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Abstract

Phase determination method is developed by improving sign determination method discus-

sed by Takahashi (Bull. Kagoshima Univ. Fac. Educ. (Nat. Sci.). 1985, 37, 5-9). The tested

material is an organic crystal, Cn H13 N03, analyzed by Furusaki, Abe and Matsumoto (Bull.

Chem. Soc. Japan. 1982, 55, 61ト612). The space group of the material is 2i and the number of

independent atoms is 30. The number of correct phase sets obtained is 3 from the 10 initial

sets whose phases are given randomly.

1. Introduction

The author has been engaged in phase determination for five years. The method to

determine signs of the structure factors was published in 1985. In the paper, the author noted

that the method was not efficient for the phase determination. The author suggested that the

root of the failure may be the unsatisfactory of the structure factor convergence. After many

trials and errors, it turned out that the method was essentially very effective, and that the

origin of the failure was that the convergence of the phases was too rapid for the phase

determination.

The slight improvement to make slow the convergence gave very satisfactory results, that

is, 3 sets of phases which can be regarded to be correctly determined in this stage of phase

determination development were obtained from 10 initial sets of phases which were given

randomly, there were 2 sets of which R-value and Q-value were nearly the same for those of

the 3 sets. The tested material was an organic crystal, Cn H13 NO3, analyzed by Furusaki,

Abe and Matsumoto (1982). The author's stance for the recent development of probability

theoretical approach to the phase problem is very negative. The results suggest that the
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author's way to solve phase problem is the right way.

2. Examination of basic concepts

The phases of structure factors of a crystal depend on the location of origin of the crystal

structure. Hence the position of the origin for the phases obtained by the author's method

must be determined together with the number of the correct phases. Since the space group

of the tested material is 2h the origins of the coordinates can be chosen as following four types,

(0, y, 0), (1/2, y, 0), (0, y, 1/2) and (1/2, y, 1/2),

and the suitable value of 〟 must be determined for the set of phases.

The unique determination of the value of y was very difficult and there was no good idea

for the determination, the author adopted trial and error method. The phases obtained were

compared with true ones with the four origins, where the value of y was determined by trial

and error. When the absolute value of the difference between the both values was smaller

than 7r/8, the obtained value was regarded as being equal to the true value. The meanings

that the phase obtained is equal to the true phase in this paper is that the absolute value of the

difference between the both phases is less than tt/8.

(a ) Average structure factors

The possibilty of the phase determination depends on the accuracy of the following average

normalized structure factors obtained by Karle and Karle (1966) ,

--3Eh-<*2/#3<EkEh-k>k. (1)

Hereafter, normalized structure factors will be called simply structure factors.

To estimate the accuracy of the equation (1) , the R-values, the standard deviations of the

absolute values of the calculated structure factors from the true values and of the calculated

phases from the true phases were calculated after one cycle calculation with the equation (1)

for stronger 200 reflections, where one cycle calculation means that all the average structure

factors are calculated by the equation (1) once. The set of the absolute values of the true

structure factors is filed according to the magnitude of the values in this study. The R-value

was 0.13954, the standard deviation of the absolute structure factors was 0.53903 and that of

the phases was 0.26639 rarf-15.3 deg. For these values, we can judge that the equation (1)

is very good approximation for obtaining average structure factors.
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To examine the description by Furusaki (1979) that "as tangent procedure is repeated, every

one of these random phase sets approaches the correct phase set" , the average structure

factors of all reflections were calculated 10 cycles for the 200 reflections. The number of the

calculated phases equal to the true phases was 157. When the structure factors of the

strongest 30 reflections were fixed invariably and the other ones were put to be 0 at beginning

of the calculation* the number became 161 for 10 cycles calculations. But, when the structure

factors of the 30 reflections varied at each cycle of calculation according to the equation (1) ,

the number became 49.

