Enumerating embeddings of m-manifolds into ($2 m+1$)-manifolds

By
Tsutomu YASUI*

(August 7, 1992)

Abstract

For a closed connected differentiable manifold M, a differentiable manifold N and a differentiable map $f: M \rightarrow N$, we denote the set of isotopy classes of embeddings homotopic to f by $[M \subset N][f]$ and the set $\pi_{1}\left(N^{M}, \operatorname{Emb}(M, N), f\right)$ by $[M \subset N] f$, where $\operatorname{Emb}(M, N)$ stands for the space of embeddings of M to N. In this paper, we will determine the set $[M \subset N]_{f}$ on the assumption that $\operatorname{dim} N=2 \operatorname{dim} M+1 \geq 7$, along the lines of Larmore [4], [5]. If $N=L^{m}(p)$, the lens space $\bmod p$, we will determine the isotopy set $[M \subset N]_{[f]}$ for $\operatorname{dim} M=m \geq 3$.

§1. Introduction

Let M be a compact connected differentiable m-manifold without boundary and let $f: M \rightarrow N$ be a differeniable map of M to a differentiable manifold N without boundary. Denote the set of isotopy classes of embeddings homotopic to f by $[M \subset$ $N]_{[f f}$, and let $\pi_{1}\left(N^{M}, \operatorname{Emb}(M, N), f\right)=[M \subset N]_{f}$, where $\operatorname{Emb}(M, N)$ stands for the space of embeddings of M to N. Under these circumstances, it is known that there is a $\pi_{1}\left(N^{M}, f\right)$-action on $[M \subset N]_{f}$ such that

$$
[M \subset N]_{f} / \pi_{1}\left(N^{M}, f\right)=[M \subset N]_{[f]}
$$

(see §2 or e.g. [4], [5], [9]).
If $\operatorname{dim} N>2 \operatorname{dim} M+1$, then $\left.[M \subset N]_{[f}\right]$ is a singleton [12]. If $\operatorname{dim} N=2 \operatorname{dim} M$ +1 , then there exists an embedding $M \rightarrow N$ homotopic to a given map f [12], and if moreover $f_{\#}: \pi_{1}(M) \rightarrow \pi_{1}(N)$ is surjective, then [$\left.M \subset N\right]_{[f]}$ is also a singleton [3]. However, in general, the set $[M \subset N]_{[f]}$ is not necessarily a singleton even if $\operatorname{dim} N$ $=2 \operatorname{dim} M+1$ (cf. [1], [2], [4], [7]).

The set $[M \subset N]_{f}$ has an affine abelian group structure with unit $[f]$ in the metastable range (cf. [4], [5], [9]). In this paper, we shall study the affine group $[M \subset N]_{f}$ on the assumption that $\operatorname{dim} N=2 \operatorname{dim} M+1$.

For a manifold V, let $w_{1}(V): \pi_{1}(V) \rightarrow \operatorname{Aut}(Z)$ be the orientation homomorphism of V and define a number $(-1)^{a}$ for $a \in \pi_{1}(V)$ by the equation

[^0]$$
w_{1}(V)(a)=(-1)^{a} 1 z
$$

For a map $f: M \rightarrow N$, the fundamental group $\pi_{1}(N)$ of N is expressed in the form

$$
\pi_{1}(N)=\operatorname{Im} f_{\#}+\sum_{i \in I}\left(\left(\operatorname{Im} f_{\#}\right) a_{i}\left(\operatorname{Im} f_{\#}\right) \cup\left(\operatorname{Im} f_{\#}\right) a_{i}^{-1}\left(\operatorname{Im} f_{\#}\right)\right)
$$

For $i \in I$, let

$$
\begin{aligned}
& A_{i}=\left\{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b) a_{i} f_{\#}(c)^{-1}=a_{i}\right\} \\
& B_{i}=\left\{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b) a_{i}^{-1} f_{\#}(c)^{-1}=a_{i}\right\}
\end{aligned}
$$

and let $h_{i}: A_{i} \rightarrow\{ \pm 1\}$ and $k_{i}: B_{i} \rightarrow\{ \pm 1\}$ be the maps defined by

$$
\begin{gathered}
h_{i}(b, c)=(-1)^{b}(-1)^{c}(-1)^{f_{\#}(c)} \\
k_{i}(b, c)=(-1)^{m+1}(-1)^{a_{i}(-1)^{b}(-1)^{c}(-1)^{f_{\#}(c)}},(m=\operatorname{dim} M) .
\end{gathered}
$$

Then, using classical algebraic topology along the lines of Larmore [4], [5], we will prove the following theorem of Li [6]. The proof is different from that of Li , who used normal bordism theory due to Dax [1] and Salomonsen [9].

Theorem $1.1(\mathrm{Li})$. Assume that M is a compact connected differentiable m-manifold without boundary $(m \geq 3)$ and N is a differentiable $(2 m+1)$ manifold without boundary. Then for any embedding $f: M \rightarrow N$,

$$
[M \subset N]_{f}=Z_{2}^{\alpha}+Z^{\beta},
$$

where α and β are the cardinalities of the set $\left\{i \in I \mid h_{i} \cup k_{i}: A_{i} \cup B_{i} \rightarrow\{ \pm 1\}\right.$ is surjective $\}$ and the set $\left\{i \in I \mid h_{i} \cup k_{i}\right.$ is not surjective $\}$, respectivvely.

