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Enumerating embeddings of m-manifolds
into (2m-1)-manifolds
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Abstract

For a closed connected differentiable manifold M, a differentiable manifold N and
a differentiable map f : M — N, we denote the set of isotopy classes of embeddings
homotopic to f by [M C N1tf] and the set my(NM, Emb(M, N), f) by [M C Ny,
where Emb(M, N) stands for the space of embeddings of M to N. In this paper, we
will determine the set [M C NJs on the assumption that dim N =2dim M +1=7,
along the lines of Larmore [4], [5]. If N= L™(p), the lens space mod p, we
will determine the isotopy set [M C N]if] for dimM =m > 3.

§1. Introduction

Let M be a compact connected differentiable #-manifold without boundary and
let f: M — N be a differeniable map of M to a differentiable manifold N without
boundary. Denote the set of isotopy classes of embeddings homotopic to f by [M C
Ny, and let g (NM, Emb(M, N), f) = (M c Ny, where Emb(M, N) stands for
the space of embeddings of M to N. Under these circumstances, it is known ‘that
there is a m(N™, f)-action on [M < N]s such that

[M c Nlf/m(N¥,f) = [M c Ny

(see §2 or e.g. [4]1, [51, [9D).

If dim N > 2dim M + 1, then [M C N]s is a singleton [12]. If dim N = 2dim M
+ 1, then there exists an embedding M — N homotopic to a given map f [12], and if
moreover fz : m(M) — m(N) is surjective, then [M < N]q is also a singleton [3].
However, in general, the set [M C N]s is not necessarily a singleton even if dim N
=2dim M + 1 (cf. (1], [2], (4], (7D).

The set [M c N]s has an affine abelian group structure with unit [f] in the
metastable range (cf. [4], [51, [9]). In this paper, we shall study the affine group
[M < Ny on the assumption that dim N = 2dim M + 1.

For a manifold V, let w (V) : m(V) — Aut(Z) be the orientation homomorphism
of V and define a number (—1)¢ for @ € 7 (V) by the equation
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w(N(@) = (-1)°1z.
For a map f : M — N, the fundamental group z;(N) of N is expressed in the form
m(N) =Im fg +'_EZIIr((Im fe)aiIm f) Um fi) a7 \(Im f2)).
For i1, let
4 ={(b, ©) € m(M) xm(M) | fe(B)aifs()™ = ai},
B; ={(b, ©) € m(M)xm(M) | fu(B)a; ' fu(c) = ai},
and let 4; : 4; - {*1} and k;: B; — {%1} be the maps defined by

hi(b, c) = (—l)b(—“l)c(—l)f#(c),
ki(h, ©) = (—l)’”’"’(—1)“"(—1)"(—1)‘(—l)f#("), (m = dim M).
Then, using classical algebraic topology along the lines of Larmore [4], [5], we will

prove the following theorem of Li [6]. The proof is different from that of Li, who
used normal bordism theory due to Dax [1] and Salomonsen [9].

Theorem 1.1 (Li). Assume that M is a compact connected differentiable
m-mani fold without boundary (m >3) and N is a differentiable (2m + 1)-
mani fold without boundary. Then for any embedding f. M — N,

(M c Niy= 2§+ 2%,

where a and B are the cardinalities of the set {i 1| h;Uk;: A;UB;— {x1} is
surjective} and the set {i €I | hiUk; is not surjective}, respectivvely.

Corollary 1.2. In addition to the assumpiion above, we assume that fz:
m(M) — m(N) is trivial. Then

NaZy+ XpucZ  if wy(M)=0, m=0(2),
(M cNlf=(ZBZ:+ JaucZ if wi(M)=0, m=1(2),
X ausuc Zp if wi(M)#0,
where

A={gemN) |a*1, a¢=1, (-1)*=1},
B={acesn(N)|a®=1, (-1)%=-1},
Cc={{a,aV} |acn(N), a®+1)}.