In addition, the cases that one third of the phases of the stronger (case 1) and weaker (case
■

2) reflections of the 30 strong reflections are replaced by the randomly given phases were

examined. In the former case, the maximum number became 59 for 10 cycles calculations

and 56 for 100 cycles, and in the latter case the number became 105 for 10 cycles and 132 for

lOOcycles.

The author's interpretation for these results is : the contribution of Ek to structure factor Eh

in the equation (1) is proportional to the absolute value of Eky and when n cycles calculations

are done, the contribution becomes proportional to the nth power of the absolute value if the

phase is fixed invariably. This interpretation may be able to explain why the 161 phases in

the 200 phases can be determined by only the 30 phases of strong reflections. Hence, if there

are not correct phases with large absolute value of the structure factors, the negative effect

becomes large and the phase determination becomes impossible. This can be understood by

the fact that the phase determination is impossible even though by using the strongest 30

reflections, if the 30 phases are not fixed.

A speculation drawn from the above interpretation is as follows. When Nref structure

factors, by which the crystal structure can be determined, can be derived from the上strongest

structure factors by the equation (1) , and the Nref structure factors becomes invariable after

more than n cycle calculations with the fixed L phases, that is, the phase set converges to a

certain set after the n cycle calculations, if the number of the correct structure factors in the

L structure factors is Lc and the number of the incorrect structure factors is Licy L-LC+Lic

the condition that most phases are correctly determined may be as follows�"

2¥Eh　≫Z¥Eh
c inc

(2)

where S and 2　means the summation over the correct and incorrect structure factors,
c         inc

respectively.

For the above test cases, the numbers of cycles for the convergence of the phase set are
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determinedifthephasesof85%agreewiththeafterandbeforeonecyclecalculation,the

numbernbecome9forthecase1and6forthecase2.Thenumbersfortheequation(2)

become

lO
I|｣,|9-4.07

1=1×10band且|｣,f-1.45×10bforcasel,

2030
｣|｣/|6-71930.1andIE,-6-14714.9

i=1i=21

for case 2.

The phase set obtained in the case 2 was extended to the case of 400 reflections. The

R-value was 0.11619, Q-value was 0.6783 and the number of phase equal to the the true phases

was 370. The above values would indicate that the author's speculation is valid.

If the initial set consists of the 10 stronger correct phases and the 20 weaker incorrect

phases, when the number of cycles n becomes very large, then the equation (2) is satisfied for

n. After 100 cycle calculations of the set, the obtained set was very bad. Hence, we can

conclude that the frame of the phase set is almost determined when the set converges, the

additional calculations do only refine the set.

(b) Probability of phases

Probability of the phase Sh obtained by

S*- phase of (首EkEh-k)

is

P(sh)- i+itanh((T3 02-3′ ¥Eh¥¥SEkE…l)･

(3)

(4)

As discussed in the previous paper, the probability is not the absolute probability for the

phase of the h reflection being Shf but the conditioned probability that when the structure

factors of k and h-k reflections are Ek and Eh-k, then the phase of the h reflection becomes

Sh with the probability P(Sh). To show that the probability given by the equation (3) is not

absolute probability but conditioned one is very easy. When we give randomly the phases to

the structure factors and calculate the average structure factors by the equation (1) , if we find

the correlation coefficient between the differences of the phases of the calculated structure

factors and the true phases and the probabilities to be nearly 0, then the probability given by

the equatoin (4) becomes indepedent of the phase.

Since the probabilities became 1.0 for almost all reflections, so that the examination was

carried out by using the following values,
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0*/*- o*3 0*2-3/2¥Ek¥¥2EkEh-k¥.　　　　　　　　　　(5)

The correlation coefficient was very small and was 0.007 for the trial calculation. This

indicates that the probability is quite of no correlation to the difference between the true phase

and the calculated phase.

As seen easily from the equation (1) , when structure factors of all~reflections are known

correctly, the equation (5) becomes

ah-N ¥Eh¥ (6)

where N is the number of pairs contributing to the h structure factor by the form of EhEh-k.

