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Buffon’s short needle on the sphere

Yukinao ISOKAWA *
(received 15 October, 1999)

Abstract

We study Buffon’s short needle problem on the 2-dimensional sphere.
We throw a short needle on a grid of circles of latitudes, and find the
probability ps that it intersects at least one circle. We prove that this
probability ps is strictly smaller than the probability pr of the classi-
cal Buffon’s short needle problem in the 2-dimensional Euclidean plane.
Moreover we give an asymptotic expansion of the probability ps as the
number of grids n tends large. This expansion roughly tells that ps can
be approximated by pg fairly well even if n is relatively small.

1 Introduction

In a memoir submitted to the Académie des Sciences in 1733, Buffon gave birth
to the field of geometric probability. In that paper (not to be published until
1777) he introduced the classical problem, which bears his name, of finding the
probability that a needle thrown at random on a grid of evenly spaced parallel
lines will touch a line.

Buffon’s original needle problem has flourished in many directions. The
needle has been lengthen and bent (Kendall and Moran(1963), Ramaley(1969),
Diaconis(1976), Santal6(1976)); intersection probabilities for much more gen-
eral families of "needles” and ”grids” have been described (Solomon(1978)); the
needles have been thrown in higher than 2 dimensional Euclidean spaces (San-
tal6(1976)); the grids has been modified to improve statistics which estimate
7 (Schuster(1974), Perlman and Wichura (1975)) and inverse problems to the
original one have been studied (Detemple and Robertson (1980), Robertson and
Siegel (1986)).

In spite of such flourish of studies on Buffon’s problem, the present author
has seldom seen needles thrown in non-Euclidean planes, in particular, on the
sphere. Only one exception that the present author has found is Peter and
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Tanasi (1984). Thus it seems that there remain some unsolved problems about
the needle on the sphere, and in this paper we study one such problem on the
2-dimensional sphere.

Before we study a needle on the sphere, we need to decide on what kind of
grid a needle is thrown, because no grid of parallel lines exist on the sphere.
Peter and Tanasi (1984) investigated a needle thrown on a grid of circles of
longitudes. In contrast to their study, in this paper, we throw a needle on a grid
of circles of latitudes.

Now we give a precise formulation of our problem. Let S? be the sphere with
unit radius. Denoting by E(u) the circle of latitude u, we consider a family of
(2n+1) circles {E(u;) : ¢ = —n,...,—1,0,1,...,n} where u; =i-7/(2(n+ 1)).
In other words, we consider a grid of (2n+ 1) equidistant curves with a common
spherical distance D,, = w/(2(n + 1)) apart. Note that F(ug) denotes for the
equator of S2. On this grid of equidistant curves, we throw a needle with length
L at random. Our problem is to find a probability ps(D,, L) that the needle
intersects at least one of the equidistant curves.

In this paper in order to avoid some complexity that results from a needle
possibly intersecting more than one equidistant curves, we assume that our
needle is short enough. To be precise we assume that L < D,,.

2 An expression for the Buffon’s short needle
probability

To state an answer to the Buffon’s short needle problem on the sphere, we
introduce a function

L L
(2.1) Q(u, L) = arcsin (sin 5 sec u) — sinu - arcsin <tan 3 tan u) .

Theorem 1  Assume that L < Dy, where n is a non-negative integer. Then
the Buffon’s short needle probability ps(Dy,, L) can be given by

4 1 .
p {§Q(0,L)+;Q(2DmL)} :

In particular, letting n = 0 in Theorem 1 and noting that Q(0,L) = L/2,
we have the following corollary.
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Corollary  The probability that a needle intersects the equator is equal to L/.

In order to prove Theorem 1, we represent the sphere S? by the unit sphere
of the 3-dimensional Euclidean space whose center lies at the origin, i.e., X2 +
Y2+ Z? = 1. We may assume that the equator E(ug) is represented by a great
circle X2 +Y? =1,Z = 0 in the XY-plane. Then E(u) can be represented by
a small circle which is an intersection of a plane Z = sinu with the unit sphere.
Let O denote the intersection point of the equator E(ug) with the ZX-plane,
and U the intersection point of F(u) with the same plane. Now we introduce a
function

(2.2) f(z,u) = arccos (

cosLsinx —sinu
. b
sin L cos x

which is well-defined if u — L <z < u + L.