Corollary 1.2. In addition to the assumption above, we assume that $f_{\#}$: $\pi_{1}(M) \rightarrow \pi_{1}(N)$ is trivial. Then

$$
[M \subset N]_{f}= \begin{cases}\sum_{A} Z_{2}+\sum_{B \cup C} Z & \text { if } w_{1}(M)=0, m \equiv 0(2), \\ \sum_{B} Z_{2}+\sum_{A \cup C} Z & \text { if } w_{1}(M)=0, m \equiv 1(2), \\ \sum_{A \cup B \cup C} Z_{2} & \text { if } w_{1}(M) \neq 0,\end{cases}
$$

where

$$
\begin{gathered}
A=\left\{a \in \pi_{1}(N) \mid a \neq 1, a^{2}=1,(-1)^{a}=1\right\}, \\
B=\left\{a \in \pi_{1}(N) \mid a^{2}=1,(-1)^{a}=-1\right\}, \\
C=\left\{\left\{a, a^{-1}\right\} \mid a \in \pi_{1}(N), a^{2} \neq 1\right\} .
\end{gathered}
$$

If $N=L^{m}(p)=S^{2 m+1} / Z_{p}(p \geq 2)$, the lens space $\bmod p\left(L^{m}(2)=P^{2 m+1}\right.$, the odd dimensional real projective space), then $[M \subset N]_{f}=[M \subset N]_{[f]}$ (see (2.3)) and hence we have the following

Theorem 1.3. Assume that M is a compact connected differentiable m manifold without boundary $(m \geq 3)$. If $f: M \rightarrow L^{m}(p)(p \geq 2)$ is nullhomotopic,
then

$$
\left[M \subset L^{m}(p)\right]_{[f]}= \begin{cases}Z^{(p-2) / 2} & p \equiv 1(2), w_{1}(M)=0, \\ Z^{(p-2) / 2}+Z & p \equiv 0(2), w_{1}(M)=0, m \equiv 1(2), \\ Z^{(p-2) / 2}+Z_{2} & p \equiv 0(2), w_{1}(M)=0, m \equiv 0(2) \\ Z_{2}^{[p / 2]} & w_{1}(M) \neq 0\end{cases}
$$

where [q] denotes the integer part of q.

Remark. If p is a prime and f is not nullhomotopic, then $f_{\#}: \pi_{1}(M) \rightarrow \pi_{1}\left(L^{m}(p)\right)$ is surjective and hence $\left[M \subset L^{m}(p)\right]_{[f]}$ is a singleton [3].

Remark. If M is simply connected, then the results above are coincident with those of Li , Liu and Zhang [7].

The remainder of this paper is organized as follows: In §2, we recall the definition of $\pi_{1}\left(N^{M}, f\right)$-action on the set $[M \subset N]_{f}$ and prove that this action is trivial if $N=L^{n}(p)(p \geq 2)$. In §3, we introduce Larmore's method of computing $[M \subset N]_{f}$. The proofs of the results in the introduction are given in §4. A key lemma used in proving Theorem 1.1 is proved in $\S 5$.

The author is grateful to Dr. Zhang for his valuable suggestions.

§2. The $\pi_{1}\left(N^{M}, f\right)$-action on $[M \subset N]_{f}$

In what follows, M is a compact connected differentiable m-manifold without boundary, N is a connected differentiable manifold without boundary and $f: M \rightarrow N$ is an embedding. The space N^{M} and $\operatorname{Emb}(M, N)$ stand for the space of differentiable maps of M to N and its subspace consisting of embeddings, respectively. According to the notations used in [4], [5], we set $\pi_{1}\left(N^{M}, \operatorname{Emb}(M, N), f\right)=[M \subset N]_{f}$. The group $\pi_{1}\left(N^{M}, f\right)$ acts on the left of $[M \subset N]_{f}$ as follows: Given a self-homotopy $\left\{g_{t}\right\}$ of f and a homotopy $\left\{f_{t}\right\}$ from f to an embedding, we define $\left[g_{t}\right]\left[f_{t}\right]=\left[\left\{g_{t}\right\}\left\{f_{t}\right\}\right]$, where $\left\{g_{t}\right\}\left\{f_{t}\right\}$ denotes the join of the two homotopies $\left\{g_{t}\right\}$ and $\left\{f_{t}\right\}$. The natural map $\Delta:[M \subset N]_{f} \rightarrow[M \subset N]_{[\rho}$, defined by $\Delta\left[f_{t}\right]=\left[f_{1}\right]$, the isotopy class of the embedding f_{1}, leads to the following

Theorem 2.1 (Larmore et al). There is a bijection

$$
[M \subset N]_{f} / \pi_{1}\left(N^{M}, f\right)=[M \subset N]_{[f]} .
$$

To determine the isotopy set $[M \subset N]_{[f]}$ along these lines, we have to study the set $[M \subset N]_{f}$ and the $\pi_{1}\left(N^{M}, f\right)$-action on it. In some cases, $\pi_{1}\left(N^{M}, f\right)$-actions are found to be trivial, even if $\pi_{1}\left(N^{M}, f\right)$ is not a trivial group.

Lemma 2.2. If any generator of $\pi_{1}\left(N^{M}, f\right)$ is represented by the composi-
tion $\left\{\Phi_{t} f\right\}$ of f and a periodic flow $\left\{\Phi_{t}\right\}$ of N, then $\pi_{1}\left(N^{M}, f\right)$ acts trivially on $[M \subset N]_{f}$, and hence $[M \subset N]_{f}=[M \subset N]_{[f]}$.