This means that there is a suitable value of the probability and that the large probability does

not necessarily mean that the phase of the h reflection is correctly given. This can be easily

seen, since if we give all phase to be 0, then the probability becomes the largest value.

Germain and Woolfson (1979) recommended the use of the weight function for the calcula-

tion of the tangent of phase. The weight function is proportional to the second term in the

right side of the equation (4). The present author's conclusion is that this weight function is

useless to the calculation.

(c)Q-value

ThedefinitionofQ-valueis:

Q=1.0-(首Eh{¥首EkEh-k¥/I¥EkEh^¥))/I¥Eh¥.

kh
(7)

Since the value IEkEh-k is proportional to the average structure factor given by the
k

equation (1), we can understand the second term in the equation (7) analogously with

structure factor that if EkEh-k is compared with scattering factor then首EkEk- is the

absolute value of ､the structure factor of the h reflection, then首｣*｣*-* /首¥EkEk-k¥ is

compared with the absolute value of the structure factor divided by the sum of scattering

factor. Hence the second term becomes the average misfit of the phases with the weight of

the absolute values of the structure factors.

Furusaki (1979) described that the correct phase set had to have not only a low R-value but

also a moderately high Q-value. We can not know what value is moderate, but large Q-value

seems to be inadequate for correct phase set.
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3. Method and Results

The author already described the method to obtain the signs of structure factors from the

set of the absolute values of the structure factors in the previous paper (Takahashi, 1985).

The principles of the method are : (1) all signs are given randomly, that is, if the random

number less than 1 and larger than 0 is less than 0.5, then the sign is given to be minus, and

if the random number is more than 0.5, then the sign is given to be plus, (2) the average

structure factors of all the reflections are calculated by using the signs and the observed

absolute values of the structure factors (the true values were substituted in the study) , (3) the

difference of the absolute value of the calculated average structure factor and the absolute

value of the observed (true) structure factor, divided by the true structure factor, is chosen

as the measure of the fitness of the signs, (4) the contribution of several most unfitting

reflections and those related to the reflections are put to be 0, this is done by putting

exp (iS*)-O, (5) the average structure factors are calculated by using the remaining reflec-

tions, (6) the coincidence between the signs calculated in (2) and (5) are examined, and if all

signs coincide, the calculation is stopped and results are printed out, if not, we return to (3)

and continue the calculation.

A few technical improvement to save CPU time were done for the phase determination.

(a) Absolute values of structure factors were previously calculated and filed.

(b) The number of pairs of k and h-k reflections and the sequence numbers in the file were

previously calculated and filed.

(c) The limit of the number of phases in stage (4) are previously set, and the calculations

of the structure factors were done successively until all the structure factors were not to

beO.

In addition, the reflections put to null contribution were chosen from the following two

classes.

(A) The most fitted reflections and their related reflections were chosen and exp (iSh) s of

the other reflections were put to be 0.

(B) The most unfitting reflection and their related reflections were chosen and their

exp(iSJs were put to be 0.

A trial calculation for the 200 reflections, where the number of reflections in the (A) was

100, gave the results that the R-value was 0.13482, Q-value was 0.54612 and the number of

phases determined was 59. The CPU time was very large.

At another trial, where the number of reflections in (B) was 100, the R-value of 10 sets were
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nearly 0.2 and the numbers of phases determined were less th早n 60. The CPU times was very

small. Even the case of the set of (B) with the number of the reflections being 150, that is,

the number of the remaining reflections with non-zero structure factors was 50, the conver･

gence was too rapid, and the number of phases agreed between before and after one cycle

calculation almost monotonously converged to 200.

Hence in order to moderate the convergence speed, the number of reflections in (A) was set

Table 1. NC is the number of the correct phases.