Lemma 2.1 Suppose that one of the endpoints of a needle drops at P which
lies on the ZX -plane and has the latitude x, and the other endpoint drops at
Q on the equidistant curve E(u). Assume that u — L < x < u+ L. Then, the
angle OPQ which we denote by 0 is given by f(x).

Proof.  Denote the longitude of Q by ¢. Then the Cartesian coordinates of
three points P, Q, and U are given by

COS T COS U COS ¢ cosu
0 , cosusing |, and 0
sinx sin u sinu

respectively. Accordingly, if we denote the spherical distance UQ by y, we have

cos L = cosz cosucos ¢ + sinxsinu
cosy = cos® u cos ¢ + sin’ u

Then, eliminating ¢ from these expressions, we get

cosu(cos L —sinzsinu
(2.3) cosy = ( ) +sin®u .
Cos T

Now, using the cosine formula of spherical geometry, we have
(2.4) cosy = cos(z — u) cos L + sin(z — u)sin L cos @ .

From (2.3) and (2.4) we can deduce the desired expression (2.2). Thus the proof
of the lemma is completed.

As we see later, in order to compute the probability pg, we need to evaluate
an indefinite integral

(2.5) F(z,u) = /f(:z:,u) cosz dz .



20 ERBRFHEFMOALE BARER #5145 (2000)

Lemma 2.2

. . . sinz — cos Lsinu
F(zx,u) = sinz- f(z,u)+ sinu - arcsin -
sin L cosu
cosL —sinzsinu
— arccos
COS I COS U

0
Proof. By differentiation we can easily check that —6—5F (z,u) = f(z,u)cosz.

Now we prove Theorem 1.

Proof of Theorem 1.  Without loss of generality, we may assume that one of the
endpoints of a needle, P, drops on the northern hemisphere. Then the latitude
x of P is distributed according to the probability density cosx. Consequently,
using Lemma 2.1, we have

pS(Dn,L)zi/Ui+LM Cos T da:+2n:/w (1__ f(x)ui)) cosz dr .
oJu L

i T =1 Wi~ 4

1=

Since, by Lemma 2.2,
(26) F(u+ L,u) = g sinu and F(u— L,u) = msin(u — L) — g sinw ,

we can see that

u;+L Uuj
/ f(z,u;) cosz dx = / (m — f(z,u;)) cosz dx .

ui—L

Thus we have
(2.7)

1
D, L) =~
ps( ) -

(F(L,0) — F(0,0)) +2) (F(u; + L,u;) — F(u;, ui))} .

1=1

Again, by Lemma 2.1, we have

1-— L
F(u,u) = T sinu + 2sinu - arcsin (A tan u)
(2.8) 2 sin L

— arccos (cos L — (1 — cos L) tan® u) .

Therefore, substitution of (2.6) and (2.8) into (2.7) establishes the theorem.
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3 Comparison of the probability ps with the Buf-
fon needle probability in the Euclidean plane

In this section we will compare pg(D,, L) with the classical Buffon needle prob-
ability in the Euclidean plane,

2L
D,

pE(DTHL) =

We start our investigation from the Euler-Maclaurin formula. Let us put

nDn D
(3.1) Jn = Jn(L) = Q(u, L) du+ > Q(nDn, L) .
0

Lemma 3.1 .
D, [%Q(O,L) + ;Q(iDn,L)} < Jn(L)

Proof. The Euler-Maclaurin formula asserts that there exists a number 6 such
that 0 < § < 1 and

e0.0)+ > QUDn L) = o+ InL)+ Ry

where, B; denoting the 1st Bernoullian number,

B o2 § P2 i+ 0)D, 1)
1=0

Therefore the next Lemma 3.2 immediately establishes the present lemma.