Here the periodic flow means a flow $\left\{\Phi_{t}\right\}$ such that $\Phi_{t+1}=\Phi_{t}$ for $t \in R$.
Proof. Given a homotopy $\left\{f_{t}\right\}$ of f to an embedding, let $F: M \times I \times I \rightarrow N \times I \times I$ be a homotopy defined by

$$
F(x, t, u)= \begin{cases}\left(f_{(2 t+u-1) /(u+1)}(x), t, u\right), & (1-u) / 2 \leq t \leq 1, \\ (f(x), t, u), & 0 \leq t \leq(1-u) / 2\end{cases}
$$

Let $G: N \times I \times I \rightarrow N$ be a homotopy defined by

$$
G(y, t, u)= \begin{cases}y, & 1 / 2+u \leq t \leq 1 \text { or } 0 \leq t \leq u, \\ \Phi_{2(t-u)}(y), & u \leq t \leq \min \{1,1 / 2+u\} .\end{cases}
$$

Then the composition $G F: M \times I \times I \rightarrow N$ is a homotopy of $\left\{\Phi_{t} f\right\}\left\{f_{t}\right\}$ to $\left\{f_{t}\right\}$, and hence $\left[\Phi_{t} f\right]\left[f_{t}\right]=\left[f_{t}\right]$.

Example. For $p \geq 2$, let $L^{n}(p)=S^{2 n+1} / Z_{p}$ be the lens space $\bmod p\left(L^{n}(2)=\right.$ $P^{2 n+1}$, the odd dimensional real projective space). Then $\Phi_{t}: L^{n}(p) \rightarrow L^{n}(p)$, defined by

$$
\Phi_{t}\left[x_{0}, \cdots, x_{n}\right]=\left[x_{0} \exp (2 \pi i t / p), \cdots, x_{n} \exp (2 \pi i t / p)\right]
$$

is a periodic flow, where $x_{k}(0 \leq k \leq n)$ are complex numbers with $\sum_{k=0}^{n}\left|x_{k}\right|^{2}=1$. If $2 n>\operatorname{dim} M$, by the Eilenberg classification theorem (e.g., [11, (6.17)]), we get $\pi_{1}\left(L^{n}(p)^{M}, f\right)=\pi_{1}\left(L^{n}(p)\right)=Z_{p}$ generated by $\left[\Phi_{t} f\right]$. Therefore

$$
\begin{equation*}
\left[M \subset L^{n}(p)\right]_{[f]}=[M \subset N]_{f} \text { if } \operatorname{dim} M<2 n . \tag{2.3}
\end{equation*}
$$

§3. Larmore's method

In this section, we shall recall Larmore's method [4], [5] of computing [$M \subset N]_{f}$.
For an n-manifold V, Let $R V=\left(V \times V-\Delta_{V}\right) U_{\phi} S V \times[0, \varepsilon)$, where $\phi: S V \times(0, \varepsilon) \rightarrow$ $V \times V-\Delta_{V}$ is a map given by $\phi(v, t)=(\exp (t v), \exp (-t v))$. Here $S V$ denotes the total space of the tangent sphere bundle of V and Δ_{V} means the diagonal of V. A free Z_{2}-action on $R V$ is induced from the antipodal map on $S V$ and the interchaging of elements of $V \times V$. We denote the quotient spaces $R V / Z_{2}$ and $\left(V \times V-\Delta_{V}\right) / Z_{2}$ by $R^{*} V$ and V^{*}, respectivey. Then the space $R^{*} V$ is a $2 n$-manifold with boundary $P V\left(=S V / Z_{2}\right)$, and $R^{*} V-P V=V^{*}$, the reduced symmetric product of V. If V is compact, so is $R^{*} V$.

The pair of spaces $\left(R^{*}\left(V \times R^{\infty}\right), P\left(V \times R^{\infty}\right)\right)$ denotes the inductive limit of $R^{*}(V \times$ $\left.R^{k}\right), P\left(V \times R^{k}\right)$). We convert the natural inclusion $R^{*} i_{V}:\left(R^{*} V, P V\right) \subset\left(R^{*}\left(V \times R^{\infty}\right)\right.$, $P\left(V \times R^{\infty}\right)$) into a pair fibration $\zeta_{V}:\left(Y_{V}, Z_{V}\right) \rightarrow\left(R^{*}\left(V \times R^{\infty}\right), P\left(V \times R^{\infty}\right)\right)$ in a
standard manner. For an embedding $f: M \rightarrow N$, let $R^{*} i_{N} R^{*} f=F$ for brevity's sake, and let $\Gamma\left(F^{-1} \zeta_{N}\right)$ be the set of homotopy classes of cross sections of the pull-back of ζ_{N} along F. Then Larmore [4], [5] has proved the following

Theorem 3.1 (Larmore). If $2 \operatorname{dim} N>3(\operatorname{dim} M+1)$, then

$$
[M \subset N]_{f}=\Gamma\left(F^{-1} \zeta_{N}\right)
$$

Let $\theta_{V}: Y_{V} \rightarrow R^{*}\left(V \times R^{\infty}\right)$ and $\rho_{V}: Z_{V} \rightarrow P\left(V \times R^{\infty}\right)$ be the restrictions of ζ_{V} to Y_{V} and Z_{V}, respectively. Then θ_{V} and ρ_{V} are both ordinary fibrations. Let $\pi_{q} \theta_{V}$ and $\pi_{q} \rho_{V}$ be the local systems of q-th homotopy groups of θ_{V} and ρ_{V}, respectively, and let $\pi_{q} \zeta_{V}$ be a subsheaf of $\pi_{q} \theta_{V}$ such that

$$
\pi_{q} \zeta_{V}= \begin{cases}\pi_{q} \rho_{V} & \text { over } P\left(V \times R^{\infty}\right), \\ \pi_{q} \theta_{V} & \text { over } R^{*}\left(V \times R^{\infty}\right)-P\left(V \times R^{\infty}\right) .\end{cases}
$$