N 0● R Q N C R Q N C

1 0 .19391 0.56130 49■

2■ 0⊥19417 0 .56797 70

3 0 .14085 0 .55281 146 0 .11645 0 .70578 369

4 0 .13382 0 .54474 157 0 .11645 0 .69674 373

5 0 .19377 0 .54978 51

6 0 .19823 0 .57246 67

7 ー0 .14003 0 .54737 61 0 .11645 0 .69096 112

8 0.13720 0 .55226 61 0 .11645 0,7 0580 108

9 0▼188448 0 .56985 56

10 0.13956 0 .55178 138 0.11645 0 .67533 373

200 0.13171 0 .54884 157

400 0.11618 0 .67534 371

130 and the number in (B) 60, and tried again. The results of the calculations are listed in

Table 1. The total CPU time for the calculation could not be known since the calculation was

done by TSS. But the time was probably less than 5 min. The program list is given in

Appendix. The five sets with R-value nearly 0.14 were further extended to the case of the

number of reflections being 400. The results are also listed in Table 1. It is interesting that

the R-values of the five sets are the same and the numbers of the determined phases of the

three set are about 370 but the numbers of the other two sets are about 110, which may be

obtained from the set of phases given randomly.

The last two lines in the Tablel are the res.ults obtained from true phases with 200

reflections and 400 reflections by 10 cycle calculations.

4. Discussions

In general, the convergence speed become slower if the number of non-zero structure factor

is smaller in the stage (4) in the preceding section. The convergence speed depends also on
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symmetries of crystal structures. When the symmertry is higher, the number of the related

reflections to a reflection with respect to the equation (1) becomes larger, then the conver-

gence speed becomes slower. The R-value for the set of phases calculated by the present

author's method would converge to that for the set of true phases at any time, if convergence

speed is very slow.

When convergence speed is very slow, we may have many set of phases which have nearly

the same R-values and Q-values as those of the true structure but quite different from the set

of true phases. The ctystal structures analyzed by these sets may be homometric structures

in practical sense. We can not discriminate these set of phases from the correct set, because

we do not have any theoretical criteria to choose true set from many similar sets. Practi-

cally, we can decrease the number by adjusting convergence speed by using the sets (A) and

B .

The success of the symbolic addition method of Karle and Karle (1966), of the multiple

solution method of Germain and Woolfson (1968, 1970) and of the Monte Carlo method of

Furusaki (1979) depends on the choice of suitable initial set of phases. As seen in the

preceding section, if we can choose comparatively small number of correct phases of strong

reflections, the obtained phases by using the equation (1) are probably correct. But how can

we choose the correct phases even though the number of the phases is small? At first, the

multiple solution method is useless, since this depends on the probability of phases which is

meaningless as discussed in the preceding section. The success of the Monte Carlo method

depends on the chance where the structure factors satisfy the equation (2). The 30 strong

reflections are grouped in the five groups where the reflections are related each other with

respect to the equation (1). The largest group consists of 16 isolated reflections. The

number of reflections in the next large group is only 5. We can not determine the phases of

the 30 reflections by the equation (1). When the number of the reflections becomes 50, the

largest number of reflections related each other becomes 18. However, we could not deter-

mine correctly the 18 phases by using the equation (1), since the set of phases obtained by

●

using the 30 strong reflections where the phases were not fixed at each cycle of calculations

were not good as described in the preceding section. The accuracy of the phase determina-

tion for the 18 reflections in symbolic addition method is naturally lower than that of the

author's test calculation for the 30 reflections. Hence, even though the phases of the test

material could be determined by symbolic addition method, it might be a very fortunate case.

The author believes that the correct phases must be derived from the absolute values of

structure factors of 6N reflections at least, where TV is the number of independent atoms in
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a unit cell.

