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Abstract

For a closed connected differentiable manifold Mt a differentiable manifold N and

a differentiable map f '. M-*N, we denote the set of isotopy classes of embeddings

nomotopic to / by IM C N][f] and the set x^N^, Emb(M, N), f) by [M C #]/,
where Emb(_M, N) stands for the space of embeddings of M to N. In this paper, we

will determine the set \_M c JV]/ on the assumption that dim N = 2 dim JM + 1 ^ 7,

along the lines of Larmore [ 4 ], [ 5 ]. If N = Lm(p\ the lens space mod p, we

will determine the isotopy set [M C JV][/] for dimM = wi ^ 3.

§ 1. Introduction

Let Af be a compact connected differentiable w-manifold without boundary and
let /: M ->• N be a differeniable map of M to a differentiable manifold N without
boundary. Denote the set of isotopy classes of embeddings homotopic to / by [Af c
JV][/], and let 7ri(iVM, Emb(M, N), /) = [A/ c #]/, where Emb(,M, JV) stands for
the space of embeddings of M to iV. Under these circumstances, it is known that

there is a jti(JVm, /)-action on [A/ c N]/ such that

[A/ c NlffatN*./) = [A/ c JV][/]

(see §2 or e.g. [4], [5], [9]).

If dim N > 2 dim Af+ 1, then [AT c iV][/] is a singleton [12]. If dim N = 2 dim Af

+ L then there exists an embedding M -> N homotopic to a given map / [12], and if
moreover /# : ^i(Af) -> jri(iV) is surjective, then [Af c •#][/] is also a singleton [3].

However, in general, the set [Af c #][/] is not necessarily a singleton even if dim A^

= 2dimAf + 1 (cf. [1], [2], [4], [7]).

The set [Af c iV]/ has an affine abelian group structure with unit [/] in the

metastable range (cf. [4], [5], [9]). In this paper, we shall study the affine group

[Af c N~]f on the assumption that dim N = 2 dim Af + 1.

For a manifold V, let Wi(V) : n\(V) -> Aut(Z) be the orientation homomorphism

of V and define a number (—l)a for a e n\QO by the equation
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«>i(F)(«)=(-l)alz.

For a map /.' M -> N, the fundamental group 7ri(iV) of N is expressed in the form

«i(JV) = Im U + S (dm /#)«*(Im /#) U(Im /#) 0f^Im /#)).

For t e I, let

4- = {(6, c) e jn(Af)x7n(Af) | f#(b-)aiU(cyx = a{},

*,-={(&, c) e^(Af)xffl(Af) | /#(6)flr1/#(0"1=a«},

and let A,-: /!,- -* {±1} and ki'. B{ -> {±1} be the maps defined by

W,c) = (-l)ft(-l)c(-l)/#(c),

ki(b, c) = (_i)»'+i(-i)«/(-i)6(_i)C(_i)/#Wj (m = dim Af).

Then, using classical algebraic topology along the lines of Larmore [4], [5], we will

prove the following theorem of Li [6]. The proof is different from that of Li, who

used normal bordism theory due to Dax [1] and Salomonsen [9].

Theorem 1.1 (Li). Assume that M is a compact connected differentiable

m-manifold without boundary (m ^ 3) and N is a differentiable (2m + 1)-

manifold without boundary. Then for any embedding f:M-+N,

[Af C N-}f=Z} + Zfi,

where a and j8 are the cardinalities of the set {i e / | kiUki: A{\jBi-+ {±1} is

surjective} and the set {i e / | hi Uk, is not surjective}, respectivvely.

Corollary 1.2. In addition to the assumption above, we assume that fa \

ffi(Af) -• 7ri(iV) is trivial. Then

(ZaZ2+Zb\jcZ if «;1(Af)=0, m=0(2),

[Af c JV]/= |SsZ2+ XaucZ if «;1(Af)=0, »»sl(2),
{Za{JbucZ2 if w/i(Af)=£0,

where

A = {aeiaW \a*l, a2 = l, (-1)« = 1},
B= {ae«i(iV) | a2 = l, (-i)«=-i},

C= {{a,a'1} | ae»i(iV), «2^1}.

