Enumerating embeddings of m-manifolds into (2m+1)-manifolds

By

Tsutomu YASUI* (August 7, 1992)

Abstract

For a closed connected differentiable manifold M, a differentiable manifold N and a differentiable map $f: M \to N$, we denote the set of isotopy classes of embeddings homotopic to f by $[M \subset N][f]$ and the set $\pi_1(N^M, Emb(M, N), f)$ by $[M \subset N]f$, where Emb(M, N) stands for the space of embeddings of M to N. In this paper, we will determine the set $[M \subset N]f$ on the assumption that dim $N = 2 \dim M + 1 \ge 7$, along the lines of Larmore [4], [5]. If $N = L^m(p)$, the lens space mod p, we will determine the isotopy set $[M \subset N][f]$ for dim $M = m \ge 3$.

§1. Introduction

Let M be a compact connected differentiable *m*-manifold without boundary and let $f: M \to N$ be a differentiable map of M to a differentiable manifold N without boundary. Denote the set of isotopy classes of embeddings homotopic to f by $[M \subset N]_{[f]}$, and let $\pi_1(N^M, Emb(M, N), f) = [M \subset N]_f$, where Emb(M, N) stands for the space of embeddings of M to N. Under these circumstances, it is known that there is a $\pi_1(N^M, f)$ -action on $[M \subset N]_f$ such that

$$[M \subset N]_f/\pi_1(N^M, f) = [M \subset N]_{[f]}$$

(see §2 or e.g. [4], [5], [9]).

If dim $N > 2 \dim M + 1$, then $[M \subset N]_{[f]}$ is a singleton [12]. If dim $N = 2 \dim M + 1$, then there exists an embedding $M \to N$ homotopic to a given map f [12], and if moreover $f_{\#}: \pi_1(M) \to \pi_1(N)$ is surjective, then $[M \subset N]_{[f]}$ is also a singleton [3]. However, in general, the set $[M \subset N]_{[f]}$ is not necessarily a singleton even if dim $N = 2 \dim M + 1$ (cf. [1], [2], [4], [7]).

The set $[M \subset N]_f$ has an affine abelian group structure with unit [f] in the metastable range (cf. [4], [5], [9]). In this paper, we shall study the affine group $[M \subset N]_f$ on the assumption that dim $N = 2 \dim M + 1$.

For a manifold V, let $w_1(V) : \pi_1(V) \to \operatorname{Aut}(Z)$ be the orientation homomorphism of V and define a number $(-1)^a$ for $a \in \pi_1(V)$ by the equation

^{*}Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan

$$w_1(V)(a) = (-1)^a l_z.$$

For a map $f: M \to N$, the fundamental group $\pi_1(N)$ of N is expressed in the form

$$\pi_1(N) = \operatorname{Im} f_{\#} + \sum_{i \in I} ((\operatorname{Im} f_{\#})a_i(\operatorname{Im} f_{\#}) \cup (\operatorname{Im} f_{\#})a_i^{-1}(\operatorname{Im} f_{\#})).$$

For $i \in I$, let

$$A_{i} = \{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b)a_{i}f_{\#}(c)^{-1} = a_{i}\},\$$

$$B_{i} = \{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b)a_{i}^{-1}f_{\#}(c)^{-1} = a_{i}\},\$$

and let $h_i: A_i \to \{\pm 1\}$ and $k_i: B_i \to \{\pm 1\}$ be the maps defined by

$$h_i(b, c) = (-1)^b (-1)^c (-1)^{f \# (c)},$$

$$h_i(b, c) = (-1)^{m+1} (-1)^{a_i} (-1)^b (-1)^c (-1)^{f \# (c)}, \quad (m = \dim M).$$

Then, using classical algebraic topology along the lines of Larmore [4], [5], we will prove the following theorem of Li [6]. The proof is different from that of Li, who used normal bordism theory due to Dax [1] and Salomonsen [9].

Theorem 1.1 (Li). Assume that M is a compact connected differentiable m-manifold without boundary $(m \ge 3)$ and N is a differentiable (2m + 1)-manifold without boundary. Then for any embedding $f: M \to N$,

$$[M \subset N]_f = Z_2^{\alpha} + Z^{\beta},$$

where α and β are the cardinalities of the set $\{i \in I \mid h_i \cup k_i : A_i \cup B_i \rightarrow \{\pm 1\}$ is surjective} and the set $\{i \in I \mid h_i \cup k_i \text{ is not surjective}\}$, respectively.