The author thanks Doctor H. Minaka of Physics Department for many kind helps through-

out this study.
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COMPLEX EPHS

DIMENSION IH(3,200),EPHS(200),MRL(200,20,2),

1AF(200)/ANGM(200),AFC(200),NRM(200)
PAIT=6.283185307179586

PAI=PAIT/2.0

FORMAT(8110)
IX=8735

READM ′500)NRR

NREF=200

READ(1.510 ((IH(J′工).J=1.3).Ⅰ=1.NREF)

FORMAT(4(3I5,2X) )
FORMAT 1015

READ(2′520)NRR

READ(2′530　FO

READ(2′530　AF I　′工=1.NREF)

FORMAT(4F1 5.5

DO 10 l=1′NREF

READ(3,500)NRM(I)

IF(NRM(IJ.EQ.O) GO TO 10

READ(3,540)(MRL(I,J,1 ),MRL(I,J,2),J=1,NRM(I))
CONTINUE

FORMAT(4(215,5k) )

EPS=PAIT/1 6
NCAL=10

NTR=O

CONTINUE

NTR=NTR+1

IF(NTR.GT.NCAL) STOP

DO　20 1=1′NREF

ANGMfl　=10.0

EPHS I)=0.0

CALL RANPHS(I′工H′EPHS(I).工Ⅹ)

CONTINUE

DO　30 1=1′NREF　　　　　′

IED=NRM(I)

IF(IED.EQ.0)GO TO　30

CALL DETPHS(I,IED,IH,AF,EPHS,MRL,EPHS(I),AFC(I),ANGM(I),PAIT)
CONTINUE

CALL CORFAC(NREF,AF,AFC)

CALL FACCOM(NREF,IH,AF,MRL,NRM,EPHS,ANGM,AFC,PAIT,IXfEPS)

CALL RVALUE(NREF.AF′AFC′R工)

CALL QVALUE(NREF,MRL,NRM,AF,EPHS,QI)
NDTD=O

DO　60 1=1′NREF

IF(ANGM(I).EQ.10.0) GO TO　60
NDTD=NDTD+1

CONTINUE

WRITE(6′600)NTR′R工′Q工′NDTD

600　　FORMAT(5X,fTRIALl.15,5X,'RI　=',FIO.5,

1/.5X.蝣QI　=-.Flo.5.5X.-NDTD　=-.工5)

WRITE(ll ′550)NTR

550　　FORMAT!11 0)

WRITE(11′560　RI′Q工

610　　FORMAT(5X,fRI　=f/FIO.5)

560　　FORMAT(3FIO.5)

WRITE(ll ,570)(ANGM(I),1=1 ,NREF)

570　　FORMAで　4　5X′FIO.5))

GO TO 100
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END

SUBROUTINE DETPHS(IJ,IED,IH,AF,EPHS,MRL,EPH,AC,ANG,PAIT)
COMPLEX EPHS,EPH,SUMEH,SM,REPS

DIMENSION IH(3,200)/AF(200),EPHS(200),MRL(200,20,2),IK(3)

1AFC(200)
SUMEH=0.0

NSM=O

DO 10 l=1′工ED

J=MRL(IJ,I,1 )

K=MRL(IJ,I,2)

DO　20　KA=1.3

IK KA　=IH(KA′IJトIH(KA.∫)
CONTINUE

CALL REPHS K.工H.工K′EPHS(K)′REPS)

SM=EPHS(J)*REPS

IF(SM.NE.0.0)NSM=NSM+1

SUMEH=SUMEH+SM*AF(J)*AF(K)
CONTINUE

IF NSM.EQ.O AFC IJ　=0.0

IF(NSM.EQ.0)ANG=10.0

IF(NSM.EQ.0)EPH=0.0

IF(NSM.EQ.O)RETURN

SUMEH=SUMEH/NSiyi

AA=CONJG( SUMEH ) *SUMEH

AC=SQRT(AA)

CALL UNICMP(SUMEH,AC,EPH,ANG,PAIT)

IF(IH　2.IJ)�"EQ.O.AND.REAL EPH).GE.0.0)ANG=0.0

IF(IH(2.IJ).EQ.O.AND.REAL(EPH).LT.0.0)ANG=PAIT/2.0
RETURN

END

SUBROUTINE UNICMP(FC,ABF,UNTV,ANG,PAIT)

