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Optimal Filtering Algorithm Using Covariance
Information in Linear Continuous
Distributed Parameter Systems

Seiichi NAKAMORI

(Received 1 October, 1991)

Abstract

This paper proposes an optimal filtering algorithm using covariance information in
linear continuous distributed parameter system. It is assumed that observation noise is
a white Gaussian process. Autocovariance function of a signal, variance of white Gaus-
sian noise and observed value are used in the filtering algorithm. It is an advantage
that current filtering algorithm can be applied to the case where a partial differential
equation, which generates the signal process, is unknown in linear continuous stochastic

distributed parameter systmes.
1. Introduction

Of usual estimation problems in linear stochastic distributed parameter systems, a
partial differential equation, which generates a state-vector function, is known with
associate boundary conditions (Sawaragi, Soeda and Omatu, 1978). An estimation prob-
lem using covariance information also has been researched in linear lumped parameter
systems (Nakamori and Sugisaka, 1977; Nakamori and Hataji, 1982). However, there
seems to be few studies on estimation procedure using covariance information in linear
distributed parameter systems.

By the way, stochastic parfial differential equations have been analyzed by Heine
(1955) for obtaining covariance functions realized by partial differential equations. It
is reported that constant coefficient second-order hyperbolic partial differential equation

of certain type has a separable autocovariance function for a two-dimensional signal
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(Jain and Jain, 1978).

In this paper, an optimal filtering algorithm using covariance information is de-
signed in linear continuous distributed parameter systems. It is assumed that observa-
tion noise is a white Gaussian process. The autocovariance function of a signal, the
variance of white Gaussian noise and the observed value are used in the filtering
algorithm. The autocovariance function of the signal is expressed by a semi-degenerate
kernel. The semi-degenerate kernel has a separable form and is given as a finite sum
of products of two nonrandom functions. It is advantageous that current filtering algor-
ithm can be applied to the case where a partial differential equation, which generates the

signal, is unknown in linear continuous stochastic distributed parameter systems.
2. Two-dimensional filtering problems

Let D be a connected bounded open domain of an r-dimensional Euclidean space R".
The spacial coordinate vector is denoted by x= (x, x2, ..., x) &D and let S be the suffi-

ciently smooth boundary of D. Let u(#, x) be an n-dimensional zero-mean signal vector:
u(t, x) =Collw (s x), ..., u(t, x)]. (1)

Let us assume that the measurement date are taken at fixed m points x', &>, ..., ¥" of D =

DUS. Furthermore, let us define an mn-dimensional column vector

u(t, )
un(t) = Collu(t, x), ..., u(t, x)] = : : (2)
u (t, x”')
Assume the observation equation is described by
z() = HOun (1) +0(2), (3)
 where z(t) is r-dimensional measurement vector at the points x', ..., ¥*, H(f) is a known

r X mn matrix function, and v (¢) is a vector-valued white Gaussian process. v (¢) is un-

correlated with u.(f). The mean and covariance of v( * ) are given by
Elb()]1=0, E[(®) o7 (s)]=R() & (t—s). (4)
As in the Kalman filter approach, an estimate @ (¢, x) of u (¢, x) is denoted by

il(t,x)’:J:}lO, X, s)z(s)ds,xED (5)
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through a linear integral operation on the past of the measurement data. The filtering

estimate which minimizes the mean-square value of the estimation error u (¢, x) —a (¢, x)
E [llu(t, x) —a(, ) |F] (6)

is said to be optimal, where |||| denotes the Euclidean norm. Minimizing (6) leads to

the Wiener-Hopf integral equation
E[ult 07760 =[ht 2 ) E[2() () 1ds", 0= 5 < 1, xE D, (7)
0

Substituting (3) into (7) and using (4), we obtain

k(t, x, s) R(s) =Bn(t, x, s) H (s) —folh (¢, x, s)H(s) O (s, 5) H (s5)ds", (8)
where
B.(t, x, ) =E [u(t, x) ua"(s)], O (¢, 5) = [un(Du"(5)]. (9) \

Let us assume that the autocovariance function of the signal « (¢, x) is expressed by

K, x, s, y) =FE [u(t x) uT(s,y)]

a(t,xy) B7( %), 0=5=,
= : (10)
Bt xyar(sxy) 0=t=y,

where @ (t, x, y) and B (s, x, y) are nXm’' bounded matrices. Then B. (¢, x, 5) is written

as
B.(t, x, ) =E [u(t, x) un"(5)]