Corollary 1.2. In addition to the assumption above, we assume that $f_{\#}$: $\pi_1(M) \to \pi_1(N)$ is trivial. Then

$$[M \subset N]_f = \begin{cases} \sum_A Z_2 + \sum_{B \cup C} Z & if \quad w_1(M) = 0, \quad m \equiv 0(2), \\ \sum_B Z_2 + \sum_{A \cup C} Z & if \quad w_1(M) = 0, \quad m \equiv 1(2), \\ \sum_{A \cup B \cup C} Z_2 & if \quad w_1(M) \neq 0, \end{cases}$$

where

$$A = \{a \in \pi_1(N) \mid a \neq 1, \ a^2 = 1, \ (-1)^a = 1\},\$$

$$B = \{a \in \pi_1(N) \mid a^2 = 1, \ (-1)^a = -1\},\$$

$$C = \{\{a, a^{-1}\} \mid a \in \pi_1(N), \ a^2 \neq 1\}.$$

If $N = L^m(p) = S^{2m+1}/Z_p$ $(p \ge 2)$, the lens space mod p $(L^m(2) = P^{2m+1})$, the odd dimensional real projective space), then $[M \subset N]_f = [M \subset N]_{[f]}$ (see (2.3)) and hence we have the following

Theorem 1.3. Assume that M is a compact connected differentiable mmanifold without boundary $(m \ge 3)$. If $f: M \to L^m(p)$ $(p \ge 2)$ is nullhomotopic, then

$$[M \subset L^{m}(p)]_{[f]} = \begin{cases} Z^{(p-2)/2} & p \equiv 1(2), \ w_{1}(M) = 0, \\ Z^{(p-2)/2} + Z & p \equiv 0(2), \ w_{1}(M) = 0, \ m \equiv 1(2), \\ Z^{(p-2)/2} + Z_{2} & p \equiv 0(2), \ w_{1}(M) = 0, \ m \equiv 0(2), \\ Z^{[p/2]}_{2} & w_{1}(M) \neq 0, \end{cases}$$

where [q] denotes the integer part of q.

Remark. If p is a prime and f is not nullhomotopic, then $f_{\#}: \pi_1(M) \to \pi_1(L^m(p))$ is surjective and hence $[M \subset L^m(p)]_{[f]}$ is a singleton [3].

Remark. If M is simply connected, then the results above are coincident with those of Li, Liu and Zhang [7].

The remainder of this paper is organized as follows: In §2, we recall the definition of $\pi_1(N^M, f)$ -action on the set $[M \subset N]_f$ and prove that this action is trivial if $N = L^n(p)$ $(p \ge 2)$. In §3, we introduce Larmore's method of computing $[M \subset N]_f$. The proofs of the results in the introduction are given in §4. A key lemma used in proving Theorem 1.1 is proved in §5.

The author is grateful to Dr. Zhang for his valuable suggestions.

§2. The $\pi_1(N^M, f)$ -action on $[M \subset N]_f$

In what follows, M is a compact connected differentiable *m*-manifold without boundary, N is a connected differentiable manifold without boundary and $f: M \to N$ is an embedding. The space N^M and Emb(M, N) stand for the space of differentiable maps of M to N and its subspace consisting of embeddings, respectively. According to the notations used in [4], [5], we set $\pi_1(N^M, Emb(M, N), f) = [M \subset N]_f$. The group $\pi_1(N^M, f)$ acts on the left of $[M \subset N]_f$ as follows : Given a self-homotopy $\{g_t\}$ of f and a homotopy $\{f_t\}$ from f to an embedding, we define $[g_t][f_t] = [\{g_t\}\{f_t\}]$, where $\{g_t\}\{f_t\}$ denotes the join of the two homotopies $\{g_t\}$ and $\{f_t\}$. The natural map $\Delta : [M \subset N]_f \to [M \subset N]_{[f]}$, defined by $\Delta [f_t] = [f_1]$, the isotopy class of the embedding f_1 , leads to the following

Theorem 2.1 (Larmore et al). There is a bijection

$$[M \subset N]_f/\pi_1(N^M, f) = [M \subset N]_{[f]}.$$

To determine the isotopy set $[M \subset N]_{[f]}$ along these lines, we have to study the set $[M \subset N]_f$ and the $\pi_1(N^M, f)$ -action on it. In some cases, $\pi_1(N^M, f)$ -actions are found to be trivial, even if $\pi_1(N^M, f)$ is not a trivial group.

Lemma 2.2. If any generator of $\pi_1(N^M, f)$ is represented by the composi-

tion $\{\Phi_t f\}$ of f and a periodic flow $\{\Phi_t\}$ of N, then $\pi_1(N^M, f)$ acts trivially on $[M \subset N]_f$, and hence $[M \subset N]_f = [M \subset N]_{[f]}$.