If N = V"(p) = S?m+1/Zp (p ^ 2), the lensspace modp (L'w(2) = P2'»+1, the odd
dimensional real projective space), then [Afc JV]/ = [Af c N][/] (see (2.3)) and hence
we have the following

Theorem 1.3. Assume that M is a compact connected differentiable m-

manifold without boundary (m ^ 3). Iff:M-+ Lm(p) (p ;> 2) is nullhomotopic,
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then

( Z(p-2).'2 p= l(2), M/i(Af)=0,
z(^-2)/2 + z £=0(2), Wi(AO=0, w=l(2),
z(/>-2)/2 + Z2 /,=0(2), ^(Af^O, m=0(2)[McL^)][/] =

where [q] denotes the integer part of q.

Remark. If p is a prime and /is not nullhomotopic, then /# I ^i(Af) -• ^i(Z.w,(/>))

is surjective and hence [Af c £"'(/>) ][/] is a singleton [3].

Remark. If M is simply connected, then the results above are coincident with

those of Li, Liu and Zhang [7].

The remainder of this paper is organized as follows : In §2, we recall the

definition of n\(NM', /)-action on the set [Af c N~\f and prove that this action is

trivial if N = £"(/>) (p ^ 2). In §3, we introduce Larmore's method of computing

[Af c N~\f. The proofs of the results in the introduction are given in §4. A key

lemma used in proving Theorem 1.1 is proved in § 5.

The author is grateful to Dr. Zhang for his valuable suggestions.

§2. The jnCA^/Vaction on [Af C N~\f

In what follows, M is a compact connected differentiate m-manifold without

boundary, N is a connected differentiable manifold without boundary and / : M -> N is

an embedding. The space NM and Emb(M ,iV) stand for the space of differentiable
maps of M to N and its subspace consisting of embeddings, respectively. According

to the notations used in [4], [5], we set m(NM, Emb(M, JV), f) = [Af c JV]/. The

group x\(NM,f) acts on the left of [Afc N~\f as follows : Given a self-homotopy {gt}
of / and a homotopy {//} from / to an embedding, we define [gtllftl = ligi}{fi}~\,
where {gt}{ft} denotes the join of the two homotopies {gt} and {ft}. The natural

map A: [A/ c iV]/ -• [A'/ c #]{/], defined by A[//] = \_f{], the isotopy class of the
embedding f\, leads to the following

Theorem 2.1 (Larmore et al). There is a bisection

[M c iV]/Ai(iVM,/) = [Af c= N\n.

To determine the isotopy set [A/ c #][/] along these lines, we have to study the

set [A/ c iV]/ and the it\{NM,f^)-action on it. In some cases, n\(NM', /)-actions are

found to be trivial, even if ni(NM,f) is not a trivial group.

Lemma 2.2. // any generator of 7ti(NM,f) is represented by the composi-
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Hon {O//} of f and a periodic flow {O/} of N, then m(NM, f) acts trivially
on [A/ c N]f, and hence [Af c iV]/ = [Af c #][/].

Here the periodic flow means a flow {O/} such that <D/+i = <D< for is /?.

Proof. Given a homotopy {/*} of / to an embedding, let F : Mxlxl -*• Nxlxl
be a homotopy defined by

.,. , . r(/c2*+«-i)/<«+i)00, t, u), (\-u)/2<,t<,\,
F(x, t, U) = { ,

I (Ax), ttu), Q<,t<, (1 -u)/2.

Let G : NxIxI^N be a homotopy defined by

^ , N \y, l/2 + u^t^l or Q^t<,u,
G(y, t, u) = {

{ O2(*-w)O0 . u£t£mm{l, 1/2 + u).

Then the composition GF: Mxlxl-*N is a homotopy of {$//}{./}} to {ft}, and
hence [<D,/][/,] = [/,].

Example. For p ^ 2, let Z,"(£) = S2w+1/Zj be the lens space mod /> (Lw(2) =
P2w+1, the odd dimensional real projective space). Then Ot : Ln(p) -> Ln(p), defined
by

<I><[*o> —. *»] = [*0exp(2?w7//0.—, xnexp(2mt/p)],

is a periodic flow, where %k (0 ^ k <. n) are complex numbers with Ej^ol**!2 = *•
If 2«>dimAf, by the Eilenberg classification theorem (e.g., [11, (6.17)]), we get

m(Ln(P)M,f) = *n(£M(£)) = Zp generated by [Q,/]. Therefore

(2.3) [Af c !•"(/>)][/] = [Af c N]f if dim Af< 2m.