Lemma 3.2 The function Q(u, L) is a strictly decreasing and concave func-
tion of u.

Proof. By an elementary calculus we have

L
(3.2) aa—g(u, L) = —cosu - arcsin (tan 3 tan u)
and
0*Q . , L sin® £
(3.3) W(u, L) = sinwu - arcsin (tan 5 tan u) -

\/ cos? —g— —sin®u
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From (3.2) it immediately follows that @ is a strictly decreasing function of u.
In order to show the concavity of ), we put a = cot % and t = tanu. Then
02 : '

—— can be written as

O0u?
1+4 arcsin !

tva? — t2 a
which we denote by g;(t). Obviously the function g¢;(¢) is well-defined for 0 <
t<a.
~Since . s 9
g\(t) = t*+2t“ —a

t2(a2 — £2)3/2

the function g; has its minimum at ¢ = v/v/a? + 1 — 1 and its minimum is equal

to
\/\/a2+1-—1
a2

(a2+1)1/4
Va?+1-1

— arcsin

. a?+1-1 : -
Now, letting b = {/ ————=——, we can rewrite the minimum of g; as
a
———b 1t arcsin b
1-22 ’

which we denote by g2(b). The function g3 (b) is defined for 0 < b < v/v2 — 1.
4bv/1 — b2

Since g5(b) = A=) g2 is strictly increasing. Accordingly we see that

92(b) > g2(0) = 0. Therefore the minimum of g; is positive, which implies

that @ is a concave function of u.

Now we study an upper estimate for J,(L). Let us introduce a function

nDy,
(34 i) = [ atwt) du+ 32 anDat)

where
(3.5) q(u,t) = V1—t sinu.

Furthermore we put
L
(3.6) t(L) = sec? 5

Lemma 3.3
Jn(L) <
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Proof. We can easily check that
oQ

02 = 2 awUL)

Hence
d

S In(L) = 5 D))

To say in other words,

1 [t
(3.7 Jn(L) = 3 /0 Jj(t(w)) dw .
Since Ly
2 glut) = ——22E_ <o,
dt 2v/1 — tsin® u

we can see that j(t) is a decreasing function of ¢. Moreover, we have
. . D’n, DTL .
j(1) =sinnD, + =Y cosnD,, = cos D,, + Tstn <1.

Consequently, from t(L) > 1, we can deduce j(t(L)) < 1. Therefore, by (3.7),
we obtain J,(L) < L/2, which completes the proof.

Combining Lemma 3.1 and Lemma 3.3, we obtain the following theorem.

Theorem 2 Assume that L < D,,. Then, for all non-negative integer n,

2L ,

ps(Dn, L) < pg(Dn, L) = -

4 Asymptotic behaviour of the probability pg

In this section we study an asymptotic behaviour of the Buffon needle proba-
bility as n tends to the infinity. Our starting point is again the Euler-Maclaurin
formula, which asserts that

1 .
Q0. L) + ;cz(mm L)

1 B oQ
= I T+ 5 D, {Bu(nDn’L)

(4.1) 50

5;(0, L)} + K, ,

where

. nDy,
(4.2) Ip = /0 Q(u,L) du + —%—E Q(nD,,L)
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and
D. (! = 9Q .
(43) Kn = —2—4 ) ¢4(t) 2 7 ((Z + t)Dn, L) dt .

(In the above B stands for the 1-st Bernoullian number, and ¢, the 4-th Bernul-
lian polynomial.)

First we study an asymptotic behaviour of J,. In this study we need to
evaluate definite integrals

nD.,
(4.4) Cm = / tan®™ u cosu du
0

for m > 0. Furthermore, in this study, we need to use functions

(4.5) g(z) =Y (2m —3)!! z™~!

2mm! m -1

m=2

and
(4.6) G(z) = /0 " Vag(x)dz .

In the following Lemma 4.1 and Lemma 4.2, we prepare certain preliminary
results for these quantities (4.4), (4.5), and (4.6).