If N=L"(p) =8"+1Z, (p=>2), the lens space mod p (L™(2) = P2"*!, the odd
dimensional real projective space), then [M C N]r = [M C N5 (see (2.3)) and hence
we have the following

Theorem 1.3. Assume that M is a compact connected differentiable m-
mani fold without boundary (m >3). If f: M — L™(p) (p = 2) is nullhomotopic,
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then

ztp-n:2 p=1(2), wi(M)=0,

Ze=Pr 4z p=0(2), w(M)=0, m=1(2),
Z#-272 4 7,  p=0(2), w(M)=0, m=0(2),
At wi(M)+0,

where [q] denotes the integer part of q.

Mc L™= l

Remark. If pis a prime and fis not nullhomotopic, then fgz : m(M) — = (L™(P))
is surjective and hence [M < Lm(p)]is is a singleton [3].

Remark. If M is simply connected, then the results above are coincident with
those of Li, Liu and Zhang (7).

The remainder of this paper is organized as follows: In §2, we recall the
definition of m(N™, f)-action on the set [M c NJs and prove that this action is
trivial il N = L*(p) (p = 2). In §3, we introduce Larmore’s method of computing
[Mc Nls. The proofs of the results in the introduction are given in §4. A key
lemma used in proving Theorem 1.1 is proved in §5.

The author is grateful to Dr. Zhang for his valuable suggestions.

§2. The n(NM, f)-action on [M c N1y

In what follows, M is a compact connected differentiable -manifold without
boundary, N is a connected differentiable manifold without boundary and f : M — N is
an embedding. The space N™ and Emb(M ,N) stand for the space of differentiable
maps of M to N and its subspace consisting of embeddings, respectively. According
to the notations used in [4], [5], we set m(NM, Emb(M, N), f) = [M c N]r. The
group m(NM, f) acts on the left of [M c Ny as follows : Given a self-homotopy {g:}
of f and a homotopy {fi} from f to an embedding, we define [g:][f:] = [{g:}{f:}],
where {g:}{f:} denotes the join of the two homotopies {g:} and {f}. The natural
map A: [M c N]y — [M c N]p, defined by A[ f;] = [ f1], the isotopy class of the
embedding f;, leads to the following

Theorem 2.1 (Larmore et al). There is a bijection

(M c Nf/ay(NM, f) = [M c Ny}

To determine the isotopy set [M < N]is) along these lines, we have to study the
set [M c N]f and the 7 (N™, f)-action on it. In some cases, m;(N¥, f)-actions are
found to be trivial, even if =y (N, f) is not a trivial group.

Lemma 2.2. If any generator of nm(NM, f) is represented by the composi-
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tion {O.f} of f and a periodic flow {®;} of N, then m(NM, f) acts trivially
on [M cC Ny, and hence [M C N]y=[M c N]p.

Here the periodic flow means a flow {®;} such that ®;+; = ©; for ¢ € R.
Proof. Given a homotopy {f:} of f to an embedding, let F;: MxIxI— NxIxI
be a homotopy defined by

{ (fetru-vrwen(®), L ),  (A-w)/2<t<L1,
F(x, t, u) =
(f(x), t, w, 0t A—-w/2.
Let G: NxIxI— N be a homotopy defined by
G(y,t,u):{y’ 1/2+us.t510r05t3u,
Doe-0(¥), #<t<min{l, 1/2 + u}.

Then the composition GF: MxIxI— N is a homotopy of {®:f}{f} to {fi}, and
hence [@.f1[f:]l=[fi].

Example. For p >2, let L*(p) = S?"*1/Z, be the lens space mod p (L*(2) =
P+l the odd dimensional real projective space). Then ®:: L*(p) — L*(p), defined
by

q)f[x01"'r xﬂ] = [xoexP(zﬂ’it/P)"", Xn exp(Zﬂit/p)]v

is a periodic flow, where x; (0 <% <n) are complex numbers with Z}},‘,olml2 =1.
If 2n>dim M, by the Eilenberg classification theorem (e.g., [11, (6.17)]), we get
n(L*(PYM, ) = m(L*(p)) = Zp generated by [®;f]. Therefore

2.3 McL*p)lin=[Mc N]f if dmM< 2n.
§3. Larmore’s method

In this section, we shall recall Larmore’s method [4], [5] of computing [M C N]y.