Theorem 3.2 (Larmore). Let $\operatorname{dim} M=m \geq 2$ and $\operatorname{dim} N=2 m+1$. Then for any embedding $f: M \rightarrow N$

$$
[M \subset N]_{f}=\Gamma\left(F^{-1} \zeta_{N}\right)=H^{2 m}\left(R^{*} M ; F^{-1} \pi_{2 m} \zeta_{N}\right) .
$$

Now, we shall explain the sheaf $\pi_{n-1} \zeta_{V}(n=\operatorname{dim} V)$. We set $(V \times V) \times z_{2} S^{\infty}=\Gamma V$. Then the natural projection: $p: \Gamma V \rightarrow P^{\infty}$ is a fibration with fiber $V \times V$ and with cross section s. We denote the generator of $\pi_{1}\left(P^{\infty}\right)=Z_{2}$ by t and set $s_{\#}(t)=t$, and $T_{2}=$ Z_{2} generated by t. Then $\pi_{1}(\Gamma V)=\left(\pi_{1}(V) \times \pi_{1}(V)\right) \times_{\varphi} T_{2}$, the semidirect product, where $\varphi: T_{2} \rightarrow \operatorname{Aut}\left(\pi_{1}(V) \times \pi_{1}(V)\right)$ is given by $\varphi(t)(b, c)=(c, b)$ and there is a homotopy equivalence $\Psi: R^{*}\left(V \times R^{\infty}\right) \rightarrow \Gamma V\left[5\right.$, p. 84]. We regard $\Psi_{\#}: \pi_{1}\left(R^{*}\left(V \times R^{\infty}\right)\right) \rightarrow$ $\left(\pi_{1}(V) \times \pi_{1}(V)\right) \times_{p} T_{2}$ as the identily.

Lemma 3.3 (Larmore). Assume that $\operatorname{dim} V \geq 3$.
(1) $\left(R^{*} i_{V}\right)_{\#}: \pi_{1}\left(R^{*} V\right) \rightarrow\left(\pi_{1}(V) \times \pi_{1}(V)\right){ }_{\varphi} T_{2}$ is an isomorphism,
(2) $\left(R^{*} i_{V}\right)_{\#}: \pi_{1}(P V) \rightarrow \pi_{1}\left(P\left(V \times R^{\infty}\right)\right)=\Delta_{\pi_{1}}(V) \times T_{2}$ is an isomorphism,
(3) the natural inclusion $P\left(V \times R^{\infty}\right) \subset R^{*}\left(V \times R^{\infty}\right)$ induces a natural inclusion $\Delta_{x_{1}(V)} \times T_{2} \subset\left(\pi_{1}(V) \times \pi_{1}(V)\right) \times{ }_{\varphi} T_{2}$.

For a manifold V, we denote by $w_{1}(V)$ both the first Stiefel-Whitney class of V and its orientation homomorphism $w_{1}(V): \pi_{1}(V) \rightarrow \operatorname{Aut}(Z)$. For an element $a \in \pi_{1}(V)$, we define a number $(-1)^{a}$ by the equation

$$
w_{1}(V)(a)=(-1)^{a} 1 z
$$

Given an abedian group G and a homomorphism $\mu: \pi_{1}(X) \rightarrow \operatorname{Aut}(G)$, we denote
the local system over X associated with μ by $S(G, \mu)$.

Lemma 3.4 (Larmore). Assume that $\operatorname{dim} V=n \geq 5$.
(1) $\pi_{n-1} \theta_{V}=S\left(Z_{\pi_{1}}(V), \mu\right)$ over $R^{*}\left(V \times R^{\infty}\right)$, where $\mu:\left(\pi_{1}(V) \times \pi_{1}(V)\right) \times_{\varphi} T_{2} \rightarrow$ Aut $\left(Z_{\pi_{1}}(V)\right)$ is given by

$$
\begin{array}{ll}
\mu(b, c, 1)(a)=(-1)^{c} b a c^{-1} & \text { for } a, b, c \in \pi_{1}(V), \\
\mu(b, c, t)(a)=(-1)^{n}(-1)^{a}(-1)^{c} b a^{-1} c^{-1} & \text { for } a, b, c \in \pi_{1}(V) .
\end{array}
$$

(2) $\pi_{n-1} \rho_{V}=S\left(Z, \mu^{\prime}\right)$ over $P\left(V \times R^{\infty}\right)$, where Z is an infinite cyclic group generated by $1 \in \pi_{1}(V)$ and $\mu^{\prime}: \Delta_{x_{1}(V)} \times T_{2} \rightarrow \operatorname{Aut}(Z)$ is the restriction of μ.