COMPLEX FC′UNTV

IF(ABF.EQ.0.0)UNTV=O.0

IF(ABF.EQ.0.0)RETURN

A=REAL(FC)/ABF

B=AIMAG(FC) /ABF

UNTV=CMPLX(A,B)

CALL ARGCPAIT.UNTV,ANG]
RETURN

END

SUBROUTINE CORFAC NREF.AF.AFC

DIMENSION AF(200)′AFC(20･0)

SUMF=0.0

SUMSC=0.0

DO 10 l=1′NREF

SUMF=SUMF+AF( I )

SUMSC=SUMSC+AFC I

CONTINUE

CK=SUMF/SUMSC

DO　20 1=1′NREF

AFC(I)=CK★AFC(I)-

CONTINUE

RETURN

END

SUBROUT工NE RVALUE NR.AF,Arc,RV)

DIMENSION AF(200),AFC(200

SUMF=0.0

DO 10 l=1.NR

21
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SUMF=SU叩F+AF I)
CONTINUE

SUM=0.0

DO　20 1=1′NR

SUM=SUM+ABS(AF(I)-AFC(I) )

CONTINUE

RV=SUM/SUMF

RETURN

END
＼

SUBROUTINE QVALUE(NREF,MRL,NRM,AF,EPHS,QV)

COMPLEX EPHS,SUMA,AA

DIMENSION MRL(200.20.2),NRM(200),AF(200).EPHS(200

SUM=0.0

SUMF=0.0

DO 10 l=1′NREF

SUMA=0.0

SUMB=0.0

IED=NRM( I)

IF(IED.EQ.O) GO　で0 10

DO　20 J=1′工ED

JA=MRL(I,J,1 )

JB=MRL(I,J,2)

AA=AF(JA)★AF(JB)★EPHS(JA)★EPHS(JB)

BB=ABS(AA)

SUMA=SUMA+AA

SUMB=SUMB+BB

CONTINUE

SUM=SUM+AF( I)*ABS(SUMA) /SUMB

SUMF=SUMF+AF I

CONTINUE

QV=1.O-SUM/SUMF

RETURN

END

SUBROUTINE REPHS(K.工H.工K.EPH′REPS)

COMPLEX EPH.REPS

DIMENSION IK(3)fIH(3,200)
IJK=O

NN=O

NA=O

DO 10 l=1′3

IF(IK(I).NE.IH(I′K) IJK=1

IF(IK(I)★IH(I.K).Lで.0)NN=NN+1

IF(IK(I).NE.0)NA=NA+1

CONTINUE

IJK.EQ.O )REPS=EPH

IF(UK.EQ.O)RETURN
IF(NN.EQ.NA)REPS=CONJG(EPH)
IF(NN.EQ.NA)RETURN
AKO=0.5★IK　2

CKO=AKO-AINT AKO)

EPS=0.001

IF(ABS(CKO .LT.EPS) GO TO　30

IF(ABS(CKO)�"GE.EPS) GO TO　40

CONTINUE

IF(IK(2.).LT.0)REPS=CONJG EPH)

IF IK　2 .Lで.OJRETURN

REPS=EPH

RETURN
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CONTINUE

A=REAL(EPH)

B=AIMAG(EPH)

IF(IH(1,K).LT.O)　GO TO　50

工F一(IK(2).LT.O)REPS=CMPLXトA.B)
IF(IK(2).LT.0)RETURN

IF(IK(2).GT.0)REPS=CMPLX(-A,-B)
IF(IK(2).GT.0)RETURN
CONTINUE

IF(IK(2).GT.O)REPS=CMPLX(-A,-B)
IF(IK(2).GT.0)RETURN

IF(IK(2).LT.O)REPS=CMPLX(-AfB)
IF(IK(2).LT.0)RETURN
END

SUBROUTINE NUMBR(NREF,RH,MRH,MHR)