Here the periodic flow means a flow $\{\Phi_t\}$ such that $\Phi_{t+1} = \Phi_t$ for $t \in \mathbb{R}$.

Proof. Given a homotopy $\{f_t\}$ of f to an embedding, let $F: M \times I \times I \rightarrow N \times I \times I$ be a homotopy defined by

$$F(x, t, u) = \begin{cases} (f_{(2t+u-1)/(u+1)}(x), t, u), & (1-u)/2 \le t \le 1, \\ (f(x), t, u), & 0 \le t \le (1-u)/2. \end{cases}$$

Let $G: N \times I \times I \rightarrow N$ be a homotopy defined by

$$G(y, t, u) = \begin{cases} y, & 1/2 + u \le t \le 1 \text{ or } 0 \le t \le u, \\ \Phi_{2(t-u)}(y), & u \le t \le \min\{1, 1/2 + u\}. \end{cases}$$

Then the composition $GF: M \times I \times I \to N$ is a homotopy of $\{\Phi_t f\} \{f_t\}$ to $\{f_t\}$, and hence $[\Phi_t f][f_t] = [f_t]$.

Example. For $p \ge 2$, let $L^n(p) = S^{2n+1}/Z_p$ be the lens space mod p $(L^n(2) = P^{2n+1}$, the odd dimensional real projective space). Then $\Phi_t : L^n(p) \to L^n(p)$, defined by

$$\Phi_t[x_0,\cdots,x_n] = [x_0 \exp(2\pi i t/p),\cdots,x_n \exp(2\pi i t/p)],$$

is a periodic flow, where x_k $(0 \le k \le n)$ are complex numbers with $\sum_{k=0}^n |x_k|^2 = 1$. If $2n > \dim M$, by the Eilenberg classification theorem (e.g., [11, (6.17)]), we get $\pi_1(L^n(p)^M, f) = \pi_1(L^n(p)) = Z_p$ generated by $[\Phi_l f]$. Therefore

 $[M \subset L^n(p)]_{[f]} = [M \subset N]_f \quad \text{if } \dim M < 2n.$

§3. Larmore's method

In this section, we shall recall Larmore's method [4], [5] of computing $[M \subset N]_f$. For an *n*-manifold V, Let $RV = (V \times V - \Delta_V) \cup_{\phi} SV \times [0, \varepsilon)$, where $\phi : SV \times (0, \varepsilon) \rightarrow V \times V - \Delta_V$ is a map given by $\phi(v, t) = (\exp(tv), \exp(-tv))$. Here SV denotes the total space of the tangent sphere bundle of V and Δ_V means the diagonal of V. A free Z_2 -action on RV is induced from the antipodal map on SV and the interchaging of elements of $V \times V$. We denote the quotient spaces RV/Z_2 and $(V \times V - \Delta_V)/Z_2$ by R^*V and V^* , respectivey. Then the space R^*V is a 2n-manifold with boundary $PV (= SV/Z_2)$, and $R^*V - PV = V^*$, the reduced symmetric product of V. If V is compact, so is R^*V .

The pair of spaces $(R^*(V \times R^{\infty}), P(V \times R^{\infty}))$ denotes the inductive limit of $R^*(V \times R^k)$, $P(V \times R^k)$. We convert the natural inclusion $R^*i_V : (R^*V, PV) \subset (R^*(V \times R^{\infty}), P(V \times R^{\infty}))$ into a pair fibration $\zeta_V : (Y_V, Z_V) \to (R^*(V \times R^{\infty}), P(V \times R^{\infty}))$ in a

standard manner. For an embedding $f: M \to N$, let $R^*i_N R^* f = F$ for brevity's sake, and let $\Gamma(F^{-1}\zeta_N)$ be the set of homotopy classes of cross sections of the pull-back of ζ_N along F. Then Larmore [4], [5] has proved the following

Theorem 3.1 (Larmore). If $2 \dim N > 3(\dim M + 1)$, then

$$[M \subset N]_f = \Gamma(F^{-1}\zeta_N).$$

Let $\theta_V: Y_V \to R^*(V \times R^\infty)$ and $\rho_V: Z_V \to P(V \times R^\infty)$ be the restrictions of ζ_V to Y_V and Z_V , respectively. Then θ_V and ρ_V are both ordinary fibrations. Let $\pi_q \theta_V$ and $\pi_q \rho_V$ be the local systems of q-th homotopy groups of θ_V and ρ_V , respectively, and let $\pi_q \zeta_V$ be a subsheaf of $\pi_q \theta_V$ such that

$$\pi_q \zeta_V = \begin{cases} \pi_q \rho_V & \text{over } P(V \times R^\infty), \\ \pi_q \theta_V & \text{over } R^*(V \times R^\infty) - P(V \times R^\infty) \end{cases}$$