Lemma 4.1 D
Co =cosD,, , C; = —cos D,, + logcot -?n ,

and for m > 2,

1 cos?™ 1D, 2m-—1
C 2m—2 sin®™ 2D, 2m—2

(4.7) o Craet -

Proof. 'We can easily compute Cy and C;. For m > 2, changing variable as
x = sinu, we have
sinnD, :L.2m
Cn = ——dzx .
" /0 (1—a2)m

Then integration by parts leads to the desired recurrence relation (4.7).

Lemma 4.2

@ =Lilgr oIz 1, 1+vI-a 1,
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and

5+610g2 3
9

k\)

G(x) = —-2Vr+= \/_vl—a:+garcsm\/_+
1 3 1+\/1—x 1

—=z? log ——— — ~t log x .

3 1-v/1—-2 3

Proof.  This lemma can be proved by an elementary calculus. Thus we omit
the proof.

Lemma 4.3 Assume that € < $D2%. Then

1 Dy,
j(l+e€ = cosD,+ € (cosDn — log cot 7)

1 D? 1
——2-ecosDn g (e cot> D,,) + T" V1—ecot2 D, + O <Dﬁ log D_) )

Proof.  Recall the definition (3.4) in the previous section of the function j.
Expanding q(u,1 + €) defined by (3.5) into a Maclaurin series, we have

> 1
q(u,1+4+¢€) =cosu \/l—etan2u.—_cosu{1+ Z ( 'riz ) (—etanzu)m} .

m=1

Note that etan®u < % because € < %Di and v < nD,. Consequently the
infinite series in the above converges uniformly in u, and we get

/OnD o(u, 1+e)du—-Co+Z( )(—)

Using Lemma 4.1, we have

m=2 m=2
_ Z (2 1 COSz'm_—1 Dn
o om m' 2m—2 sin®™ 2D,
2m-3)! .. 2m-—1
. Cm )
+ 7;2 2m m! ¢ 2m — 2 1

which we write as (—S1 + S2).
Now we evaluate S; and S;. Using Lemma 4.2, we can express

1 cos? D,
(4.8) . S = 5 € cos D, g (e ey D’n)
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On the other hand, since from (4.7) it follows that

1 cos>™ 3D, 2m-3 co - 1 1
2m—4 sin®™ 4D, 2m—-4 ™2 2m—4 sin? %D,

Cm—l =

for m > 3, we have

(2m —-3)!! (D:\™ 2m—-1 1 1
Sy < — - )
2 < 5 Z o9m ml 2 2m —2 2m —4 sin2m_4Dn
Hence
1
(4.9) Sy =0 (Di log D—) .

Therefore, using (4.8) and (4.9), and noting that

D,
—q(nDn,l-i-e "\/1 ecot’ D, ,
we have completed the proof of the lemma.

Now we define a function
w
e(w) = tan? 3

and show the following lemma which gives estimates for various integrals con-
cerning e(w).

Lemma 4.4

L 3
(a) /0 e(w) dw = % + 0 (L)

2

L
(b) /0 e(w)g(e(w) cot® D,,) dw = tan® D,, G (LT cot? Dn> +0 (L)

L
/ \/1 — €(w) cot? D, dw
0

L L L2
= tan D,, arcsin (—2- cot Dn> + —\/1 — —cot? D, + O (L°) .

()

2 4

Proof.  Since e(w) = w?/4 + O (w*), we can easily see (a).
Now we put

M, = d M; = ! .
0 0<mg>1</2| g(z)| and M; . 51521‘/2'9 (z)]
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Then, noting that e(w) cot? D,, < 1/2 for 0 < w < L, and using the mean value
theorem, we have ‘

2 2

L L, w
/ e(w) g (e(w) cot? Dy,) dw — / —g (— cot? Dn) dw

L 2 2
w w
< e(w) — — g(——cotan) dw
/0 ) =3 4
+/L“’—2
o 4
L
< Mo/
0
= O(L5)

2
g (e(w)cot?D,) — g <EUZ— cot? Dn> dw

2

w 2
e(w) — e

L
dw + M1/ e(w) |e(w) — 3)4— cot? D,, dw
0

Accordingly, changing variable as z = —"2—2 cot? D,,, we get (b).
Finally, in a similar way to that for the derivation of (b), we can show (c). Thus
the proof of the lemma is completed.