DIMENSION早H(200).MRH(200),RHH(200).MHR(200),IM(200)
DO 10 l=1,NREF

RHH(I)=RH(I)
CONTINUE

IA=NREF-1

DO　20 1=1′工A

JA=I+1

DO　30 J=JA.NREF

IF(RHH(I).GE.RHH(J)) GO TO　40

SRS=RHH(I)

RHH(I)=RHH(J)

RHH J)=SRS
CONTINUE

CONTINUE

CONTINUE

DO　50 1=1.NREF

IM(I)=O
CONTINUE

DO　60 1=1,NREF

IJK=O

DO　70 J=1.NREF
IF(IJK.EQ.1) GO TO　70

IP(IM(J).EQ.1) GO TO　70

IF(RHH(I).NE.RH(J)) GO TO　70
MRH(J)=I
IJK=1

IM(J　=1
CONでINUE

CONTINUE

DO　80 1=1′NREF

IM(I)=O

CONTINUE

DO　90 1=1.NREF
IJK=O

DO 100 J=1.NREF

IF(IJK.EQ.I) GO TO 100

IF(IM(J).EQ.1) GO TO 100

IF(RH(I).NE.RHH(J)) GO TO 100

MHR(J)=I
IJK=1

IM(J)=1

CONTINUE

CONTINUE
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RETURN

END

SUBROUTINE FACCOM(NREF,IH,AF,MRL,NRM,EPHS,

1ANGM,AFC,PAIT,IX,EPS)

COMPLEX EPHS

DIMENSION IH(3,200),AF(200),MRL(200,20,2)/NRM(200),

1EPHS(2OO),AFC(200),ANGM(200),IAM(200),HANGM(200),

2NPO(200)/NPM(200),PM(200).IBM(200)
CONTINUE

LREF=1

CALL DIFEH(NREF,AF,AFC,PM)

CALL NUMBR(NREF,PM,NPM,NPO)
CONTINUE

DO　40 1=1.NREF

IAM(I)=O

CONTINUE

NN=O

DO　50 1=1′LREF

II=NREF+1 -I

IA=NPO(II)

IAM(IA　=1
NN=NN+1

IED=NRM( IA)

IFCEED.EQ.O
DO　60 J=1′

JA=MRL( IA

JB=MRL( IA

IAM(JA)=1

IAM(JB)=1
NN=NN+2
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CONTINUE

CONTINUE

IF(NN.LT.1 30)LREF=LREF+1

IF(NN.LT.130)GO TO　30

LREF=1

CONTINUE

NN=O

DO　80 1=1′NREF

IBM(I)=O
CONTINUE

DO　90 1=1′LREF

IA=NPO( I

IBM(IA)=1

NN=NN+1

IED=NRM( IA)
DO 100 J=1

JA=MRL( IA,

JB=MRL( IA

IBM(JA)=1

IBM(JB)=1
NN=NN+2

∫

′工ED
∩

　

　

　

　

　

　

　

一
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2

′
　
　
　
l

∫
 
I
J

CONTINUE

CONTINUE

IF(NN.LT.60 )LREF=LREF+1

IF(NN.LT.60)GO TO　70

DO 110 l=1′NREF

IF(IAM(I).EQ.0)EPHS(I)=0.0

IF(IBM(I).EQ.1 )EPHS(I)=0.0
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1 1 0 CONTINUE

NC=0

1 20　　CONTINUE

NC=NC+1

IF(NC.Gで.3)GO TO 130

DO 140.1=1′NREF

IED=NRM(I)

AFC I)=0.0

CALL DETPHS(I,IED,IH,AF,EPHS,MRL,EPHS(I),AFC(I),

1HANGM(I) ,PAIT)

IF(AFC(I).LE.0.01 )NC=0
1 40　　CONTINUE

GO TO 120

1 30　　　CONTINUE

CA工L CORFAC NREF.AF′AFC)