For an #n-manifold V, Let RV = (VX V—-Ay)UgSV X[0,¢), where ¢ : SV x(0,8) —
VxV—Ay is a map given by ¢(v,2) = (exp(fv), exp(—iv)). Here SV denotes the
total space of the tangent sphere bundle of V and Ay means the diagonal of V. A
free Zy-action on RV is induced from the antipodal map on SV and the interchaging
of elements of VxV. We denote the quotient spaces RV/Z; and (VxV—Avy)/Z; by
R*V and V*, respectivey. Then the space R*V is a 2n-manifold with boundary
PV (=8V/Zy), and R*V—PV = V*, the reduced symmetric product of V. If V is
compact, so is R*V.,

The pair of spaces (R*(VxR™), P(VxR™)) denotes the inductive limit of R*(V x
R¥), P(VXR¥)). We convert the natural inclusion R*iy : (R*V, PV) c (R¥(VxR™),
P(Vx R™)) into a pair fibration {v: (Yv, Zv) - (R¥(VXR™), P(VXR®)) in a
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standard manner. For an embedding f: M — N, let R*iyR*f = F for brevity’s sake,
and let I'(F™n) be the set of homotopy classes of cross sections of the pull-back of
{n along F. Then Larmore [4], [5] has proved the following

Theorem 3.1 (Larmore). If 2dim N > 3(dim M + 1), then

[MC N]f=T(F N,

Let 8y : Yy — R¥(VXR™) and py : Zy — P(VxR™) be the restrictions of {v to
Yy and Zy, respectively. Then 0v and py are both ordinary fibrations. Let z,0v
and mypv be the local systems of g-th homotopy groups of v and py, respectively, and
let =lv be a subsheaf of =0y such that

a0V over P(VxR™),

m;Cv={ oo
v over R¥(Vx R®)—P(VxR™).

Theorem 3.2 (Larmore). Let dmM =m >2 and dim N =2m + 1. Then for
any embedding f.: M— N

(M c Ny = D(F'{n) = H"™(R*M ; F ' 2m {N).

Now, we shall explain the sheaf z,-i{v (n=dim V). We set (VxV) xzS° =TV.
Then the natural projection: p : I'V — P is a fibration with fiber ¥x V and with cross
section S. We denote the generator of (P™) = Z, by ¢ and set sx(¢) =¢, and Tp =
Z, generated by . Then my(I'V) = (m(V) Xxm(V))X,T2, the semidirect product,
where ¢ : T — Aut(z(V)x (V) is given by ¢(2)(b, ¢) = (¢, b) and there is a homo-
topy equivalence W : R¥(VXR™) — ['V [5, p. 84]. Weregard Ty : my(R¥*(V X R™)) —
(m(M)x (V)% T2 as the identily.

Lemma 3.3 (Larmore). Assume that dimV > 3.

Q) (R¥*v)g : m(R*V) — (m(V) xm(V))xoTs is an isomorphism,

(2) (R*iv)g i m(PV) = m(P(VXR™)) = Ae (v)XT2 is an isomorphism,

(3) the natural inclusion P(Vx R™) C R¥(VxR™®) induces a natural inclu-

sion A:l(V) XTy C (zy(V) X7 (V)) Xng,
For a manifold ¥V, we denote by w,(V) both the first Stiefel-Whitney class of ¥ and

its orientation homomorphism w;(V) : 7y(V) — Aut(Z). For an element a € my(V),
we define a number (~1)¢ by the equation

wi(V)(a) = (-1)1z.

Given an abedian group G and a homomorphism g : 7;(X) — Aut(G), we denote
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the local system over X associated with ¢ by S(G, p).