=FE[ut, x)u"(s, #") * *ult, x)u"(s, x7)]

[a(t, 2 x) B7(s, 2, 4) « @t xx) B7(s, 2 xm)],
_ 0=s</ (11)
[ﬁ (t’ xv xl) a T(Sy xv x1> * ° ﬂ (t' x’ x’n) %T(y’ x7 xm)]y
==,

Also, Q. (¢, 5) is denoted as

Qn(t,5) =E [un () un"(5)]
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@ (0, ) B7(s, 2 )+ - @ (o ) B(s, 2 ),

— 0=s=¢ (12)
Bt &) a(s, o', &)+« Bt &, %) @7(s, &, 27)

I: Btam ) ar(s, o 2) + + Bt x) @™(s, x x7), :I ,

0=t=ys.

[ a (¢ x5 %) B7(s, o #Y) « + a (¢« xm) ﬂ.T(s, x', x™) :I

It is desirable that % (¢, x, 5) in (8) is calculated recursively. In the succeeding
section, sequential algorithm for calculating the linear least-squares filtering estimate of

u(t, x) is derived.
3. Derivation of optimal filtering algorithm

In this section, a Cauchy system for the optimal filtering estimate is obtained
by using an invariant imbedding method (Kagiwada and Kalaba, 1970).
From (8) and (11) we have

h(t,x, s)R(s) =[a (¢, x, x") B7(s, %, x") = = a(t,x, x) B7(s, x, x7) ]
H(5) = (2, 5, 5) H() Qa5 5) BT (5) s (13)
0
Let us introduce an auxiliary m’ X r matrix function Jz(t, x, s), which satisfies

Ji(t, x, ) R(s) = B (s, x, ) H” (s) _fol”]l (t, x, )H(s") Qu (s, 5) H" (s) ds, (14)

where Hi(s), [=1, ..., m, are rXn matrix elements of the observation matrix H(s) as
H(s)=[Hi(s) - + - H.(5)]. (15)
Then
hx )= 3 @ (tx2)Jilt v, s). (16)
=1
Differentiating (14) with respect to t yields

ajl(t, x,5)/ OtR(s) = —J (¢, x, t) H(?) Q- (¢, s) H (s) —
jo 00, %, 5)/ BH() Qu 5 ) HT(5) ds' (17)
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Taking into consideration of the semi-degenerate kernel of (12), we rewrite (17) as

a (¢ ¥, xl),@ (s, %, x) = -

Ot x,5)/ OtR(S) = —Ji(t, x, t) H(2) l:
Ji ; S xt t tx”‘,xl)ﬂ (s, 2", x*) = -

a (1, x, x)ﬂ 5, X, x):] |:H1 (s) 8Jz(txs)/8tH()Qm(s 9
a (¢, x», x ,3 (s, x™, xm) H.7(s) H'(s)ds. (18)

If we introduce auxiliary functions L. (¢, s) which satisfy

Lm@mo=wmxmmmwﬁm@wmm@m»m@w
Ln=1, ..., m, (19)

we have
0Jit,x,s)/0t=—J(t, x, t) > 2 H,(t) a (t, #, x)Ln(t, s). (20)
P —
If we differentiate (19) with respect to ¢, we have

OL.(t, 5)/OtR(s) = —Lu(t, t) H(D) O (¢ s)H(s) —

faMtsWGMQ) (5", 5) H™(5) ds" (21)
Substituting (12) into (21), we have

a (t ', x) B7(s, & x) + -

a (¢ xm x) B7(s, 27, 2) + -

OLu(t,s)/OtR(s) = —Lu(t, t) H(2) I:

a(t,xl‘x"’?ﬁr(s,xl,x)] [Hl .S) aLt (ts)/atH( )Qm(S S)
a (¢ xm, xm) B7(s, 2", xm) H.7(s) H'(s)ds. (22)

It follows from (19) and (22) that

é L) @ (4 2, ) Lo (1, 5). (23)

”

OLu(t,s)/0t=—Lult, t) >
p=1
From (14) Ji(¢ x, t) in (20) is written as follows.