CALL CRITL的(NREF,ANGM,HANGM,ACC,PAIT,EPS)
DO 170 1=1′NREF

ANGM(I)=HANGM(I)
1 70　　CONTINUE

WRITE(6′510)ACC

510　　FORMAT(5X.-ACC=-.Flo.5)

IF(ACC.LE.0.99)GO TO　20

RETURN

END

10

SUBROUTINE DIFEH(NREF.AF,Arc.PM)

DIMENSION AF(200)/AFC(200),PM(200)

DO 10 l=1′NREF

PM(I)=0.0

PM(I)=ABS(AF(I)-AFC(I))/AF(I)
CONTINUE

RETURN

END

SUBROUTINE ARG(PAIT′UNTV.ANG)

COMPLEX UNTV

AA=REAL ( UNTV)

BB=AIMAG( UNTV)

IF(AA.EQ.0.0.AND.BB.EQ.0.0)ANG=10.0

IF(AA.EQ.0.0.AND.BB.EQ.0.0) RETURN

IF(AA.EQ.0.0.AND.BB.EQ.1.0)ANG=PAIT/4.0

IF(AA.EQ.0.0.AND.BB.EQ.-1.0)ANG=PAIT★3.0/4.0

IF(AA.EQ.0.0)RETURN

D=BB/AA

C=ATAN(D)

IF(AA.GT.0.0.AND.BB.GE.0.0)ANG=C

IF(AA.GT.0.0.AND.BB.GE.0.0)RETURN

IF(AA.GT.0.0.AND.BB.LT.0.0)ANG=PAIT+C
IF(AA.GT.0.0)RETURN

ANG=PAIT/2.0+C
RETURN

END

SUBROUTINE RANPHS(I.工H.EPH.工Ⅹ)
COMPLEX EPH

DIMENSION RAN(1 )fIH(3,500)
A=0.707107

CALL RANU2(IX.RAN.1.ICON)

IF(RAN(1).LT.0.125)EPH=CMPLX(1.0.0.0)

IF(RAN(1 ).GE.0.125.AND.RAN(1 ).LT.0.25)EPH=CMPLX(A,A)

IF(RAN(1 ).GE.0.25.AND.RAN(1 ).LT.0.375)EPH=CMPLX(0.0.1.0)

25



IF(RAN(1).

IF RAN l　.

IF(RAN 1 .

IF RAN(1 .

IF<RAN(1 ).

IF IH(2′工)

IF IH(2′工)

RETURN
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GE.0.375.AND.RAN(1 ).LT.0.5)EPH=CMPLX(-A,A)

GE.0.5.AND.RAN(1 ).LT.0.625)EPH=CMPLX(-1.0.0.0)

GE.0.625.AND.RAN(1 ).LT.0.75)EPH=CMPLX(-A,-A)

GE.0.75.AND.RAN(1 ).LT.0.875)EPH=CMPLX(0.0,-1.0)

GE.0.875.AND.RAN(1 ).LT.1.0)EPH=CMPLX(A,-A)

.EQ.O.AND.RANd ).LT.0.5)EPH=CMPLX(1.0,0.0)

.EQ.O.AND.RANd ).GE.0.5)EPH=CMPLX(-1.0-0.0)

END

SUBROUTINE CRITLM(NR,ANGM,HANGM,

1ACC′PA工で′EPS

DIMENSION ANGM(200) /HANGM(200)

PAI=PAIT/2.0
NN=O

DO 10 l=1′NR

DA=ANGM I　-HANGM I)

;DA.GE.0.0)DA=DA-PAIで★AINT(DA/PAIT)　､

IF(DA.LT.0.0)DA=DA-PAIT★(AINT(DA/PAITト1.0)

IF(DA.GE.PAI DA=DA-PAIT

ADA=ABS DA)

IF(ADA.GT.EPS NN=NN+1

CONTINUE

ACC=F工.OAT(NR-NN ) /NR

RETURN

END