§4. Proofs of the results in the introduction

If $\operatorname{dim} M \geq 3$, then it is easily proved that for $f: M \rightarrow N$, its induced homomorphism $F_{\#}=\left(R^{*} i_{N}\right)_{\#}^{\#}\left(R^{*}\right)_{\#}^{\#}: \pi_{1}\left(R^{*} M\right)\left(=\left(\pi_{1}(M) \times \pi_{1}(M)\right) \times_{\varphi} T_{2}\right) \rightarrow \pi_{1}\left(R^{*}\left(N \times R^{\infty}\right)\right)$ ($\left.=\left(\pi_{1}(N) \times \pi_{1}(N)\right) \times{ }_{\varphi} T_{2}\right)$ is given by

$$
F_{\#}\left(b, c, t^{t}\right)=\left(f_{\#}(b), f_{\#}(c), t^{t}\right) \quad \text { for } b, c \in \pi_{1}(M)
$$

Hence, by Lemma 3.4, we have the following

Lemme 4.1. Assume that $\operatorname{dim} N=n \geq 5$ and $\operatorname{dim} M=m \geq 3$. If $f: M \rightarrow N$ is an embedding, then $F^{-1} \pi_{n-1} \theta_{N}=S\left(\pi_{1}(N), \mu_{M}\right)$, where $\mu_{M}:\left(\pi_{1}(M) \times \pi_{1}(M)\right) \times_{p} T_{2}$ $\rightarrow \operatorname{Aut}\left(Z_{\pi_{1}}(N)\right.$ is given by

$$
\begin{gathered}
\mu_{M}(b, c, 1)(a)=(-1)^{f_{\#}(c)} f_{\#}(b) a f_{\#}(c)^{-1} \\
\mu_{M}(b, c, t)(a)=(-1)^{n}(-1)^{a}(-1)^{f_{\#}(c)} f_{\#}(b) a^{-1} f_{\#}(c)^{-1}
\end{gathered}
$$

for $a \in \pi_{1}(N)$, and $b, c \in \pi_{1}(M)$.

We study $F^{-1} \pi_{n-1} \theta_{N}$ more exactly. The group $\pi_{1}(N)$ can be described in the form

$$
\pi_{1}(N)=\operatorname{Im} f_{\#}+\Sigma_{i \in I}\left(\left(\operatorname{Im} f_{\#}\right) a_{i}\left(\operatorname{Im} f_{\#}\right) \cup\left(\operatorname{Im} f_{\#}\right) a_{i}^{-1}\left(\operatorname{Im} f_{\#}\right)\right)
$$

We set $\left(\operatorname{Im} f_{\#}\right) a\left(\operatorname{Im} f_{\#}\right) \cup\left(\operatorname{Im} f_{\#}\right) a^{-1}\left(\operatorname{Im} f_{\#}\right)=[a]$. From Lemma 4.1, it follows that

$$
\begin{equation*}
F^{-1} \pi_{n-1} \theta_{N}=A_{\theta} \oplus \Sigma_{i \in I} A_{\theta i} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{\theta}=S\left(Z\left(\operatorname{Im} f_{\#}\right), \mu_{M}\right) \\
A_{\theta i}=S\left(\sum_{a \in\left[a_{i}\right]} Z<a>, \mu_{M}\right) . \tag{4.3}
\end{gather*}
$$

Here $Z\langle a\rangle$ denotes the infinite cyclic group generated by a. By the definition of the

Enumerating embeddings of m-manifolds into ($2 m+1$)-manifolds

sheaf $\pi_{n-1} \zeta_{N}$, the induced sheaf $F^{-1} \pi_{n-1} \zeta_{N}$ is desciried in the form

$$
F^{-1} \pi_{n-1} \zeta_{N}=A_{\epsilon} \oplus \sum_{i \in I} A_{\zeta i}
$$

where A_{5} and $A_{5 i}$ are subsheaves of A_{θ} and $A_{\theta i}$, respectively, satisfying the conditions

$$
\begin{array}{ll}
A_{\zeta} \mid P M=S\left(Z, \mu_{M}\right)=F^{-1} \pi_{n-1} \rho_{N}, & A_{\zeta i} \mid P M=0 \\
A_{\zeta}=A_{\theta} \text { over } M^{*}=R^{*} M-P M, & A_{\zeta i}=A_{\theta i} \quad \text { over } M^{*} \tag{4.4}
\end{array}
$$

From now on, we assume that $n=\operatorname{dim} N=2 \operatorname{dim} M+1=2 m+1$. By Theorem 3.2, we have

$$
[M \subset N]_{f}=H^{2 m}\left(R^{*} M ; A_{\zeta}\right) \oplus \Sigma_{i \in I} H^{2 m}\left(R^{*} M ; A_{\zeta i}\right)
$$

The proof of Theorem 1.1 follows from Assertions 1 and 2 below.
Assertion 1. $H^{2 m}\left(R^{*} M ; A_{\zeta}\right)=0$.
Let A_{i} and B_{i} be the sets defined by

$$
\begin{array}{r}
A_{i}=\left\{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b) a_{i} f_{\#}(c)^{-1}=a_{i}\right\} \\
B_{i}=\left\{(b, c) \in \pi_{1}(M) \times \pi_{1}(M) \mid f_{\#}(b) a_{i}^{-1} f_{\#}(c)^{-1}=a_{i}\right\}
\end{array}
$$

and let $h_{i}: A_{i} \rightarrow\{ \pm 1\}$ and $k_{i}: B_{i} \rightarrow\{ \pm 1\}$ be maps given by

$$
\begin{gathered}
h_{i}(b, c)=(-1)^{b}(-1)^{c}(-1)^{f_{\#}^{(c)}} \\
k_{i}(b, c)=(-1)^{m+1}(-1)^{b}(-1)^{c}(-1)^{f_{\#}^{(c)}}(-1)^{a_{i}}
\end{gathered}
$$

Assertion 2. $H^{2 m}\left(R^{*} M ; A_{i}\right)=Z_{2}$ or Z according as $h_{i} \cup k_{i}: A_{i} \cup B_{i} \rightarrow\{ \pm 1\}$ is surjective or not.