Ji (¢, x, ) R(t) = B7(4 x, x) H"(¢) "'J;)i]l(t, x, s') H(s) (08 (s, ) H™(2) ds’ (24)
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From (12) and (24) we obtain
Jt x, ) R(t) = B7(t, x, x) H"(t) —

th )H)|: (s, o, ) @7(t, ', &) +
[ ﬂ(sxxl)aT(tx x') ¢

ﬂ(sxx)ar(tx x") H1
B (s, xm, xm) @™ (t, xm x7) T(t) (25)
If we introduce new functions

1 (8, %) = j]z (& x, YH () B (s« x)ds’, Lk, n=1, ..., m, (26)
0

and substitute (26) into (25), we have

T DR = Bl v DHFD) — S Srlen) arl e, VHAD).  (27)

=1 n=1

Now putting s — ¢ in (19) and using (12), we obtain

Lot DR(G) = B7(, 2 x) H (1) — f Lol ) HG) Qu(s, ) HT () ds’
= B7( #, x) HT (t) —

‘ B (s, & ) ar(t & 1) + -+
jo Lo(t, $)H(5) :

(s, xm &%) a”(t, xm &%) * -

B (s, «, x’") art(t xt xm) HET(t) s
B (s, xm x) ar(t, 2 x7) H (1) (28)
Let us introduce new functions given by

by () = j La(t, YH(s) B (s, %, x)ds, Lm b p=1, ... m. (29)

Substituting (29) into (28) yields

L ORG) = Bl v, VHA ()= 3 S b () @ (0, 0, ") Ho™ (). (30)

p=1 n'=1

Let us differentiate (26) with respect to t.
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Orm(t,x)/ Dt =J(t, x t) H(t) B (¢, ) +
f o J: (¢, x, 8)/QtH(s) B (s, & x)ds
0
If we substitute (20) into (31), we have

Or(t,x)/ Ot =_Ji(t, x, ) Hi(t) B (¢, #, x) —

Jex) S5 B0 @b Lol VHE) B 6,2 0) b
p=1 =1 0

It follows from (29) and (32) that
Or(t,x)/ Ot =J(t, x, t) (H:(t) B (¢, x, x7) —
S S H0) @ (5 bon ().

p=l‘n=]
The initial condition on the partial differential equation (33) at ¢ =0 is
Vikn (O, x) =0

from (26).
Let us differentiate (29) with respect to t.

dbimy (¢) /dt = La(t, ) Hi(2) B (¢, »*, x¢) +

[ Lt )/ O tH(s) B (5. 2 %) ds

If we substitute (23) into (35) and use (29), we obtain
dbwy, (£) /dt = La(t, t) (H:(¢) B (2, #*, x*) —

2’": Em:H,’ (&) a (¢ », x) LILW (¢, ) He(s) B (s, #, xt)ds’)

p=1 n=1

= L.(t, ) (H(0) B (¢, #, ») —

S S H ) @ (4, ) bow(®)).

p=1 n=1
The initial condition on the differential equation (36) at ¢ =0 is

blnkp (0) == 0

(31)

(32)

(33)

(34)

(35)

(36)

(37)

61
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from (29).
If we substitute (16) into (5), we have
(38)

i) = Salx o it %, 5) 2 (5) ds.

Introducing the function
(39)

et x) = J;].»(t, x,5)z(s)ds,i=1

. mv

we have
(40)

> a(tx el x)
=1

z‘t(t, x) =
If we differentiate (39) with respect to ¢, we have

from (38) and (39).
(41)

(t,x)/0t=J(t x, t)z(t)—i—J:aJ,-(t, X, ;)/atz(s)ds.

Substituting (20) into (41) yields
(42)

(07812050 0= 3 SHO « 6. 2) [1n(t.920))

Let us introduce new functions given by
(43)

gi(t) = LLv(t, $)z(s)ds, i, j=1, ..., m.

It follows from (42) and (43) that
(0/31= 0,50 0= S SH) @ x. #)gn ().