Lemma 3.4 (Larmore). Assume that dimV =n > 5.
Q) w10y = S(Zm(V), #) over R¥*(VxR™), where p . (m(V) X7y (V) XeT2 —
Aut (Zz(V)) is given by

#(b, ¢, 1)(a) = (—1)bac™! for a,b,c e n(V),
g(b, ¢, (@) = (=D*(=1%~-1)°a"'c!  for a,b,c € m(V).
(2) wp—1pv = S(Z, p’) over P(VXR™), where Z is an infinite cyclic group
generated by 1 € my(V) and p’ : e,y XT2 — Aut(Z) is the restriction of p.

§4. Proofs of the results in the introduction

If dim M > 3, then it is easily proved that for f: M— N, its induced homomor-

phism Fg = (R*n)#(R* ) @ m(R*M) (= (m(M)xm(M)) X T2) — m(R*(N x R®))
(= (m(N)xm(N)) xTo) is given by

Fx(b, ¢, t9) = (fzb), fx(c), t) for b, ¢ € m(M).

Hence, by Lemma 3.4, we have the following

Lemme 4.1. Assume that dmN =n>5and dmM=m>3. If fi:M—> N

is an embedding, then F'zy_10n = S(my(N), tar), where par . (m(M)Xm(M))Xp T2
— Aut(Zmy(N)) is given by

em(b, ¢, 1)(a@) = (—=1)T#O fa(d)afuc)™
emb, ¢, (@) = (mD*(=1(—1)#O fa®la fa(©?,

for a € m(N), and b, ¢ € m;i(M).

We study F 'z,—10n more exactly. The group m;(N) can be described in the form
n(N) = Im fz + Tier((Im fe)a;(Im f2) U(Imf e (Im f#)).

We set (Im fe)a(Im fx) U(Im f#)a '(Im fz)=[a]. From Lemma 4.1, it follows
that

4.2) Flz,_10n = Ae@ Tier Ao
where

Ao = S(Z(Am f), ta0)

4.3 Agi = S(Tocrap Z<a>, tm).

Here Z<a> denotes the infinite cyclic group generated by a. By the definition of the
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sheaf m,-i{n, the induced sheaf F!z,_{n is desciried in the form
Flau N =A@ Zicr Aci,
where A; and Ag; are subsheaves of A4g and Ag;, respectively, satisfying the conditions

A |PM = S(Z, py) = F lap-1on,  AcilPM =0,

4.4
4.9 A = As over M* = R*M — PM, Agi = Agi over M*,

From now on, we assume that # =dim N =2dimM + 1 = 2m + 1. By Theorem
3.2, we have

(M C Nlf= H*(R*M ; A)) ® it H*™(R*M ; Acd).

The proof of Theorem 1.1 follows from Assertions 1 and 2 below.
Assertion 1. H*™(R*M ; A)=0.

Let 4; and B; be the sets defined by

Ai = {(b, ©) e m(M)x (M) | fa®)aifs(e)' = ai},
B = {(b, ¢) € m(M)xm(M) | fa(D)a; fx(c)™ = ai},

and let 4; : A;— {+1} and k;: B; — {1} be maps given by
ki(b, €) = (=1P(-D(~1)*@,
kb, ©) = (=)™~ DP(-1)(~1)#@(-1)4.

Assertion 2. H*™(R*M ; A)) = Z or Z according as h;Uk; : A;UB;— {1} is
surjective or not.

In proving the assertions mentioned above, we use the following lemmas. The
first one is shown in §5, while the other one is well-known.