Theorem 3.2 (Larmore). Let dim $M = m \ge 2$ and dim N = 2m + 1. Then for any embedding $f: M \rightarrow N$

$$[M \subset N]_f = \Gamma(F^{-1}\zeta_N) = H^{2m}(R^*M; F^{-1}\pi_{2m}\zeta_N).$$

Now, we shall explain the sheaf $\pi_{n-1}\zeta_V(n = \dim V)$. We set $(V \times V) \times_{Z_2} S^{\infty} = \Gamma V$. Then the natural projection $p: \Gamma V \to P^{\infty}$ is a fibration with fiber $V \times V$ and with cross section s. We denote the generator of $\pi_1(P^{\infty}) = Z_2$ by t and set $s_{\#}(t) = t$, and $T_2 = Z_2$ generated by t. Then $\pi_1(\Gamma V) = (\pi_1(V) \times \pi_1(V)) \times_{\varphi} T_2$, the semidirect product, where $\varphi: T_2 \to \operatorname{Aut}(\pi_1(V) \times \pi_1(V))$ is given by $\varphi(t)(b, c) = (c, b)$ and there is a homotopy equivalence $\Psi: R^*(V \times R^{\infty}) \to \Gamma V$ [5, p. 84]. We regard $\Psi_{\#}: \pi_1(R^*(V \times R^{\infty})) \to (\pi_1(V) \times \pi_1(V)) \times_{\varphi} T_2$ as the identily.

Lemma 3.3 (Larmore). Assume that dim $V \ge 3$.

1

- (1) $(R^*i_V)_{\#}: \pi_1(R^*V) \to (\pi_1(V) \times \pi_1(V)) \times_{\varphi} T_2$ is an isomorphism,
- (2) $(R^*i_V)_{\#}: \pi_1(PV) \to \pi_1(P(V \times R^{\infty})) = \Delta_{\pi_1(V)} \times T_2$ is an isomorphism,
- (3) the natural inclusion $P(V \times R^{\infty}) \subset R^*(V \times R^{\infty})$ induces a natural inclu-

sion $\Delta_{\pi_1(V)} \times T_2 \subset (\pi_1(V) \times \pi_1(V)) \times_{\varphi} T_2$.

For a manifold V, we denote by $w_1(V)$ both the first Stiefel-Whitney class of V and its orientation homomorphism $w_1(V) : \pi_1(V) \to \operatorname{Aut}(Z)$. For an element $a \in \pi_1(V)$, we define a number $(-1)^a$ by the equation

$$w_1(V)(a) = (-1)^a l z.$$

Given an abedian group G and a homomorphism $\mu : \pi_1(X) \to \operatorname{Aut}(G)$, we denote

the local system over X associated with μ by $S(G, \mu)$.

Lemma 3.4 (Larmore). Assume that dim $V = n \ge 5$.

(1) $\pi_{n-1}\theta_V = S(Z\pi_1(V), \mu)$ over $R^*(V \times R^\infty)$, where $\mu : (\pi_1(V) \times \pi_1(V)) \times_{\varphi} T_2 \rightarrow$ Aut $(Z\pi_1(V))$ is given by

$$\mu(b, c, 1)(a) = (-1)^{c} bac^{-1} \qquad for \ a, b, c \in \pi_{1}(V),$$

$$\mu(b, c, t)(a) = (-1)^{n} (-1)^{a} (-1)^{c} ba^{-1} c^{-1} \qquad for \ a, b, c \in \pi_{1}(V).$$

(2) $\pi_{n-1}\rho_V = S(Z, \mu')$ over $P(V \times R^{\infty})$, where Z is an infinite cyclic group generated by $1 \in \pi_1(V)$ and $\mu' : \Delta_{\pi_1(V)} \times T_2 \to \operatorname{Aut}(Z)$ is the restriction of μ .

§4. Proofs of the results in the introduction

If dim $M \ge 3$, then it is easily proved that for $f: M \to N$, its induced homomorphism $F_{\#} = (R^*i_N)_{\#}(R^*f)_{\#}: \pi_1(R^*M) (= (\pi_1(M) \times \pi_1(M)) \times_{\varphi} T_2) \to \pi_1(R^*(N \times R^{\infty}))$ $(= (\pi_1(N) \times \pi_1(N)) \times_{\varphi} T_2)$ is given by

$$F_{\#}(b, c, t^{*}) = (f_{\#}(b), f_{\#}(c), t^{*}) \text{ for } b, c \in \pi_{1}(M).$$