If we differentiate (43) with respect to t, we have
(45)

dos(8) /dt = Ly (@, t)z(t)+J:aL,y(t, 0/ 81z(s)ds

Substituting (23) into (45) yields

dgs(¢) /dt = Ls(t, ) 2 () —
(46)

Li(t, t) Ei: zi:Hp () @ (¢ », x) J;:Lpn’ (¢, 5)z(s)ds
If follows from (43) and (46) that
de () /dt = Lo (o, ) (2 () z H(0) @ (4 2 ) g (). (47)

Let us summarize the above filtering algorithm in [Theorem 1]

||Ms
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[Theorem 1]
Let the autocovariance function of the signal u (¢, x) be given by (10) in the semi-de-
generate kernel form, and let the variance of the white Gaussian observation noise be R

(¢), then the sequential algorithm for the linear least-squares filtering estimate consists
of (48) ~ (54).

it %) = 2 @ (1 % ¥)et, %) (48)

et x)/ 0t =1t x ) (1) — éé:y,,ma () gn(®) i=1, .. m (49)
de 0/t =L 00— 3 SHOawe)ge®),ij=1 um  (50)

Jxd = (B x VH D= S St x) ar(s, o ) Hr())

R, 1=1,..m (5]
Lt ) = (A7t VIO = 3 S ) @7t v, ) Her ()
" R'(®),Ln=1,..m (52)
Oru(t,x)/ 0t =Ji(t, x, t) (H:(t) B (&, », x) —
z 211 ) @ (b 2 ) b)), L n =1, ... m (53)
dbwy (2) / ;t = Lu(t, t) (H(t) B (¢, #, ») —
P S H ) @ ()b D). Lk p =1, (54)

The initial conditions on the differential equations (49), (50), (53) and (54) at t=0
are (0, x) =0, gy (0) =0, 7 (0, x) =0 and bwy(0) = 0.

Also, the sequential algorithm for the optimal impulse response function 4 (¢, x, s)
consists of (51) ~ (57).

m

h(t o x, 5) = > a4 x, xl)jz (¢ x, 5) (55)

=1

oLt x, s)/ot=—](t x t) 5) %Hp(t) a (t, 2 ) Ln(t,s),l=1,.. m (56)

p=1 n=1

OL(ts)/ot= -t D S SH® alw vVl s). L=l .m (57

p=1 n=1
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The initial conditions on the partial differential equations (56) and (57) at ¢t =0 are J.
0, x,5) = B7(s, x, ) H*(s) R7*(s) and L.(0, s) = B7(s, x, x) H.7(s) R (5).

4. Filtering error covariance function

Let us derive an equation for a filtering error covariance function. The filtering

error covariance function is defined by

Pt x, s,y) =E[(u(t x)—at x)) (u(s,y) —a(s,y))T]. (58)

From an orthogonal projection lemma that smoothing error (¢, x) —# (¢, x) is orthogonal

to it(s, ), we obtain
Pt x, s,y) =Kt x, s,y) —E [a(s, x)uT(s,y)], 0=s<t, forall x,yED. (59)

Substituting (5) into (59), and using (3) with the uncorrelation property of u(+, *)

with »( + ), we obtain

P(t x, s, y) =K, x, 5,9 —folh (¢ x, ) H(s) BT (s, 9, s') ds. (60)
If we substitute (55) into (60), introduce new functions given by

S (¢, x, s,y) =foi]l<t, x, s)H(s") B.7(s,9,5)ds, 1=1, ..., m, (61)

and take into consideration of the expression for the semi-degenerate kernel of (10), we

obtain

Pt x, s,y) =a (¢, x,y) B (s x,y) —

m

> a(t x &) foi]l (t, x, ) H(s") B (s, 9, 5') ds’

=1

m

=a (¢ x,y) B7(s, x, y) — > oa (¢t x x)8 (¢ x, 5, 9). (62)

=1

If we differentiate (61) with respect to t, use (56) and introduce new functions given by

T (2, s, x) =j L.(t, s)H (") B.7 (s, x, 5°) ds’, pn=1..m, (63)
0
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we obtain
2.8t x, s,y)/at =J1<t, X, t)H(t)BmT(s,y, )+
t
[ 8t x )/ 8uH () B (s, 3, 5) ds
0

= Jit, x, t) (H(@) B" (s, 9, 8) —
2:: §::Hp (1) a (¢ », x) J:Lpn (t, $)H(s") B (s, 9, 5) ds’)

=Ji(t, %, ) (H(0) B (s, 3, 8) —

I\ZE

H(t) a (b, 2, %) Tn(t, s, ). (64)

n=1

I

>
p=1
If we differentiate (63) with respect to ¢ and use (11), (57) and (63), we obtain

OTwm(t s, x)/ dt=Ln(t, ) H(t) B.7(s, x, t) +

j BLn(t 8)/ dtH() B (s, x. 8)ds
0

L) (SHW @ (@ x 2) A7, 5 #) —

k=1

m m

S OSHW) @ w) Tl 5, %), (65)

Therefore, the sequential algorithm for the filtering error covariance function P (¢, x,
5, ») consists of (62), (64) and (65).