Lemma 4.5. Let w,(R*M) and w(PM) be the orientation homomorphisms
of R*M and PM, respectively. Then
(1) wi(R*M) | my(R*M) = (m(M) xm(M)) x T2 — Aut(Z) is given by
wy(R*M)(b, ¢, 1) = (—1)*@mM(_1)2(-1)1z,
(2) wi(PM) : ;y(PM)=A:anX T2 — Aut(Z2) is given by
wi(PM)(b, b, t) = (—1)*imM]z,

Lemma 4.6. Let G be an abelian group and S(G, p) a local system over a
pathconnected space X. Let G be the subgroup of G generated by {g—p(adg |
acm(X), gEG). Then

Hy(X ; SG, 1)) = G/G.
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Proof of assertion 1. Let i : A — Ay be the natural inclusion. Because of the
fact that R*M is a 2m-manifold with boundary PM and the properties of 4¢ and A4,
in (4.4), we have a commutative diagram of exact sequences

b
H¥ Y PM ; Flzpmpn) —> H*™(R*M, PM ; A;) — H®™(R*M ; A¢) — 0
i* o/ g‘*
H*"Y(PM ; Ag|PM) ———> H*™(R*M, PM; 4g) — 0.

Here iy in the right hand side is an isomorphism because A¢ = 49 on R*M — PM.
Therefore it is enough to show that ixd, or equivalently 3’74, is surjective. By the
Poincaré duality, it is sufficient to prove that 7x(i®1)« : Ho(PM ; (F zompn)RS(Z,
wi(PM))) — Ho(PM ; (4| PM)QS(Z, wi(PM))) — Ho(R*M ; AsQ@S(Z, wi(R*M)))
is surjective, where j : PM c R*M is the natural inclusion. From (4.3), (4.4) and
Lemmas 4.5-6, it follows that

Ho(PM ; (F'mampn) ® S(Z, wi(PM))) = { ; if m =1(2), Imf Ker w, (M),
2 otherwise,
Ho(R*M ; A9 ® S(Z, wi(R*M)))
_ {Z if m=1(2), Imfz c Ker wy(N), Ker fz < Ker wy(M),

Zy  otherwise,

and that jx is surjective on Im (i®1)4.
Proof of Assertion 2. By using (4.3)-(4.4) and the Poincaré duality, we have

HP™(R¥M ; Awi) = Ho(R*M ; S(Zaciay Z<a>, pm @ wi(R*M))).

It is easily proved that the right hand side is isomorphic to Z; or Z according as #;Uk; :
A;UB; — {£1} is surjective or not.

Proof of Corollary 1. 2. Assume that fz : m(M) — m(N) is trivial. Then for a
€ m(N), the coset [@] ={a} or {a,a™} according as a% =1 or not.

Case wy(M) =0. Inthiscase, (~1)° = (-1D)/#® =1for ben(M). If a?=1
then Az = Bs = m(M) xm(M) and hq(b, €) =1, ka(b, ¢) = (=1)™"*(~1)%. Hence
haUkg is surjective if and only if either (—1)%=1,m =0(2) or (—1)%= -1, m =
1(2). If @ #1, then 4 = a(M)X my(M), Ba = ¢ and ha(b, ¢) = 1 for any b, ¢ € my(M).
Hence haUk, is not surjective. Therefore we get

YA ZdDYacBZD N a.a~tecZ  if m=0(2),
YA ZDNae BZID T 1a,0-11=c Z if m=10).

Case (M) #0. For any a(# 1) € m(M), we have 4z = m(M)X (M) and
ha(b, ©) = (—1)%(—1)° because (—1)"#® =1. From the assumption w;(M)# 0, it
follows that h, is surjective and so is h,Uks. Then we get

(M C N]f= YecauB Z:D X a.c-iec Zo.

[MCN]f={
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Proof of Corollary 1.3 follows this corollary and (2.3).
§5. The orientation homomorphism of R*M
In this section, we shall prove the following

Lemma 4.5. Assume that dm M > 3.
(1) The orientation homomorphism wi(R*M) : (my(M)xm(M)) x¢T2 — Aut(Z)
of R*M is given by

wi(R*M)(b, ¢, t*) = (—1)*WimM(_1)b(_1)¢1,,
() wy(PM) : Amy(M) x Ty — Aut(Z) is given by
Wi (PM)(b, b, t) = (—1)"€imd) 1,

Frist of all, we recall some well-known results.