Hence, by Lemma 3.4, we have the following

Lemme 4.1. Assume that dim $N = n \ge 5$ and dim $M = m \ge 3$. If $f: M \to N$ is an embedding, then $F^{-1}\pi_{n-1}\theta_N = S(\pi_1(N), \mu_M)$, where $\mu_M: (\pi_1(M) \times \pi_1(M)) \times_{\varphi} T_2 \to \operatorname{Aut}(Z\pi_1(N))$ is given by

$$\mu_M(b, c, 1)(a) = (-1)^{f_{\#}(c)} f_{\#}(b) a f_{\#}(c)^{-1}$$

$$\mu_M(b, c, t)(a) = (-1)^n (-1)^a (-1)^{f_{\#}(c)} f_{\#}(b) a^{-1} f_{\#}(c)^{-1},$$

for $a \in \pi_1(N)$, and $b, c \in \pi_1(M)$.

We study $F^{-1}\pi_{n-1}\theta_N$ more exactly. The group $\pi_1(N)$ can be described in the form $\pi_1(N) = \operatorname{Im} f_{\#} + \sum_{i \in I} ((\operatorname{Im} f_{\#})a_i(\operatorname{Im} f_{\#}) \cup (\operatorname{Im} f_{\#})a_i^{-1}(\operatorname{Im} f_{\#})).$

We set $(\text{Im } f_{\#})a(\text{Im } f_{\#}) \cup (\text{Im } f_{\#})a^{-1}(\text{Im } f_{\#}) = [a]$. From Lemma 4.1, it follows that

$$(4.2) F^{-1}\pi_{n-1}\theta_N = A_{\theta} \oplus \sum_{i \in I} A_{\theta_i}$$

where

(4.3)
$$A_{\theta} = S(Z(\operatorname{Im} f_{\#}), \mu_{M}) \\ A_{\theta i} = S(\sum_{a \in [a_{i}]} Z < a >, \mu_{M}).$$

Here Z < a > denotes the infinite cyclic group generated by a. By the definition of the

sheaf $\pi_{n-1}\zeta_N$, the induced sheaf $F^{-1}\pi_{n-1}\zeta_N$ is desciried in the form

$$F^{-1}\pi_{n-1}\zeta_N = A_{\zeta} \bigoplus \sum_{i \in I} A_{\zeta_i}$$

where A_{ζ} and $A_{\zeta i}$ are subsheaves of A_{θ} and $A_{\theta i}$, respectively, satisfying the conditions

(4.4)
$$\begin{aligned} A_{\zeta}|PM &= S(Z, \mu_M) = F^{-1} \pi_{n-1} \rho_N, \quad A_{\zeta i}|PM &= 0, \\ A_{\zeta} &= A_{\theta} \quad \text{over} \quad M^* = R^* M - PM, \quad A_{\zeta i} = A_{\theta i} \quad \text{over} \quad M^* \end{aligned}$$

From now on, we assume that $n = \dim N = 2 \dim M + 1 = 2m + 1$. By Theorem 3.2, we have

$$[M \subset N]_f = H^{2m}(R^*M; A_{\zeta}) \oplus \sum_{i \in I} H^{2m}(R^*M; A_{\zeta i}).$$

The proof of Theorem 1.1 follows from Assertions 1 and 2 below.

Assertion 1. $H^{2m}(R^*M; A_{\zeta}) = 0$.

Let A_i and B_i be the sets defined by

$$A_i = \{(b, c) \in \pi_1(M) \times \pi_1(M) \mid f_{\#}(b)a_i f_{\#}(c)^{-1} = a_i\},\$$

$$B_i = \{(b, c) \in \pi_1(M) \times \pi_1(M) \mid f_{\#}(b)a_i^{-1} f_{\#}(c)^{-1} = a_i\},\$$

and let $h_i: A_i \rightarrow \{\pm 1\}$ and $k_i: B_i \rightarrow \{\pm 1\}$ be maps given by

$$h_i(b, c) = (-1)^b (-1)^c (-1)^{f\#(c)},$$

$$h_i(b, c) = (-1)^{m+1} (-1)^b (-1)^c (-1)^{f\#(c)} (-1)^{a_i}.$$

Assertion 2. $H^{2m}(R^*M; A_{\zeta i}) = Z_2$ or Z according as $h_i \cup k_i : A_i \cup B_i \rightarrow \{\pm 1\}$ is surjective or not.

In proving the assertions mentioned above, we use the following lemmas. The first one is shown in §5, while the other one is well-known.