In proving the assertions mentioned above, we use the following lemmas. The first one is shown in $\S 5$, while the other one is well-known.

Lemma 4.5. Let $w_{1}\left(R^{*} M\right)$ and $w_{1}(P M)$ be the orientation homomorphisms of $R^{*} M$ and $P M$, respectively. Then
(1) $w_{1}\left(R^{*} M\right): \pi_{1}\left(R^{*} M\right)=\left(\pi_{1}(M) \times \pi_{1}(M)\right) \times_{\phi} T_{2} \rightarrow \operatorname{Aut}(Z)$ is given by

$$
w_{1}\left(R^{*} M\right)\left(b, c, t^{c}\right)=(-1)^{\iota(\operatorname{dim} M}(-1)^{b}(-1)^{c} 1 z
$$

(2) $\quad w_{1}(P M): \pi_{1}(P M)=\Delta_{\pi_{1}(M)} \times T_{2} \rightarrow \operatorname{Aut}(Z)$ is given by $w_{1}(P M)\left(b, b, t^{t}\right)=(-1)^{\iota(\operatorname{dim} M)} 1 z$.

Lemma 4.6. Let G be an abeliangroup and $S(G, \mu)$ a local system over a pathconnected space X. Let \bar{G} be the subgroup of G generated by $\{g-\mu(a) g \mid$ $\left.a \in \pi_{1}(X), g \in G\right\}$. Then

$$
H_{0}(X ; S(G, \mu))=G / \bar{G}
$$

Proof of assertion 1. Let $i: A_{\zeta} \rightarrow A_{\theta}$ be the natural inclusion. Because of the fact that $R^{*} M$ is a $2 m$-manifold with boundary $P M$ and the properties of A_{ζ} and A_{θ} in (4.4), we have a commutative diagram of exact sequences

$$
\begin{gathered}
H^{2 m-1}\left(P M ; F^{-1} \pi_{2 m} \rho_{N}\right) \xrightarrow{\delta} H^{2 m}\left(R^{*} M, P M ; A_{\zeta}\right) \rightarrow H^{2 m}\left(R^{*} M ; A_{\zeta}\right) \rightarrow 0 \\
\downarrow i_{*} \\
H^{2 m-1}\left(P M ; A_{\theta} \mid P M\right) \xrightarrow{\delta^{\prime}} H^{2 m}\left(R^{*} M, P M ; i_{\theta}\right) \rightarrow 0 .
\end{gathered}
$$

Here i_{*} in the right hand side is an isomorphism because $A_{\zeta}=A_{\theta}$ on $R^{*} M-P M$. Therefore it is enough to show that $i_{*} \delta$, or equivalently $\delta^{\prime} i_{*}$, is surjective. By the Poincaré duality, it is sufficient to prove that $j_{*}(i \otimes 1)_{*}: H_{0}\left(P M ;\left(F^{-1} \pi_{2 m} \rho_{N}\right) \otimes S(Z\right.$, $\left.\left.w_{1}(P M)\right)\right) \rightarrow H_{0}\left(P M ;\left(A_{0} \mid P M\right) \otimes S\left(Z, w_{1}(P M)\right)\right) \rightarrow H_{0}\left(R^{*} M ; A_{\theta} \otimes S\left(Z, w_{1}\left(R^{*} M\right)\right)\right)$ is surjective, where $j: P M \subset R^{*} M$ is the natural inclusion. From (4.3), (4.4) and Lemmas 4.5-6, it follows that

$$
\begin{gathered}
H_{0}\left(P M ;\left(F^{-1} \pi_{2 m} \rho_{N}\right) \otimes S\left(Z, w_{1}(P M)\right)\right)= \begin{cases}Z & \text { if } m \equiv 1(2), \operatorname{Im} f_{\#} \subset \operatorname{Ker} w_{1}(N), \\
Z_{2} & \text { otherwise },\end{cases} \\
H_{0}\left(R^{*} M ; A_{0} \otimes S\left(Z, w_{1}\left(R^{*} M\right)\right)\right) \\
= \begin{cases}Z & \text { if } m \equiv 1(2), \operatorname{Im} f_{\#} \subset \operatorname{Ker} w_{1}(N), \operatorname{Ker} f_{\#} \subset \operatorname{Ker} w_{1}(M) \\
Z_{2} & \text { otherwise },\end{cases}
\end{gathered}
$$

and that j_{*} is surjective on $\operatorname{Im}(i \otimes 1)_{*}$.
Proof of Assertion 2. By using (4.3)-(4.4) and the Poincaré duality, we have

$$
H^{2 m}\left(R^{*} M ; A_{[i}\right)=H_{0}\left(R^{*} M ; S\left(\sum_{a \in\left[a_{i}\right]} Z\langle a\rangle, \mu_{M} \otimes w_{1}\left(R^{*} M\right)\right)\right)
$$

It is easily proved that the right hand side is isomorphic to Z_{2} or Z according as $h_{i} \cup k_{i}$: $A_{i} \cup B_{i} \rightarrow\{ \pm 1\}$ is surjective or not.

Proof of Corollary 1.2. Assume that $f_{\#}: \pi_{1}(M) \rightarrow \pi_{1}(N)$ is trivial. Then for a $\in \pi_{1}(N)$, the coset $[a]=\{a\}$ or $\left\{a, a^{-1}\right\}$ according as $a^{2}=1$ or not.