§3. Larmore's method

In this section, we shall recall Larmore's method [4], [5] of computing [A/ c iV]/.

For an M-manifold V, Let RV = (Vx V-kv)U*SVx [0,e). where <j> \ SFx(O.e) -*•

FxF—Ay is a map given by <f>(v,i) = (exp(/t;), exp(—/«)). Here SV denotes the

total space of the tangent sphere bundle of V and Ay means the diagonal of V. A
free ^-action on RV is induced from the antipodal map on SV and the interchaging

of elements of VxV. We denote the quotient spaces RV/Z2 and (VxV—Ay)/Z2 by
R*V and V*, respectivey. Then the space R*V is a 2»-manifold with boundary

PV(=SV/Z£), and i?*K-PK"=F*, the reduced symmetric product of V. If V is

compact, so is i?*F.

The pair of spaces (i?*(Fxi?00)( P(Kx/0) denotes the inductive limit of R*(Vx

/?*), P(Fx/?*)). We convert the natural inclusion /?**>: (R*V, PV) c (/2*(Fx/?°°),

/>(Fx/T)) into a pair fibration Cv: (Yv, Zy) -»• (/2*(Fxfl°°), P(Kxfl~)) in a
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standard manner. For an embedding f:M->N, let R*ixR*f= F for brevity's sake,

and let TC.F'^n) be the set of homotopy classes of cross sections of the pull-back of
Cjv along F. Then Larmore [4], [5] has proved the following

Theorem 3.1 (Larmore). // 2 dim iV > 3(dim Af + 1), then

[A/ciV]/=r(F-1U).

Let dv: Yv -*• R*(VxR°°) and pv: Zv -> P(VxR°°) be the restrictions of Cv to

Yy and Zy, respectively. Then dv and pv are both ordinary fibrations. Let nq6v
and itqpv be the local systems of ^-th homotopy groups of dv and pv, respectively, and

let itqCv be a subsheaf of itq6v such that

{itqpv over P(Kxr),

** V_ I ir?^ over R*( VxR°°) -P( Vx/T).

Theorem 3.2 (Larmore). Let dim Af = m ^ 2 fltfd dimtf = 2m + l. Then for

any embedding f:M-*N

[Af c JV]/ = IXF"1Cat) = HZm(R*M ; F"1ir2m Cjv).

Now, we shall explain the sheaf izn-£v (n = dim F). We set (Kx V) x z^° = TV.

Then the natural projection!p : TV -+ P°° is a fibration with fiber VxV and with cross

section 5. We denote the generator of jtiCP°°) = Z2 by t and set s#(0 = t, and T2=

Z2 generated by f. Then xi(TV) = OnW xjt^K))*?7^. the semidirect product,

where jp: T2 -> Aut(;ri(K)X7ri(K)) is given by p(0(&. c) = (c> *) anc* mere is a homo

topy equivalence ¥ : /?*(Fx/?°°) -• TF [5, p. 84]. We regard ¥# : jti(/2*(Fx/0) ->

(^i(P0xff1(P0)Xp72 as the identity.

Lemma 3.3 (Larmore). Assume that dim V > 3.

(1) (R*iv)# : ni(R*V) -»• (ffi(F)x^1(P0)Xp7,2 *s aw isomorphism,

(2) (R*iv)# : wi(FF) ->• »!(/*( Px/2°°)) = A^jox^ is am isomorphism,

(3) ffte natural inclusion P(VxR°°) c ^(Vx/?00) induces a natural inclu

sion A»l(v) xr2c (»i(P0 Xffi(K))xPr2.

For a manifold K, we denote by Wi(V) both the first Stiefel-Whitney class of Fand

its orientation homomorphism Wi(V) : ^i(F) -»• Aut(Z). For an element a &itx(y),

we define a number (—l)a by the equation

u>i(V)(a) = (-lyiz.

Given an abedian group G and a homomorphism ft: jt\(X) -»> Aut(G), we denote
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the local system over X associated with ft by S(G, ft).

Lemma 3.4 (Larmore). Assume that dim V = n ^ 5.