Combining Lemma 4.3 and Lemma 4.4, we obtain an asymptotic behaviour
of J, as follows

Proposition 4.5 Assume that b= L/(2D,,) be a constant. Then, as n tends
to the infinity,

L ., [1-12l0g2,, 1 =1
I = 2-i-Dn{ 36 b 12 bv1—b +12arcs1nb
3 3 1
+% log (1+\/1—b2) —i—%—logDn}—}—O(DfllogD—)

Proof.  Recall the relation (3.7) of the previous section, that is,
1 L
In = —/ J(1+ €e(w)) dw .
2 Jo
Using Lemma 4.3, we have

L 1 D,\ [*
Jon = =cosDp+ — | cosD, — logcot — / e(w) dw
) 1 2 ) Js

1 L
—7 cos D, / e(w)g(e(w) cot? D,,) dw
0

L
+% sin D,, /0 \/1 — €(w) cot? D,, dw

1
4 ——
+0 (LDn log Dn) .
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Then, using Lemma 4.4, we get

L L3 D,, 1 3 Lz
Jn(L) = -;‘Z—cosDn + - (cogDn — log cot T) — ZcosDn -tan® D,, G (—4—— cot“ I

D, 2
+T sin D,, (tan D,, arcsin (% cot Dn> + £\/1 — L— cot? Dn)

2 4
+0 ( D2 log—l— .
n Dn

Hence follows the desired expression.

Now we study an asymptotic behaviour of K,,. By differentiation we can see

2*Q
W(u, L) = —ki(u) + ka(u) — k3(u) — 3ks(u) ,
where
L
k1(u) = sinwu - arcsin (tan é—l tan u) , ka(u) = il
\/ cos? £ —sin®u
.2
k3(u) = sec’u ka(u)® , and k4(u) = _511_12_% ko(u)® .
n3

Thus, putting

n—1

K, ; :/0 $4(t) ;kj (i +t)D,,) dt

for 7 =1,2,3,4, we have
4

i |
K= =22 (~Kn1 + K — Kng — 3Kn1)

Our aim is to derive an asymptotic expression for D2 - K,, as n tends large.

As the following lemma shows, both K, ; and K,, » make only a negligible
contribution to K.

Lemma 4.6
K,1=0(D;') and K,»=0(D;") .

n

Proof. It is easy to see that kj(u) < ki(nD,) = O(1) and kq(u) < 1 for
u < nD,. Hence the conclusion follows immediately.
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In order to study asymptotic behaviours of K, 3 and K, 4, we will approxi-
mate the functions k3 and k4 by suitable functions. For this purpose we define
functions
L L

2

sin &
22 — (&)’

e and ky(z) =
\/ sin? z — sin?

and show the following result.

kl(.’I)) =

|t~

Lemma 4.7
(a) For D, <z < \/Lﬁ’ where c is a constant,

~ L
ki(z) = ky (:c, -é-) - (14 O(D,,)) uniformly in z .
(b) For z > —C\/;l—-, where c is a constant,

ki(z) = O(DL/?) and ki(x) = O(DY/?) .

Proof.  Since the proof of (b) is easy, we will prove only (a).
Since, by the mean value theorem, there exists 67, such that sin % <l < %
and

L sin £ L | L z?
2 “\2 T e ey
Va2 — (%) z? —sin’® £ (z2 —6%)
we have
. L 2
sin & ~ L L
ki(z) > 2 = ki(x) — (———sin——) ——:3—3/—5
z2 — sin? % 2 2 (x2 - 62)
- 1 /L\? x?
> kl(x) - 6 (5)

On the other hand, since there exists 8, such that sinz < 6, < z and

3 3 Ly
- = (x —sinz) - z ,
Ve (B)' ysnte (5 CHOS
we have
£ - L
ki(z) < 2 = ki(z) + (z — sinz) - 2 7

0
Vsin?z — (%)’ (2 - %))
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(_sin2 T — (%)2)

Hence _
k1(z) = ki(z) - (1 + O(Dy))

Thus the assertion (a) has been proved.