Lemma 4.5. Let $w_1(R^*M)$ and $w_1(PM)$ be the orientation homomorphisms of R^*M and PM, respectively. Then

(1)
$$w_1(R^*M) : \pi_1(R^*M) = (\pi_1(M) \times \pi_1(M)) \times \phi T_2 \to \operatorname{Aut}(Z) \text{ is given by}$$

 $w_1(R^*M)(b, c, t^*) = (-1)^{\epsilon(\dim M)}(-1)^{b}(-1)^{c}1_Z,$
(2) $w_1(PM) : \pi_1(PM) = \Delta_{\pi_1(M)} \times T_2 \to \operatorname{Aut}(Z) \text{ is given by}$
 $w_1(PM)(b, b, t^*) = (-1)^{\epsilon(\dim M)}1_Z.$

Lemma 4.6. Let G be an abelian group and $S(G, \mu)$ a local system over a pathconnected space X. Let \overline{G} be the subgroup of G generated by $\{g-\mu(a)g \mid a \in \pi_1(X), g \in G\}$. Then

$$H_0(X; S(G, \mu)) = G/\overline{G}.$$

Proof of assertion 1. Let $i: A_{\zeta} \to A_{\theta}$ be the natural inclusion. Because of the fact that R^*M is a 2*m*-manifold with boundary *PM* and the properties of A_{ζ} and A_{θ} in (4.4), we have a commutative diagram of exact sequences

Here i_* in the right hand side is an isomorphism because $A_{\zeta} = A_{\theta}$ on $R^*M - PM$. Therefore it is enough to show that $i_*\delta$, or equivalently $\delta'i_*$, is surjective. By the Poincaré duality, it is sufficient to prove that $j_*(i\otimes 1)_* : H_0(PM; (F^{-1}\pi_{2m}\rho_N)\otimes S(Z, w_1(PM))) \rightarrow H_0(PM; (A_{\theta}|PM)\otimes S(Z, w_1(PM))) \rightarrow H_0(R^*M; A_{\theta}\otimes S(Z, w_1(R^*M)))$ is surjective, where $j: PM \subset R^*M$ is the natural inclusion. From (4.3), (4.4) and Lemmas 4.5-6, it follows that

$$H_0(PM; (F^{-1}\pi_{2m}\rho_N) \otimes S(Z, w_1(PM))) = \begin{cases} Z & \text{if } m \equiv 1(2), \text{ Im} f_{\#} \subset \text{Ker } w_1(N), \\ Z_2 & \text{otherwise}, \end{cases}$$
$$H_0(R^*M; A_{\theta} \otimes S(Z, w_1(R^*M))) = \begin{cases} Z & \text{if } m \equiv 1(2), \text{ Im } f_{\#} \subset \text{Ker } w_1(N), \text{ Ker } f_{\#} \subset \text{Ker } w_1(M), \\ Z_2 & \text{otherwise}, \end{cases}$$

and that j_* is surjective on $\operatorname{Im}(i\otimes 1)_*$.

Proof of Assertion 2. By using (4.3)-(4.4) and the Poincaré duality, we have

$$H^{2m}(R^*M; A_{\zeta i}) = H_0(R^*M; S(\sum_{a \in [a_i]} Z < a >, \mu_M \otimes w_1(R^*M)))$$

It is easily proved that the right hand side is isomorphic to Z_2 or Z according as $h_i \cup k_i$: $A_i \cup B_i \rightarrow \{\pm 1\}$ is surjective or not.

Proof of Corollary 1.2. Assume that $f_{\#}: \pi_1(M) \to \pi_1(N)$ is trivial. Then for $a \in \pi_1(N)$, the coset $[a] = \{a\}$ or $\{a, a^{-1}\}$ according as $a^2 = 1$ or not.

Case $w_1(M) = 0$. In this case, $(-1)^b = (-1)^{f \# (b)} = 1$ for $b \in \pi_1(M)$. If $a^2 = 1$ then $A_a = B_a = \pi_1(M) \times \pi_1(M)$ and $h_a(b, c) = 1$, $k_a(b, c) = (-1)^{m+1} (-1)^a$. Hence $h_a \cup k_a$ is surjective if and only if either $(-1)^a = 1$, $m \equiv 0(2)$ or $(-1)^a = -1$, $m \equiv 1(2)$. If $a^2 \neq 1$, then $A_a = \pi_1(M) \times \pi_1(M)$, $B_a = \phi$ and $h_a(b, c) = 1$ for any $b, c \in \pi_1(M)$. Hence $h_a \cup k_a$ is not surjective. Therefore we get

$$[M \subset N]_f = \begin{cases} \sum_{a \in A} Z_2 \oplus \sum_{a \in B} Z \oplus \sum_{\{a, a^{-1}\} \in C} Z & \text{if } m \equiv 0(2), \\ \sum_{a \in A} Z \oplus \sum_{a \in B} Z_2 \oplus \sum_{\{a, a^{-1}\} \in C} Z & \text{if } m \equiv 1(2). \end{cases}$$