(1) vn-\0v = S(Zi:i<iV), ft) over R*(VxR°°), where ft: (in(F0 xm(V)) x9T2 -•

Aut (ZitiQV)) is given by

Kb, c, 1)(a) = ( - lybac'1 for a,b,ce ffl(V),

ft(b, c, t)(a) = (-l)n(-l)fl(-l)^a"1c-1 for a,b,c<= mCV).
(2) jin-ipv = S(Z, ft') over P(VxR°°), where Z is an infinite cyclic group

generated by 1 e 7ri(F) and ft' : A,r,(y)x72 -+ Aut(Z) is Me restriction of ft.

§ 4. Proofs of the results in the introduction

If dim Af^ 3, then it is easily proved that for /: Af-> N, its induced homomor

phism F# = (/?**>)#(**/)# : izx(R*M) (= (ni(M)XTtx(M))x9T2) -+ it&R^NxR°°))
(= (ffi(^)x^i(A^))x^r2) is given by

F#(b, c,V) = (/#(&), /#(c), /') for b, c e= ffl(Af).

Hence, by Lemma 3.4, we have the following

Lemme 4.1. Assume that dim N = n ;> 5 awd dim Af = w ;> 3. If f: M -*• N

is an embedding, then F~ln„-\dN = S(*iW> Pm), where ftM I (jri(A0x»i(A0)Xpr2

-• Aut(Z^1(AT)) is given by

fM(b, c, l)(fl) = i-\y^e)f#ib)aU(cyl
fiM(b, c, tya) = (-i)«(-i)«(-i)/#W/#(6)fl-1/#(c)-1,

for a e 7ti(N), <z«<2 J,C6 tfi(-M).

We study F-1jrn-i0N more exactly. The group Tri(iV) can be described in the form

mCN) = Im/~ + S«G/((Im/#)fl,(Im/#)U(Im/#)a/-1(Im/#)).

We set (Im/#)fl(Im/#) U(Im/#)a-1(Im/#) = [«]. From Lemma 4.1, it follows
that

(4.2) F'^n-idN = Ag@ZiBTA0i

where

Ag = S(Z(lmf#),ftM)

(4'3) i4« =SCZaSiaO Z<a>, ftM).
Here Z<a> denotes the infinite cyclic group generated by a. By the definition of the
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sheaf ^m-iCat, the induced sheaf F"17tn-&N is desciried in the form

F~lit„-&N = ^c©E«=/^c«.

where Aq and AZi are subsheaves of Ag and A$i, respectively, satisfying the conditions

AC\PM = S(Z, ftM) = F~lXn-iPK, AZi\PM = 0,
( *) A: = Ag over Af* =R*M - PM, Azi = Agi over Af*.

From now on, we assume that n = dim N = 2 dim Af + 1 = 2m + 1. By Theorem

3.2, we have

[Af c N]f = H2m(R*M ; AC) © Zi&H2m(R*M ; ^cf).

The proof of Theorem 1.1 follows from Assertions 1 and 2 below.

Assertion 1. H2m(R*M ;AZ)=0.

Let Ai and #,• be the sets defined by

Ai = {(b, c) e 7ri(A0xjr,(Af) | f#(b)aif#<icyx = «,},

Bi = {(6, <0 € «i(AOx«i(AO I f#(J>)a^f#(.cyi = ai},

and let /*,-: ^f-> {±1} and A,-: 5,--> {±1} be maps given by

W,0 = (-iA-i)c(-i)/#(c),
£,(&, C) = (-i)",+1(-l)6(-l)e(-iy#fc>(-l)a'".

Assertion 2. L^n\R*M ; /lCl) - Z2 or Z according as hiUki'. AiUBi-*- {±1} is

surjective or not.

In proving the assertions mentioned above, we use the following lemmas. The

first one is shown in §5, while the other one is well-known.

Lemma 4.5. Let wx(R*M) and wx(PM) be the orientation homomorphisms

of R*M and PM, respectively. Then

(1) wx(R*M) : itx(R*M) = (7ri(Af) xjri(Af)) x*T2 -> Aut(Z) is given by

wx(R*M)(b, c, V) = (-l)'(dimA/)(-l)*(-l)clz,
(2) wx(PM) : 7ti(PM)=^liM)xT2 -> Aut(Z) is given by

wx(PM)(b,b, V) = (-l)«<dimM)lz.