In order to study asymptotic behaviours of K, 3 and K, 4, we introduce

integrals
! 1 b ’
b)Z/o P0): (G +1-1t)? (\/(j+1—t)2—b2) @

5
h4(j,b) /¢4(t < +1—t) _b2> dt .

Furthermore we put

and

R(G,B) = ha(3,) + o5 haish)

Lemma 4.8 Let us put b= L/(2D,,). Then,
(a)

1 o, .. _
Kn,3 = _1)_2 : Zh3(.7a b) : (1 + O(Dn)) + O (Dn 1/2> .
n ]:1
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1 = . -1/2
Kpa = W-;h4(3,b)-(1+O(Dn))+O(Dn ).

1k - _% : éh(j, b) - (14 O(Dn)) + 0O (Dfﬂ) :

Proof.  Since we can prove (b) in a similar way to prove (a), and (c) is an
immediate consequence of (a) and (b), we will prove only (a).

We first show that the function k3 can be approximated well by the following
function:

R = L ()
z? V2 — b2 '
Then, when D, < z < ¢/+/n, (a) of Lemma 4.7 implies that

W(Ge) - b

sin- r

= L arom) (k@ a+om}

= ks(z)- (14 0(Dy)) .

Furthermore, when = > ¢/+/n, (b) of Lemma 4.7 implies that
ks (— - a:) — O(DY?) and k3(z) = O(DY?) .

Now, putting j = n — i and noting that £ — (n —j +t)Dp = (§ + 1 —t)Dp,
Wwe can express

K3 = J‘;/ﬂl ba(t)ks (g (41— t)Dn) dt .

Since (j + 1 — t)D,, < ¢/+/n for j < 4/n, where c is a constant, we can deduce
from (a) of Lemma 4.7,

/¢>4(t Vs ——(J+1—t)D ) it— Y / $a(t)Fs(( + 1 — t)Dy) dt
i<vR j<vm

)Y / ba(t)ks((G+1—1t)Dy) dt .

i<Vn
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Hence

Z/O ()kg(——( +1-1)D,) dt - > %-hg(j,b)
isVn j<ym m

= 0(D;") -3 ha(i b

On the other hand, from (b) of Lemma 4.7, it follows that

/ d4(t)ks ——(J+1—t)D ) dt:O(n-D}l/z) :O(D;I/z)
n>j>y/n

and

> [ 60ks(G+1-0D) di=0 (n-DY?) =0 (D7) .
n>j>\/n

Accordingly
L 5 j -1/2
3=z Z 3(J,b)-(1+O(Dn))+0(Dn ).
Furthermore, since

1 1 1 1 1
7460 < 3 [ #0150 (%) di= 5y - O(H) = 0Da)

we have

> 5z hali.b) = O(D,) .

j>n

Therefore the proof of (a) is completed.

Now we can evaluate both integrals h3(j,b) and h4(j,b) by an elementary
calculus, and we get the following lemma.

Lemma 4.9
h(j,b) = 2b(47 +3)v/32 — b2 —2b(4(j + 1) — 3)3/(j + 1)% — b2

b b
+27(7 +1)(27 + 1) { arcsin — — arcsin —
35+ 1)(24 + 1) (aresin ® ~ avcsin )

+4b° {log (j - \/9_2—:?2_) — log (j +1-+/(+1)? —b2))
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Using Lemma 4.9, we can express Z;’il h(j,b) in a somewhat simpler form.
To state the result, we put

£(b) = Y €(j,b) and  n(b Zn(a, ,
j=1
where
/2 .9 . b b b3
J)b) .7 - b2 J + — and T)(], b) =7 arcsin — — — — — .
2j j J 63
Lemma 4.10

i h(j,b) = 12b&(b)+ 12 n(b) + 2by/1 — b2 — 2b
+ (_19 _ 47) b + 4b3 (log (1-vVI-8) - log (%f))

