丘ned by

Ii-
∫:
Ii (¢)d<f>.
一打

(23)

(24)

The integrated intensity is easily estimated by integrating equation (23) term by

term and becomes

I, - 2wRe(CO.

This result agrees with that of Lele (1980).

(25)

c. Intensity maximum position

Position of maximum intensity is obtained by differentiating equation (23) and

putting the result zero. The position of maximum intensity, ¢im, of /th peak is
●

given by

tanα< - {(!+>�"ぎ)/(l-/frttanv, -,

sm(0< - ¢Lm+αi)

where %{ is defined by
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C{ - C,｡exp(iyf).

The intensity at ¢　the maximum intensity, is expressed by /(¢i桝).

d. Integral breadth

Integral breadth, Bif of the ith peak is defined by

∫:
βf- Ii (¢)(埠/I(¢i桝)
J -Tt

- 2nRe(Ci)/I(¢i桝).

(28)

(29)

e. Center of gravity of intensity distribution

Center of gravity, ㊥ig, of the intensity distribution of the ith peak is de丘ned by

∫:
Ii(¢)¢dO - ¢igU

･一打

In¢<ォRe(Cf).

The integration of the left hand side of equation (30) becomes

Ii(¢)¢　- 2花Im(Cォ)ln(l+2r<cos 0,+r?)

+47iRe(C,) tan-Mr.sin 0,/(l+rォcos do) ,

(30)

(31)

where Im(x) means the imaginary part of x. Hence, ゆig is given by

¢‡  ln(l+2r,cos Oi +rj)Im(Ci)/Re(Ci) +tsn-1 [rishiOi/Q.+ ricosdi)}.　(32)

Example 3. Extnnsic-4c faults in d.h.c.p. structure

The Q matrix is given in example 2. The dimension of Q is eight, and there

are four null solutions. We put the faults probability　α .- 0.1 for our numerical

calculation. The coe氏cients of the characteristic equation are

a0- 1.0,　a, - -0.73.

The characteristic values are

px-0.9243378, 02- -01,03-101,04- -03�"

●

The coe氏cients Ct obtained by using equation (21) are

Q - 0. 0524935,　　　　　　　C, - 0. 4685723

C3-0.1932342+0.0624245i, oa o晋.

4

The above values do not satisfy J]Re(C,) - 1. However, the diffracted intensity

calculated by equation (22) with these values exactly agrees with that calculated by

equation (45) of Kakinoki & Komura (1965). When we remove the null solutions,

and the range of m is taken from 0 t0 3, the coe氏cients C, become
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Q - 0.07561　　　　　　　　　　C, - 0.4916887

C3 - G.2163207+0.0624245i,　C4

These values agree with those obtained by equation (33) of Lele (1980). From

these values, we obtain for m-4 the value in the left hand side of equation (21)

being 0.6625　and that in the right hand side being 0.73. It is better to apply the

following equation to obtain the coe氏cients Cx instead of equation (33) of Lele,

cl -冒(gM-y)p"-r-Vpi"|](B-r-/+l)fl-1Pl -i,
where Jm - spurFQ *　The integrated intensities L are

(33)

A-0.32986, h-2.944127, h- 1.214126, L-L

The intensity maximum positions ¢im are

¢i.-0.0, ¢　-3.145927, ¢　-1.58318, ¢4m-¢3m.

The positions of the　3rd and　4th peaks shift a little from　±7i/2.　The maximum

intensities /(¢ m) are

I(¢i.) - 1.335082, I(¢,ォ) - ll.917330, /(¢,.) - 5.039429, /(¢4.) - /(¢.).

The integral breadths Bt are

β, - 0.247046,月2-月1,月　- 0.240925,月4-月3.

The centers of gravity of the peaks ¢　are

¢i,-0.0, ¢2g-¢1g, ¢　-1.691704, ¢4g--¢3g.

The lst and　2nd peaks are centro-symmetrical, and the 3rd and 4th peaks tail to

larger absolute value of ¢.

6.　Remarks

Our procedure to calculate the intensity is as follows. At　丘rst, the probability

tree is drawn by the method of Takahashi (1976). From the probability tree, P

and Q matrices are obtained. We input P matrix. F matrix is computed from P

matrix. Q matrix is also computed by multiplying column matrices of P by phase

factors. The characteristic equation and its solutions are computed by the method

described. In this case, it should be taken note of equation (22), since there are

null solutions in many cases. At last, the diffraction effects are computed by the

equations in the section 6. The merit of our method is to describe quantitatively

the informations about each peaks.

When the equation of Kakinoki and Komura is used in our method, obtaining P

matrix is somewhat more troublesome, since probability tree for the equation is

more complex, and we must input V matrix. In addition, it is convinient to reduce
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the matrices before input of data, although our method is not necessary to reduce

matrices. The other procedures are the same as those in the case of Allegra's

equation.

Since we can not know the existence of null solutions in addition to the

solutions of characteristic equation of difference equation, it should occur to make

error in calculation of the intensity by neglecting the null solutions. In fact, if we

calculate the intensity for Example 3　by equation (33) of Lele (1980), the result

does not agree with our result which exactly agrees with that obtained by Kakinoki

and Komura's method.
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