The initial conditions on the differential equations (64) and (65) at ¢t =0 are S (0,
x,5,9) =0and T,.(0, 5, x) =0 from (61) and (63).

Now, the filtering error covariance function P(t, x, s, ) is written as
P(¢ x, 5,9) = K(t, x, s,y) —E[d( x) ﬁ’(s,y)] =K(t x,5,9) —P.t x, 5,9, (66)

where P.(¢, x, s, ) denotes an autocovariance function of the filtering estimate # (¢, x) .P.
(¢, x, s, y) is a positive semi-definite matrix, and the filtering error covariance function

is also positive semi-definite. Therefore, we notice that the relationship
0= P.(¢ x, s, 9) =K(t x5, 9) (67)

is valid. According to a discussion on stability problems (Kailath, 1976), (67) ensures
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that the present filtering algorithm has a unique solution, since P.(¢, x, s, ») is both lower

and upper bounded.
5. A numerical simulation example

Let us consider two digital simulation examples.
5-1. Deterministic signal case
A deterministic signal to be estimated is given by
u(t, x) = Acos (wt)cos (wx), A=4.5 w=207. (68)
The autocovariance function of (¢, x) is given by
K(t %, 5, 9) = A%os (w(t-s5)) cos (w(x-y))/4. (69)
Then it follows from (10) that

a (t, x, y) = [A? cos (wt) /4 A? sin (wt) /4],
cos (ws) cos (w (x—_y) ) :| (70)

sin (ws) cos (w (x-9) )

B (s, x,y)Z[

The observation equation is given by
2(O)=H@Wult, «)+o(t), Ht) = 1.5, (71)

where u (¢, x) is observed at the point .

The linear least-squares filtering estimate of u (¢, x) is calculated sequentially by
substituting the covariance information of the signal, given by (70), the variance of
white Gaussian observation noise, the observed value and H (¢#) (=1.5) into [Theorem
1]. Fig. 1 depicts the filtering esimate @ (¢, 0.1) vs. t. Graph (a) illustrates the signal
process u (¢, 0.1). Graphs (b), (c), (d) and (e) illustrate the filtering estimate & (,
0.1) for white Gaussian observation noises N (0, 0.1%), N(0, 0.3%), N(0, 0.5% and N (0,
0.7%) respectively. Table 1 shows the mean-square value (M. S. V.) of filtering error u
() -l ), 3 WGA, ) —ala, x)¥500, A=0.00L for x=0.0, 0.05, 0.10,
0.15, 0.20, 0.25, ISTSO, 0.35, 0.40, 0.45 and 0.50 when the observation point is ¥ = 0.1 and
white Gaussian observation noises are N (0, 0.1%), N(0, 0.3), N(0, 0.5%), N(0, 0.7%) and N(0, 1).
Table 2, Table 3 and Table 4 show the M. S. V. of the filtering error u (¢, x) —a (¢, x)
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Fig. 1 Filtering estimate #(z, 0.1) vs.

i

Graph a ---Signal process u (¢, 0.1) vs. ¢.
Graph b ---Filtering estimate u(t 0.1) vs. ¢ for white Gaussian observation noise N(0, 0.12).
Graph ¢ :--Filtering estimate #(¢, 0.1) vs. ¢ for white Gaussian observation noise N (0, 0.3?).
Graph d :--Filtering estimate #(¢, 0.1) vs..¢ for white Gaussian observation noise N (0, 0.5?).
Graph e ---Filtering estimate # (¢, 0.1) vs. ¢ for white Gaussian observation noise N(0, 0.7%).
Table 1 5I(\){)[ean—square values of filtering error u (¢, x) —
> Wi, x)—aGa, x))?/500, A=0.001, for x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25,
i=1
0.30, 0.35, 0.40, 0.45 and 0.50 when the observation point is x'=0.1.
White Gaussian observation noise
Value of x N(0,0.1%) N(0, 0.3 N(0,0.5?) N(0,0.7%) N(0, 1)
0.0 0.27241X10" 0.30056 0.83014 1.5338 2.7336
0.05 0.25235X%10™ 0.28873 0.78923 1.4542 2.5995
0.10 0.02422X1071 0.28051 0.77573 1.4356 2.5735
0.15 0.24210%10* 0.27588 0.75750 1.4041 2.5285
0.20 0.26011X107! 0.28528 0.78053 1.4410 2.5798
0.25 0.25067 %101 0.27271 0.73748 1.3550 2.4267
0.30 0.27000%10! 0.29247 0.79366 1.4557 2.5911
0.35 0.27086x10! 0.29188 0.79332 1.4574 2.5980
0.40 0.27525X%101 0.28159 0.76657 1.4180 2.5481
0.45 0.26031x101 0.29273 0.80430 1.4796 2.6334
0.50 0.26900Xx10! 0.29577 0.80961 1.4923 2.6639
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. Mean-square values of filtering error u (¢, x) —a (¢, x),