3
Proof. Noting that

b 2 3 52
/i2 _p2=411—|(- = — =,
’ ]< (J)) 77y
and putting ,
b
b)=j(vj2—b2—j+5]¢),

we can express

2b(4j + 3)4/j2 — b2 — 2b(4(j + 1) — 3)4/(j + 1)2 — b2

(4.10) = 8b(¢'(5,b) —&'(5 +1,b)) +6b(£(5) +£( +1))
—2b(2j +1) — 3b° (1 P
j 3+1

Next, noting that

@m—D  omir _ 13
arcsmac—z (2m @2m + 1) x —x+€x 4+,

and putting

b b b b b
'(5,6) = 5° (a sin—.—-:——.) and 7"’ (j,b) = '(arcsin—.——.) ;
1 (j,b) = 5° (aresin S — = — =3 n (5,0) =3 777
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we have
(4.11)
2j(j+1)(25+1) | a csinb arcsin b )
r -—
7 J J Jj+1

=4(n'(4,0) = n'(7 + 1,b)) + 6 (n(j) + n(j + 1)) .

1
+2(n"(4,b) — 1" (j +1,b)) + 2b(2j + 1) + b° (3 + m) .

Moreover, noting that

1 1 /1 (2m— nn 2
arccosh; = log (; + i 1) log— - E @m)2m ,

and putting

. . . b2
¢'(4,b) =log(j — V3% — b?) — log — ,

27

we have

10* {10g (j - V7= 7) ~log (j +1- G+ 17— 7))

(4.12)

— 48 (C'(G,B) — ¢'(j +1,b)) + 463 log L1

Combining (4.10), (4.11), and (4.12), we get
h(j,b) = 8b(£'(4,0) —&'(G+1,b)) +6b(£() +£( +1))
+4(n'(5,0) = ' (G + 1,6)) + 6 (n(5) + n(G + 1)) +2(n"(5,8) —n"(j + 1,b))

1 )+ 1
45 (¢'(3,8) — (G + 1,b)) — 4b° {% G. N m) _ 10g2_§_} |

Hence follows

n—1 n
ST h(j,b) = 8b(€'(1,b) — €' (n,b)) + 6b (225(9', b) — £(1,b) — £(n,b))
j=1 Jj=1

+4(n'(1,5) — ' (n,b)) + 6 (2 > " n(5,b) — n(1,b) — n(n, b))

=1

+2(1"(1,8) — 0" (n, b)) + 4b° (¢'(1,0) — {'(n, b))



Isokawa : Buffon’s short needle on the sphere 35

Then, since all &'(n,b),n' (n,b),n"(n,b) and {'(n,b) tend to zero as n grows
infinitely, we can complete the proof of the lemma.

Combining Lemma 4.7 (c) and Lemma 4.10, we get the following proposition.

Proposition 4.11

b 1 1 1 v 5
— 2)_Z7 _ - . _p2 A I X
K, Dn{ S €)= 5 n(b) — 7bv1—b —|—12b+<6 36>b
b BB
_Z _ _p2 hall hal 7/2
610g(1 V1 b)+610g2}+0(Dn )

Now it can be easily seen that

Bl BQ _ 99_ _ 2. _i .
(4.13) - D, { ™ (nDy, L) ™ (0, L)} = D? < 75 aresin b) .

Therefore, Proposition 4.5 and Proposition 4.11, with aid of (4.13) imply the
following theorem.

Theorem 3
Assume that b= L/(2D,,) be a constant. Then, as n tends to the infinity.

ps(DnsL) = pE(Das ) - D3 2 {b.60) + 10 - V1= - 30

3

203 1
— <Z——1-—-log2) b3—Tlog(1—\/1—b2) l; logD—}—i-o(D,z,) .

3 18

Note that, in the above asymptotic expansion of pg, there exist no term of
order D,,. This fact means that the probability ps can be approximated by pg
fairly well even if D,, is not small.
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