Lemma 4.6. Let G be an abeliangroup and 5(G, ft) a local system over a

pathconnected space X. Let G be the subgroup of G generated by {g—ft(a)g \

a e izx(X), g eG}. Then

H0(X ; S(G, ft)) = GIG.
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Proof of assertion 1. Let i : Ac-* Ag be the natural inclusion. Because of the

fact that R*M is a 2*M-manifold with boundary PM and the properties of Ac and Ag
in (4.4), we have a commutative diagram of exact sequences

5
H2m~\PM ; F lx2mpN) > H2m(R*M, PM;AQ) -> H2n\R*M ; Az) -• 0

y* 5f [-'*
H2m~\PM ; Ag\PM) > H2m(R*M, PM; Ag) -* 0 .

Here t* in the right hand side is an isomorphism because Ac = Ag on /2*Af —PM.
Therefore it is enough to show that **5, or equivalently d'i*, is surjective. By the
Poincare duality, it is sufficient to prove that /*(j®1)* : //0(FAf; (F~1jr2m/5jV)®5'(Z,
wx(PM))) -> HQ(PM\ (A0\PM)(g)S(Z, wx(PM))) -» HQ(R*M', Ag®S(Z, wx(R*M)))

is surjective, where j '. PM c R*M is the natural inclusion. From (4.3), (4.4) and
Lemmas 4.5-6, it follows that

«.C™:<i-W)®SCZ,Wl<PM))) =P if ™-K2),Im/#cKerWlW,
t Z2 otherwise,

H0(R*M ; /f*(g),S(Z, m;!(/?*A/)))

Z if m = 1(2), Im /# c Ker tt^JV), Ker /# c Ker wx(M),

Z2 otherwise,•{
and that y* is surjective on Im(/(g)l)*.

Proof of Assertion 2. By using (4.3)-(4.4) and the Poincare duality, we have

H2">(R*M ; Aa) = H0(R*M ; S(ZaBlaO Z<a>, ftM<S)Wx(R*M))).

It is easily proved that the right hand sideis isomorphic to Z2 or Z according as hiU&» :
Ai\JBt- -*• {±1} is surjective or not.

Proof of Corollary 1.2. Assume that /# : 7Ti(AQ -> ^i(iV) is trivial. Then for a

^ ffiW. the coset [a] ={fl} or {a,a'1} according as a2 = 1 or not.
Case ^(Af) = 0. In thiscase, (-1)* = (-1)'#<W = 1 for b <= jri(Af). If a2 = 1

then /la = Ba = 7n(Af) x jr^Af) and fca(&, c) = 1, fcfl(6, c) = (-l)w+1 (-1)*. Hence

ha\Jka is surjective if and only if either (—1)°= l,m = 0(2) or (—1)° = —1, m =

1(2). If a2 =£ 1, then ^a = xx(M)x xx(M), £a = 0 and Aa(ft, c) = 1 for any i,CG ffi(Af).
Hence haUka is not surjective. Therefore we get

r** »n fSae^Zaes^sZes^.a-ijecZ if m = 0(2),
[Af c 2V]/ = < _

ISo&lZeSaeBZzSEfa.a-^EcZ if W = 1(2).

Case wx(M) =A 0. For any a (=£ 1) e ^(Af), we have ^a = ?ri(Af)x 7n(Af) and

ha(b, c) = (-l)*(-l)c because (-iy*(e) = 1. From the assumption ti;^Af)=£0, it
follows that ha is surjective and so is haUka. Then we get

[Af C #]/ = SoeXUB^^S^.a-ljGcZz.
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Proof of Corollary 1.3 follows this corollary and (2.3).

§5. The orientation homomorphism of R*M

In this section, we shall prove the following

Lemma 4.5. Assume that dimAf ;>3.

(1) The orientation homomorphism wx(R*M) : (kx(M)xizx(M))x$T2-+ Aut(Z)

of R*M is given by

wx(R*M)(b, c, V) = C-iyldimM\-l)bC-l)clz.

(2) Wi(PAf) : Ajri(Af) x T2 -> Aut(Z) is given by

WX(PM)(J>, b, t') = (-D'WimAf) lz

Frist of all, we recall some well-known results.