Case $w_1(M) \neq 0$. For any $a \neq 1 \in \pi_1(M)$, we have $A_a = \pi_1(M) \times \pi_1(M)$ and $h_a(b, c) = (-1)^b (-1)^c$ because $(-1)^{f_{\#}(c)} = 1$. From the assumption $w_1(M) \neq 0$, it follows that h_a is surjective and so is $h_a \cup k_a$. Then we get

$$[M \subset N]_f = \sum_{a \in A \cup B} Z_2 \oplus \sum_{\{a, a^{-1}\} \in C} Z_2.$$

Enumerating embeddings of m-manifolds into (2m+1)-manifolds

Proof of Corollary 1.3 follows this corollary and (2.3).

§ 5. The orientation homomorphism of R^*M

In this section, we shall prove the following

Lemma 4.5. Assume that dim $M \ge 3$.

(1) The orientation homomorphism $w_1(R^*M) : (\pi_1(M) \times \pi_1(M)) \times \phi T_2 \to \operatorname{Aut}(Z)$ of R^*M is given by

$$w_1(R^*M)(b, c, t^{\epsilon}) = (-1)^{\epsilon(\dim M)}(-1)^{b}(-1)^{c}1_Z.$$

(2) $w_1(PM) : \Delta \pi_1(M) \times T_2 \rightarrow \operatorname{Aut}(Z)$ is given by

$$w_1(PM)(b, b, t') = (-1)^{\circ(\dim M)} 1_Z.$$

Frist of all, we recall some well-known results.

Lemma 5.1. For a pathconnected space X, there is an isomorphism ψ_X : $H^1(X; \mathbb{Z}_2) \to \operatorname{Hom}(\pi_1(X), \operatorname{Aut}(\mathbb{Z}))$, which is natural for maps, that is, for a map $g: X \to Y$, there is an equation

$$\phi_X(g^*(y))(x) = \psi_Y(y)(g_{\#}(x)) \quad x \in \pi_1(X), \ y \in H^1(Y; Z_2).$$

In this sense, our purpose is to determine the homomorphisms $\psi_{R*M}(w_1(R*M))$ and $\psi_{PM}(w_1(PM))$. By Lemma 5.1, we easily obtain the following

Lemma 5.2. For spaces X, Y, the isomorphism $\psi_{X\times Y}$ is given by $\psi_{X\times Y}(a\otimes 1 + 1\otimes a')(b, c) = \psi_X(a)(b) \psi_Y(a')(c).$

Now, we return to the proof of Lemma 4.5. Since the natural inclusion $M^* = R^*M - PM \subset R^*M$ is a homotopy equivalence, we identify cohomology groups and homotopy groups of M^* and those of R^*M . The Z_2 -cohomology of M^* (and hence R^*M) is calculated by Thomas [10]. The results stated in [10] are freely quoted hereafter. There is a commutative diagram

$$\begin{array}{cccc} H^{1}(M \times M ; Z_{2}) & \stackrel{\rho_{1}}{\longrightarrow} & H^{1}(M \times M - \Delta M ; Z_{2}) \\ & \uparrow q^{*} & \rho & \uparrow p^{*} \\ H^{1}(\Gamma M ; Z_{2}) & \stackrel{\rho_{2}}{\longrightarrow} & H^{1}(M^{*} ; Z_{2}) = H^{1}(R^{*}M ; Z_{2}) \\ & \uparrow k^{*} & \uparrow j^{*} \\ H^{1}(M \times P^{\infty} ; Z_{2}) & \stackrel{\rho_{2}}{\longrightarrow} & H^{1}(PM ; Z_{2}) . \end{array}$$

Here, the maps ρ , ρ_1 , ρ_2 are all isomorphisms induced by maps. In particular

$$\rho = (R^* i_M)^* \Psi^*$$

where the maps R^*i_M and Ψ are given in §3. Let $u \in H^1(P^{\infty}; Z_2)$ be the generator. Then

$$H^{1}(\Gamma M; Z_{2}) = Z_{2} \langle u \rangle \oplus \{x \otimes 1 + 1 \otimes x \mid x \in H^{1}(M; Z_{2})\}.$$

Lemma 5.3. The first Stiefel-Whitney class $w_1(R^*M)$ of R^*M is given by $w_1(R^*M) = \rho(w_1(R^*M) \otimes 1 + 1 \otimes w_1(M)) + (\dim M)\rho(u).$