2 (uiA, x) —aiA, x))?/500, A=0.001, for x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25,
i=1

0.30, 0.35, 0.40, 0.45 and 0.50 when the observation point is x'=0.05.

White Gaussian observation noise

Value of x N(0,0.1%) N(0,0.3) N(0,0.5% N(0,0.79) N(0, 1)
0.0 0.24860%X 10 0.26954 0.72714 1.3365 2.4008
0.05 0.26715X10 0.28015 0.76518 1.4118 2.5293
0.10 0.27590X 10" 0.28761 0.77728 1.4285 2.5532
0.15 0.27749X 10" 0.29303 0.79673 1.4614 2.5995
0.20 0.25794X10™ 0.28256 0.77173 1.4219 2.5452
0.25 0.27023X10™ 0.29714 0.81910 1.5144 2.7068
0.30 0.24800% 10 0.27551 0.75889 1.4076 2.5343
0.35 0.24698%X10™ 0.27610 0.75929 1.4060 2.5276
0.40 0.24534X10" 0.28817 0.78962 1.4505 2.5836
0.45 0.25885%10™ 0.27570 0.74905 1.3847 2.4930
0.50 0.24975X10™ 0.27286 0.74448 1.3735 2.4650

Table 3 513{)Iean—square values of filtering error u(t, x) —a (¢, x),
> @A, x)—alia, x))?/500, A=0.001, for x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25,
ial. 30, 0.35, 0.40, 0.45 and 0.50 when the observation point is #'=0.01.
White Gaussian observation noise

Value of x N(0,0.1%) N(0,0.3%) N(0, 0.5%) N(0,0.7%) N(0, 1)
0.0 1.3327 1.8930 2.6569 3.4807 4.6733
0.05 1.3152 1.8420 2.5692 3.3591 4.5137
0.10 1.3107 1.8286 2.5501 3.3356 4.4851
0.15 1.3043 1.8097 2.5182 3.2939 4.4353
0.20 1.3123 1.8328 2.5546 3.3404 4.4900
0.25 1.2916 1.7704 2.4491 3.1939 4.2937
0.30 1.3161 1.8414 2.5651 3.3496 4.4946
0.35 1.3166 1.8435 2.5696 3.3571 4.5068
0.40 1.3083 1.8185 2.5311 | | 3.3106 4.4555
0.45 1.3201 1.8556 2.5924 3.3888 4.5471
0.50 1.3247 1.8690 2.6141 3.4206 4.5948
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Table 4 Mean-square values of filtering error ult, x) —alt x),
E @GaA, x)—aGA, x))?/500, A=0.001, for x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25,
i=1 .
0.30, 0.35, 0.40, 0.45 and 0.50 when the observation point is x*=0.02.