Lemma 5.1- For a pathconnected space X, there is an isomorphism tyx'.

H\X\Z2) -+ Hom(;ri(A0, Aut(Z)), which is natural for maps, that is, for a

map g: X-+Y, there is an equation

<f>x(g*(y))(x) = *Y(y)(g#(x)) x <= nx(X),y<EH\Y\Z2).

In this sense, our purpose is to determine the homomorphisms ^r*mCwx(R*M))
and typM(wx(PM)). By Lemma 5.1, we easily obtain the following

Lemma 5.2. For spaces X, Y, the isomorphism yfrx*Y is given by

^F(fl®l + \®a')(b, c) = tyx(a)(b) ^r(«')(<0.

Now, we return to the proof of Lemma 4.5. Since the natural inclusion Af* =

R*M —PM c R*M is a homotopy equivalence, we identify cohomology groups and

homotopy groups of M* and those of R*M. The Z^cohomology of Af* (and hence

R*M) is calculated by Thomas [10]. The results stated in [10] are freely quoted

hereafter. There is a commutative diagram

H\MxM ; Z2) > W(MxM - AM ; Z^

T«* 9 V*
H\TM ; Z2) -> H\M* ; Z2)= //i(/e*Af; Z2)

, T** * , t'*
H\MxP~ ; Z2) • Hl(PM ; Z2).

Here, the maps p, px, p2 are all isomorphisms induecd by maps. In particular
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P = (**tAf)*¥*

where the maps R*im and Ware given in § 3. Let u e H\P°° ; Z2) be the generator.
Then

H\TM; Z2) = Z2<u>@{x®l + i<g>* | * e H\M; Z2)}.

Lemma 5.3. 7%e first Stiefel-Whitney class wx(R*M) of R*M is given by

wx(R*M) = p(wx(R*M)®l + l®wx(M)) + (dim M)p(u).

Proof. wx(R*M) is expressed in the form wx(R*M) = Xp(u) + />(*(g)l + 1(g)*)

for some x e H\M ; Z2) and * e Zj,. Because ^(^(g)! + 1(g)*) = />*«/!(«*Af) =

wx(MxM - Am) = pxwx(MxM) = /0i(tt>i(Af)(x)l + l(g)K>i(Af)), we have x = tt/^Af).

Let v e //!(FA/ ; Z2) be the first Stiefel-Whitney class of the double covering SM -»•

PM. Then Xv = fok^Xu + *(g)l + 1(g)*) = j*wx(R*M) = wx(PM) = (dim Af>.

Hence X= dimA/(2).

Lemma 5.4. The isomorphism ^r*m \H\R*M ; Z2) -• Hom(jri(#*Af), Aut(Z))

is given by

^R*M(p(a®l + l<g)c))(0, c,t') = -fM(fl)(6c),

^R*M(p(uXb, c, V) = (-l)«lz,

/or a e //!(Af; Z2), b, c e Tri(Af) ««rf e = o or 1.

Proof. Using Lemma 5.2 and the fact thatp=(fl**ji/)*¥*, we have

tyR*M(p(a®\ + \®a))(b, c, 1) = i|rrAf(a®l + l(g)a)(6,c,l)

= ^A/xjif(fl(8)l + l(g)a)(o, c)

= -^m(«)(6c),

^/?*a/(K«®1 + l®a))(l, 1,0= ^rw(fl®l + l®a)(l, 1. 0

= ^rA/(fl(g)l + l(g)fl)(*#(l. 0)

= ^Afxp»(0)(l,O = lz.

Thus we have the first half of the lemma. As for the second half, we have the

following equations:

^r*m(P(u))(J>, c, 1) = y]rrM(M)(J>, c. D = ^r°°(«)(/>#(*, c, 1)) = lz,

where p '. TM ->• F°° is a projection (see §3), and

^**a/0>(«))(1. 1, 0 = ^p<u)(t) = - lz.

Hence, the second half of the lemma is proved.

156



Enumerating embeddings of m-manifolds into (2m+l)-manifolds

The proof of Lemma 4.5(1) follows immediately from Lemmas 5.1, and 5.3—4,

while Lemma 4.5 (2) is easily obtained by using the fact that wx(PM)=(dim M)v.
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