Lemma 5.1. For a pathconnected space X, there is an isomorphism rx .
HY(X ; Zy) - Hom(my(X), Aut(Z)), which is natural for maps, that is, for a
map g X~ Y, there is an equation

$x(*(MN(X) = Py(N(@x(®)) xEm(X),y € H(Y ; Zy).

In this sense, our purpose is to determine the homomorphisms reas(wi(R*M))
and Ypay(wi(PM)). By Lemma 5.1, we easily obtain the following

Lemma 5.2. For spaces X, Y, the isomorphism +rx.y is given by

Yxxy(a®1 + 1®a’) (b, ¢) = Px(a)(®d) Jy(a’)(c).

Now, we return to the proof of Lemma 4.5. Since the natural inclusion M* =
R*M — PM C R*M is a homotopy equivalence, we identify cohomology groups and
homotopy groups of M* and those of R*M. The Z,-cohomology of M* (and hence
R*¥M) is calculated by Thomas [10]. The results stated in [10] are freely quoted
hereafter. There is a commutative diagram

HY(MxXM ; Zy) —pl> HI(MxM— AM: Z,)
H\(TM ; Zyp) — HY(M* : Zo)= HI(R*M ; Zy)
k* p2 ]*
H(MxXP>®: Zy) ——> H(PM;Z,).

Here, the maps p, py, p2 are all isomorphisms induecd by maps. In particular
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P = (R¥ip)*¥*

where the maps R*ips and W are given in §3. Let u € HI(P™ ; Z;) be the generator.
Then

HY(I'M ; Zp) = Ze<u>@{2®1 + 1®x | x € H(M ; Zp)}.

Lemma 5.3. The first Stiefel-Whitney class wi(R*M) of R*M is given by

wi(R*M) = p(wy(R*M)®1 + 1Qwi(M)) + (dim M)p(%).

Proof. w(R*M) is expressed in the form w (R*M) = 2p(#) + p(2®1 + 1@%)
for some x € H(M :Zy) and 1€ Z,. Because p(x®1 + 1®x) = p*w;(R*M) =
W (MxM — Ap) = pwy(MxM) = pi (w1 (M1 + 1Qwi(M)), we have x = wi(M).
Let v € H'(PM ; Z,) be the first Stiefel-Whitney class of the double covering SM —
PM. Then v = pk*(Au + x®1 + 1Q%x) = j*w (R*M) = w,(PM) = (dim M)v.
Hence 4 = dim M(2).

Lemma 5.4. The isomorphism \rreps . HH(R*M ;, Z3) — Hom(m(R*M), Aut(Z))
is given by

Yrem(p(a®1 + 1Qa)) (b, ¢, 1) = Yyrm(ad(be),
‘I"R*M(P(“)(b- c, t‘) = (_1)‘12'

for ae€ H(M ; Zy),b,c € ny(M) and e =0 or 1.

Proof. Using Lemma 5.2 and the fact that p=(R*ipr)*T*, we have

Vrem(p(a®1 + 1®a)) (b, ¢, 1) = Yru(a®1 + 1Q®a)(b,¢,1)
= Yrmxm(@a®1 + 1®a) b, ¢)
= 1;’M(a) (bC),

Vrem(p(a®1 + 1®a))(1, 1, 8) = Yrm(a@1 + 1®a)(1, 1, 2)
= Pru(a®l + 1Q®a) k=, £))
= Pmxp=(0)(1, t) = 1z

Thus we have the first half of the lemma. As for the second half, we have the
following equations:

brep(p(1)) (b, €, 1) = rag(u) (b, ¢, 1) = Ppe(w)(pxb, ¢, 1)) =1z,
where p : M — P% is a projection (see §3), and
Vrep((W))(A, 1, £) = Yrpo(@) (@) = — 12

Hence, ‘the second half of the lemma is proved.
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The proof of Lemma 4.5(1) follows immediately from Lemmas 5.1, and 5.3—4,
while Lemma 4.5 (2) is easily obtained by using the fact that w;(PM)=(dim M)v.
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