White Gaussian observation noise
Value of x N(0,0.1%) N(0,0.3% N(0, 0.5 N(0,0.7% N(, 1)
0.0 8.4492 8.6430 8.8689 9.0845 9.3608
0.05 8.4327 8.5980 8.8017 9.0028 9.2683
0.10 8.4287 8.5888 8.7894 8.9886 9.2528
0.15 8.4224 8.5722 8.7666 8.9626 9.2254
0.20 8.4295 8.5905 8.7915 8.9908 9.2547
0.25 8.4092 8.5344 8.7075 8.8871 9.1346
0.30 8.4328 8.5956 8.7954 8.9926 9.2535
0.35 8.4332 8.5980 8.8002 8.9993 9.2623
0.40 8.4247 8.5781 8.7749 8.9724 9.2358
0.45 8.4372 8.6096 8.8174 9.0198 9.2849
0.50 8.4414 8.6215 8.8364 9.0453 9.3173

similarly to Table 1 when the observation points are x' = 0.05, 0.01 and 0.02. The
estimation accuracies for x' = 0.01 and 0.02 decrease compared with those for x' = 0.1
and 0.05. This decrease might come from the fact that the observation at the point
where the greatest value of the amplitude of the wave form in the spacial domain yields
the minimum estimation error.covariance (Sawaragi, Soeda and Omatu, 1978).

In the computation of the differential equations (49), (50), (53) and (54), the four-
th-order Runge-Kutta method is adopted, where the sampling interval for the numerical

integration is 0.001.
5-2. Stationary stochastic signal case

We shall consider the second-order linear stochastic hyperbolic partial differential

equation
Qult, x)/ot= 2%t x)/Ox*+wl(t x) (72)
driven by a white noise w (¢, ¥) with an autocovariance function

Elw(, x)w(s,y)] =0.720 (t—s) & (x—y). (73)
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The initial condition at x = 0 is « (¢, 0) = 5sin (7 #/20) and boundary conditions are
u(0, x) =0 and u (¢, 1) =0. The observation equation is same with (71). The auto-
covariance function of u (#, x) is K (¢, x, 5, ») = 1/2 from Heine (1955), so that we find
that @ (¢, x, 9) =1/2, B (5, x, ») = 1. The filtering estimate of the stochastic signal
generated by (72) is calculated by substituting the covariance information into
[Theorem 1]. Fig. 2 depicts the filtering estimate @ (¢, 0.15) vs. ¢ for white Gaussian
observation noises N (0, 0.1?) (graph (b)), N(0, 0.2%) (graph (c)) and N(0, 0.3?) (graph
(d)). Graph (a) illustrates the signal process u (¢, 0.15). Fig. 3 and Fig. 4 depict the
filtering estimates # (¢, 0.45) and @ (t, 0.7). The present filter is compared with widely
known estimation procedure based on spacial discretization technique (Sage and White,
1977) applied to the Kalman filter which is often adopted in lumped parameter systems.
Table 5 shows the M. S. V. of filtering error u (¢, x) —a (¢, x) for x=0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 and 0.9 with one hundred data in the interval of 0 <t =1, providéd
that the sampling interval of numerical integration by the Runge-Kutta method is 0.001.
Here, the filtering estimate i (#, x) is calculated at the observation points x* = 0.1, 0.2,
0.3,0.4,0.5,0.6,0.7,0.8 and 0.9 respectively for observation noises N (0, 0.1%), N (0,
0.2%), N(0,0.3%) and N(0, 0.5%. Initial error variances are 0.3*+ I for case 1 and I
for case 2, where I is an identity matrix of order 18, since x, 0 = x = 1, is spacially
partitioned. It should be noted that the M. S. V. of filtering error for white observation
noise N (0, 0.1?) diverges.

2.5}

Filtering estimate @ (t, 0.15)

0.5

0 00l 002 003 004 005 006 007 008 009 01t

Fig. 2 Filtering estimate (¢, 0.15) vs. ¢.
Graph a --Signal process u(t, 0.15) vs. ¢.
Graph b ---Filtering estimate (¢, 0.15) vs. ¢ for white Gaussian observation noise N(0, 0.1%).
Graph ¢ ---Filtering estimate #(t, 0.15) vs. ¢ for white Gaussian observation noise N(0, 0.2%).
Graph d ---Filtering estimate (¢, 0.15) vs. ¢ for white Gaussian observation noise N(0, 0.3%).
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Filtering estimate i (t, 0.45)

_

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01t
Fig. 3 Filtering estimate # (¢, 0.45) vs. .
Graph a ---Signal process u (¢, 0.45) vs. t.
Graph b :--Filtering estimate @ (¢, 0.45) vs. ¢ for white Gaussian observation noise N (0, 0.1%)
Graph c¢ ---Filtering estimate (¢, 0.45) vs. ¢ for white Gaussian observation noise N (0, 0.2°
Graph d *-Filtering estimate # (¢, 0.45) vs. ¢ for white Gaussian observation noise N(0, 0.3?