Case $w_{1}(M)=0$. In this case, $(-1)^{b}=(-1)^{f_{\#}(b)}=1$ for $b \in \pi_{1}(M)$. If $a^{2}=1$ then $A_{a}=B_{a}=\pi_{1}(M) \times \pi_{1}(M)$ and $h_{a}(b, c)=1, k_{a}(b, c)=(-1)^{m^{+1}}(-1)^{a}$. Hence $h_{a} \cup k_{a}$ is surjective if and only if either $(-1)^{a}=1, m \equiv 0(2)$ or $(-1)^{a}=-1, m \equiv$ $1(2)$. If $a^{2} \neq 1$, then $A_{a}=\pi_{1}(M) \times \pi_{1}(M), B_{a}=\phi$ and $h_{a}(b, c)=1$ for any $b, c \in \pi_{1}(M)$. Hence $h_{a} \cup k_{a}$ is not surjective. Therefore we get

$$
[M \subset N]_{f}= \begin{cases}\sum_{a \in A} Z_{2 \oplus} \oplus \sum_{a \in B} Z \oplus \sum_{(a . a}-1_{\}} \in c \\ \left.\sum_{a \in A} Z \oplus \sum_{a \in B} Z_{2} \oplus \sum_{\{a, a}\right)_{j} \equiv c & \text { if } m \equiv 0(2) \\ \text { if } m \equiv 1(2)\end{cases}
$$

Case $w_{1}(M) \neq 0$. For any $a(\neq 1) \in \pi_{1}(M)$, we have $A_{a}=\pi_{1}(M) \times \pi_{1}(M)$ and $h_{a}(b, c)=(-1)^{b}(-1)^{c}$ because $(-1)^{f \#(c)}=1$. From the assumption $w_{1}(M) \neq 0$, it follows that h_{a} is surjective and so is $h_{a} \cup k_{a}$. Then we get

$$
[M \subset N]_{f}=\sum_{a \in A \cup B} Z_{2} \oplus \sum_{\left(a, a^{-1}\right) \in c} Z_{2} .
$$

Proof of Corollary 1.3 follows this corollary and (2.3).

§5. The orientation homomorphism of $R^{*} M$

In this section, we shall prove the following

Lemma 4.5. Assume that $\operatorname{dim} M \geq 3$.
(1) The orientation homomorphism $w_{1}\left(R^{*} M\right):\left(\pi_{1}(M) \times \pi_{1}(M)\right) \times{ }_{\phi} T_{2} \rightarrow \operatorname{Aut}(Z)$ of $R^{*} M$ is given by

$$
w_{1}\left(R^{*} M\right)\left(b, c, t^{c}\right)=(-1)^{\iota(\operatorname{dim} M)}(-1)^{b}(-1)^{c} 1 z .
$$

(2) $w_{1}(P M): \Delta \pi_{1}(M) \times T_{2} \rightarrow \operatorname{Aut}(Z)$ is given by

$$
w_{1}(P M)\left(b, b, t^{c}\right)=(-1)^{)^{t}(\operatorname{dim} M)} 1 z .
$$

Frist of all, we recall some well-known results.
Lemma 5.1. For a pathconnected space X, there is an isomorphism ψ_{x} : $H^{1}\left(X ; Z_{2}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(X), \operatorname{Aut}(Z)\right)$ which is natural for maps, that is, for a map $g: X \rightarrow Y$, there is an equation

$$
\phi_{X}\left(g^{*}(y)\right)(x)=\psi_{Y}(y)\left(g_{\#}(x)\right) \quad x \in \pi_{1}(X), y \in H^{1}\left(Y ; Z_{2}\right) .
$$

In this sense, our purpose is to determine the homomorphisms $\psi_{R^{*} M}\left(w_{1}\left(R^{*} M\right)\right)$ and $\psi_{P M}\left(w_{1}(P M)\right.$. By Lemma 5.1, we easily obtain the following

Lemma 5.2. For spaces X, Y, the isomorphism $\psi_{X \times Y}$ is given by

$$
\psi_{X \times Y}\left(a \otimes 1+1 \otimes a^{\prime}\right)(b, c)=\psi_{X}(a)(b) \psi_{Y}\left(a^{\prime}\right)(c)
$$

Now, we return to the proof of Lemma 4.5. Since the natural inclusion $M^{*}=$ $R^{*} M-P M \subset R^{*} M$ is a homotopy equivalence, we identify cohomology groups and homotopy groups of M^{*} and those of $R^{*} M$. The Z_{2}-cohomology of M^{*} (and hence $R^{*} M$) is calculated by Thomas [10]. The results stated in [10] are freely quoted hereafter. There is a commutative diagram

Here, the maps ρ, ρ_{1}, ρ_{2} are all isomorphisms induecd by maps. In particular

$$
\rho=\left(R^{*} i_{M}\right)^{*} \Psi *
$$

where the maps $R^{*} i_{M}$ and Ψ are given in $\S 3$. Let $u \in H^{1}\left(P^{\infty} ; z_{2}\right)$ be the generator. Then

$$
H^{1}\left(\Gamma M ; Z_{2}\right)=Z_{2}\langle u\rangle \oplus\left\{x \otimes 1+1 \otimes x \mid x \in H^{1}\left(M ; Z_{2}\right)\right\}
$$