Proof. $w_1(R^*M)$ is expressed in the form $w_1(R^*M) = \lambda \rho(u) + \rho(x \otimes 1 + 1 \otimes x)$ for some $x \in H^1(M; \mathbb{Z}_2)$ and $\lambda \in \mathbb{Z}_2$. Because $\rho_1(x \otimes 1 + 1 \otimes x) = p^*w_1(R^*M) = w_1(M \times M - \Delta_M) = \rho_1 w_1(M \times M) = \rho_1(w_1(M) \otimes 1 + 1 \otimes w_1(M))$, we have $x = w_1(M)$. Let $v \in H^1(PM; \mathbb{Z}_2)$ be the first Stiefel-Whitney class of the double covering $SM \to PM$. Then $\lambda v = \rho_2 k^*(\lambda u + x \otimes 1 + 1 \otimes x) = j^*w_1(R^*M) = w_1(PM) = (\dim M)v$. Hence $\lambda \equiv \dim M(2)$.

Lemma 5.4. The isomorphism ψ_{R*M} : $H^1(R*M; Z_2) \rightarrow \text{Hom}(\pi_1(R*M), \text{Aut}(Z))$ is given by

> $\psi_{R*M}(\rho(a\otimes 1+1\otimes a))(b, c, t^{\epsilon}) = \psi_M(a)(bc),$ $\psi_{R*M}(\rho(u)(b, c, t^{\epsilon}) = (-1)^{\epsilon}1_Z,$

for $a \in H^1(M; \mathbb{Z}_2)$, $b, c \in \pi_1(M)$ and $\varepsilon = 0$ or 1.

Proof. Using Lemma 5.2 and the fact that $\rho = (R^* i_M)^* \Psi^*$, we have

$$\begin{split} \psi_{R*M}(\rho(a\otimes 1+1\otimes a))(b, c, 1) &= \psi_{\Gamma M}(a\otimes 1+1\otimes a)(b, c, 1) \\ &= \psi_{M\times M}(a\otimes 1+1\otimes a)(b, c) \\ &= \psi_{M}(a)(bc), \\ \psi_{R*M}(\rho(a\otimes 1+1\otimes a))(1, 1, t) &= \psi_{\Gamma M}(a\otimes 1+1\otimes a)(1, 1, t) \\ &= \psi_{\Gamma M}(a\otimes 1+1\otimes a)(k\#(1, t)) \\ &= \psi_{M\times P^{\infty}}(0)(1, t) = 1z. \end{split}$$

Thus we have the first half of the lemma. As for the second half, we have the following equations:

$$\psi_{R*M}(\rho(u))(b, c, 1) = \psi_{\Gamma M}(u)(b, c, 1) = \psi_{P^{\infty}}(u)(p_{\#}(b, c, 1)) = 1_{Z},$$

where $p: \Gamma M \to P^{\infty}$ is a projection (see §3), and

$$\psi_{R*M}(\rho(u))(1, 1, t) = \psi_{P^{\infty}}(u)(t) = -1_{Z}.$$

Hence, the second half of the lemma is proved.

Enumerating embeddings of *m*-manifolds into (2m+1)-manifolds

The proof of Lemma 4.5(1) follows immediately from Lemmas 5.1, and 5.3-4, while Lemma 4.5 (2) is easily obtained by using the fact that $w_1(PM) = (\dim M)v$.

References

- J.-P. Dax, Étude homolopique des espaces de plongements, Ann. Scient. Ec. Norm. Sup., 5 (1972), 303----377.
- [2] Faiz Al-Rubaee, Spherical knots in lens spaces, Comm. Pure. Appl. Math., 43 (1990), 291-294.
- [3] H. Heafliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-82.
- [4] L.L. Larmore, Obstructions to embedding and isotopy in the metastable range, Rocky Mountain J. Math., 3 (1973), 355-375.
- [5] L. L. Larmore, Isotopy groups, Trans. Amer. Math. Soc., 239 (1978), 67-97.
- [6] B,-H. Li, private commumnication.
- [7] B.-H. Li, R. Liu and P. Zhang, A simple approach to embedding problems in normal bordism framework, Sys. Sci. Math. Sci., 5 (1992), 180-192.
- [8] B.-H. Li and P. Zhang, On isotopy classification of n-manifolds in 2n-manifolds, to appear in Sys. Sci. Math. Sci.
- [9] H. A. Salomonsen, On the existence and classification of differentiable embeddings in the metastable range, Aarhus Univ. Preprint Series, (1973/74), no. 4.
- [10] E. Thomas, Embeding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163-186.
- [11] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer-Verlag, New York-Heidelberg-Berlin, 1978.
- [12] H. Whitney, Differentiable manifolds, Ann. of Math., 45 (1936), 645-680.