).
).

Filtering estimate  (t, 0.7)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1t
Fig. 4 Filtering estimate #(¢, 0.7) vs. ¢.
Graph a ---Signal process (¢, 0.7) vs. &
Graph b ---Filtering estimate @ (¢, 0.7) vs. ¢ for white Gaussian observation noise N (0, 0.1%).
Graph ¢ ---Filtering estimate # (¢, 0.7) vs. ¢ for white Gaussian observation noise N(0, 0.2%).
Graph d :*-Filtering estimate # (¢, 0.7) vs. ¢ for white Gaussian observation noise N(0, 0.3%).
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Table 5 5I&Iean—square values of filtering error u (¢, x) —a (s, x),
> w@a, x)—aGa, x))?3/500, A =0.001, for x=0.1,0.2, 0.3, 0.4, 0.5, 0.6,0.7, 0.8

i=1

and 0.9 when the observation points are ! =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9 respectively.

Value of x! observation noise Present method Case 1 Case 2
0.1 N(0,0.1% 0.35182 Divergence Divergence
0.1 N(0,0.2?) 0.62592 0.83238 0.62743
0.1 N(0, 0.3 0.78515 1.1378 0.88969
0.1 N(0, 0.5%) 0.92507 1.4999 1.2793
0.2 N(0,0.1% 1.2477 Divergence Divergence
0.2 N(0, 0.2%) 2.2269 3.422 2.5321
0.2 N(0,0.3%) 2.8018 4.7119 3.6168
0.2 N(0,0.59) 3.315 6.2658 5.2653
0.3 N(0,0.1%) 2.3775 Divergence Divergence
0.3 N(0,0.2%) 4.2387 2.2739 3.4316
0.3 N(0,0.3?) 5.3273 10.844 2.034
0.3 N(0, 0.5%) 6.2954 12.8483 9.7184
0.4 N(0,0.1% 3.2879 Divergence Divergence
0.4 N(0, 0.2%) 5.8534 9.2044 6.8531
0.4 N(0, 0.3 7.3539 12.647 9.7714
0.4 N(0, 0.5%) 8.6912 16.769 14.17
0.5 N(0,0.1% 3.6461 Divergence Divergence
0.5 N(0,0.29) 6.4979 10.21 7.6119
0.5 N(0, 0.3 8.1627 14.024 10.849
0.5 N(0, 0.5%) 9.6388 18.585 15.724
0.6 N(0,0.1?%) 3.2841 Divergence Divergence
0.6 N(0, 0.2%) 5.8472 9.1938 6.8473
0.6 N(0,0.39) 7.3482 12.632 9.7582
0.6 N(0, 0.5 8.6868 16.751 14.151
0.7 N(0,0.1% 2.3522 Divergence Divergence
0.7 N(0,0.2?) 4.2057 6.5361 4.8162
0.7 N(0,0.39) 5.2952 9.0148 6.8952
0.7 N(0,0.59) 6.2694 12.007 10.067
0.8 N(0,0.1% 1.2489 Divergence Divergence
0.8 N(0,0.2% 2.2275 3.4855 2.5848
0.8 N(0,0.3) 2.8013 4.7958 3.6893
0.8 N(0, 0.5%) 3.3132 6.3712 5.3641
0.9 N(0,0.1%) 0.34696 Divergence Divergence
0.9 N(0,0.2%) 0.6165 0.97044 0.72302
0.9 N(0,0.3) 0.77401 1.3323 1.0312
0.9 N(0, 0.5%) 0.91478 1.7643 1.4926
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In this example, just four differential equations are included in the present algor-
ithm, whereas the Kalman filter via the spacial discretization procedure has to solve 189
number of differential equations. Thus, the current filter needs less computer storage
memory than the conventional method.

From these simulation results, we find that the filtering estimate approaches the sig-
nal process gradually as time ¢ increases. It can also be seen that the filtering estimate
for additive observation noise with the smaller noise variance is better in estimation

accuracy than that with the larger values.

6. Conclusions

In this paper, a new type of filtering algorithm was devised in linear continuous dis-
tributed parameter systems. The proposed estimator used the covariance information of
the signal and white Gaussian observation noise, and needs not the information of a sig-
nal generating model.

A numerical simulation result has shown that the current filter is quite feasible.
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