Lemma 5.3. The first Stiefel-Whitney class $w_{1}\left(R^{*} M\right)$ of $R^{*} M$ is given by

$$
w_{1}\left(R^{*} M\right)=\rho\left(w_{1}\left(R^{*} M\right) \otimes 1+1 \otimes w_{1}(M)\right)+(\operatorname{dim} M) \rho(u)
$$

Proof. $w_{1}\left(R^{*} M\right)$ is expressed in the form $w_{1}\left(R^{*} M\right)=\lambda \rho(u)+\rho(x \otimes 1+1 \otimes x)$ for some $x \in H^{1}\left(M ; Z_{2}\right)$ and $\lambda \in Z_{2}$. Because $\rho_{1}(x \otimes 1+1 \otimes x)=p^{*} w_{1}\left(R^{*} M\right)=$ $w_{1}\left(M \times M-\Delta_{M}\right)=\rho_{1} w_{1}(M \times M)=\rho_{1}\left(w_{1}(M) \otimes 1+1 \otimes w_{1}(M)\right.$, we have $x=w_{1}(M)$. Let $v \in H^{\mathrm{i}}\left(P M ; Z_{2}\right)$ be the first Stiefel-Whitney class of the double covering $S M \rightarrow$ $P M$. Then $\lambda v=\rho_{2} k^{*}(\lambda u+x \otimes 1+1 \otimes x)=j^{*} w_{1}\left(R^{*} M\right)=w_{1}(P M)=(\operatorname{dim} M) v$. Hence $\lambda \equiv \operatorname{dim} M(2)$.

Lemma 5.4. The isomorphism $\psi_{R^{*} M}: H^{1}\left(R^{*} M ; Z_{2}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}\left(R^{*} M\right), \operatorname{Aut}(Z)\right)$ is given by

$$
\begin{gathered}
\psi_{R^{*} M}(\rho(a \otimes 1+1 \otimes a))\left(b, c, t^{\bullet}\right)=\psi_{M}(a)(b c), \\
\psi_{R^{*} M}\left(\rho(u)\left(b, c, t^{*}\right)=(-1)^{‘} 1_{z}\right.
\end{gathered}
$$

for $a \in H^{1}\left(M ; Z_{2}\right), b, c \in \pi_{1}(M)$ and $\varepsilon=0$ or 1 .

Proof. Using Lemma 5.2 and the fact that $\rho=\left(R^{*} i_{M}\right)^{*} \Psi^{*}$, we have

$$
\begin{aligned}
\psi_{R^{*} M}(\rho(a \otimes 1+1 \otimes a))(b, c, 1) & =\psi_{\Gamma M}(a \otimes 1+1 \otimes a)(b, c, 1) \\
& =\psi_{M \times M}(a \otimes 1+1 \otimes a)(b, c) \\
& =\psi_{M}(a)(b c), \\
\psi_{R^{*} M}(\rho(a \otimes 1+1 \otimes a))(1,1, t) & =\psi_{\Gamma M}(a \otimes 1+1 \otimes a)(1,1, t) \\
& =\psi_{\Gamma M}(a \otimes 1+1 \otimes a)\left(k_{\#}(1, t)\right) \\
& =\psi_{M \times P^{\infty}(0)(1, t)=1 z .}
\end{aligned}
$$

Thus we have the first half of the lemma. As for the second half, we have the following equations:

$$
\psi_{R * M}(\rho(u))(b, c, 1)=\psi_{\Gamma M}(u)(b, c, 1)=\psi_{P^{\infty}}^{\infty}(u)\left(p_{\#}(b, c, 1)\right)=1 z,
$$

where $p: \Gamma M \rightarrow P^{\infty}$ is a projection (see §3), and

$$
\psi_{R^{*} M}(\rho(u))(1,1, t)=\psi_{P^{\infty}(u)(t)}=-1 z .
$$

Hence, the second half of the lemma is proved.

The proof of Lemma 4.5(1) follows immediately from Lemmas 5.1, and 5.3-4, while Lemma 4.5 (2) is easily obtained by using the fact that $w_{1}(P M)=(\operatorname{dim} M) v$.

References

[1] J.-P. Dax, Étude homotopique des espaees de plongements, Ann. Scient. Ec. Norm. Sup., 5 (1972), 303- 377.
[2] Faiz Al-Rubaee, Spherical knots in lens spaces, Comm. Pure. Appl. Math., 43 (1990), 291-294.
[3] H. Heafliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1961), 47-82.
[4] L. L. Larmore, Obstructions to embedding and isotopy in the metastable range, Rocky Mountain J. Math., 3 (1973), 355-375.
[5] L. L. Larmore, Isotopy groups, Trans. Amer. Math. Soc., 239 (1978), 67-97.
[6] $\mathrm{B},-\mathrm{H}$. Li, private commumnication.
[7] B.-H. Li, R. Liu and P. Zhang, A simple approach to embedding problems in normal bordism framework, Sys. Sci. Math. Sci., 5 (1992), 180-192.
[8] B.-H. Li and P. Zhang, On isotopy classification of n-manifolds in $2 n$-manifolds, to appear in Sys. Sci. Math. Sci.
[9] H. A. Salomonsen, On the existence and classification of differentiable embeddings in the metastable range, Aarhus Univ. Preprint Series, (1973/74), no. 4.
[10] E. Thomas, Embeding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163186.
[11] G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math., 61, SpringerVerlag, New York-Heidelberg-Berlin, 1978.
[12] H. Whitney, Differentiable manifolds, Ann. of Math., 45 (1936), 645-680.

[^0]: *Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan

